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CHAPITRE 3

THEOREMES DE CHEVALLEY ET WARNING

Ce chapitre est centré sur la propriété suivante: si un polynéme sans
terme constant sur un corps fini £ a un nombre de variables strictement
supérieur a son degré, alors il admet sur k£ un zéro non trivial (c’est-a-dire
autre que le point (0, ..., 0)); ce résultat, conjecturé par Artin vers 1934, a
¢té démontré par Chevalley en 1935, puis précisé par Warning la méme année
(pour plus amples détails, voir les Notes en fin de chapitre).

On conserve ici les conventions adoptées au début du chapitre 2.

§ 1. Le théoréme de Chevalley-Warning.
1.1. 1l s’agit du résultat suivant:

THEOREME 1. — Soit Fy, ..., F une famille de s polynémes appartenant a
k [X], de degrés respectifs d,, ..., d,, et soit V I’ensemble des solutions dans
k" du systéeme d’équations

(1.1.1) F,=0,.. F, =0;

soient enfin N = card (V') le nombre de solutions de (1.1.1) dans k", et
d=d; + ..+ dg la somme des degrés des polynémes F;. Alors, si n > d,
le nombre N est divisible par p (la caractéristique de k).

Démonstration. — Introduisons les deux polyndmes suivants:
(1.1.2) F=(0-F%Y..(1-F2Y;
(1.1.3) Fp =Y (1-(X;—a)™™ ) ...(1-(X,—a)"™Y);

aeV

(avec les notations du chap. 2, sect. 2.1, on a donc F, = ) F,). On voit
aeV

immédiatement que F et F} prennent la valeur 1 en tout point de V, et la
valeur 0 partout ailleurs; le polyndme G = F — Fj, est donc identiquement
nul; comme F, est manifestement réduit, et que F = F, + G, Fy, n’est
autre que le polyndme réduit associé a F (chap. 2, sect. 1.4), ce qui implique
(chap. 2, th. 2) deg (Fy) < deg (F), donc, en utilisant I’hypothése n > d,
deg (Fy) <d(g—1) < n(g—1). Mais F, comporte a priori un mondme
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en X971 ... X271, de degré n(q—1); le coefficient de ce mondme, égal a
(—1)" N, doit donc étre nul dans le corps k, de caractéristique p: en d’autres
termes, N doit étre divisible par p, C.Q.F.D.

On verra (§ 4) que I’hypothése n > d ne peut pas étre affaiblie: on peut
en effet, quels que soient k et n, construire un polyndéme de degré n, a n
variables et & coefficients dans k, et pour lequel on ait N = 1.

COROLLAIRE 1 (théoréme de Chevalley). — Mémes données et hypotheses
(notamment n > d) que dans le théoréme 1. Si de plus chacun des polynémes
F; (j=1, ..., 5) est sans terme constant, alors le systéme (1.1.1) admet dans
k" une solution autre que la solution triviale (0, ..., 0).

Démonstration. — L’absence ‘de termes constants implique que (0, ..., 0)
est solution du systéme (1.1.1): d’ou N > 1; mais N est divisible par p
(th. 1); on a donc N > p, et le nombre N — 1 de solutions non triviales est
donc >p—-1>2—-1=1, CQF.D.

Le théoréme 1 et son corollaire 1 s’appliquent en particulier au cas
s = 1 d’un seul polyndme de degré d, a n variables et tel que n > d. Ainsi,
toute forme quadratique a trois variables ou plus sur un corps fini £ admet
un zéro non trivial sur k; en langage géométrique, toute conique, quadrique,
... projective, définie sur un corps fini k, admet au moins un point rationnel
sur k. On aura I’occasion de revenir fréquemment sur ce genre de propriété.
Notons par ailleurs qu'un polyndme satisfaisant a n > d peut étre tel que
N = 0; ainsi, si p # 2, le polyndme (X; +...+X,)?"! + 1, de degré g — 1,
ne peut prendre que les valeurs 1 et 2 # 0 (chap. 1, sect. 1.1): donc, si
grand que soit n, et en particulier st n > d = g — 1, ce polyndme donne
lieu a N = 0. Pour un autre exemple, voir le chapitre 4 (sect. 2.3).

1.2. Le théoréme de Chevalley fournit une démonstration du théoréme
de Wedderburn autre que celles mentionnées au chapitre 1. Soient en effet K
un corps commutatif et » un nombre réel positif; on dit que K posséde la
propriété (C,) si tout polyndme homogeéne, de degré d, & n variables, a
coefficients dans K, et tel que n > d", admet dans K" un zéro non trivial

(voir par exemple [7], p. 6); avec cette terminologie, le théoréme 1 (ou son
corollaire 1) implique:

COROLLAIRE 2. — Tout corps fini (commutatif) posséde la propriété (C,).

Convenons d’autre part, toujours pour un corps commutatif K, de
désigner par (B,) la propriété suivante: tout corps gauche de centre K et de
degré fini sur K est égal a K. On a alors le résultat suivant:
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PrOPOSITION 1. — Si un corps commutatif K posséde la propriété (C,),
alors il posséde la propriété (B,).

Démonstration. — Soit en effet L un corps gauche de centre K et de degré
fini #n sur K. On sait que n est un carré (soit n=d?) et que si ey, ..., e, est
une base de L sur K (en tant qu’espace vectoriel), la norme réduite Nrd,g(x)
d’un élément quelconque x = x,e, + ... + x,e, de L est un polynéme
homogene et de degré d, a coefficients dans K, par rapport aux composantes
X1, .- X, de X, qui sont dans K (voir par exemple Bourbaki, Algébre, chap.
VIII, § 12; dans le cas bien connu du corps H des quaternions ordinaires
sur R, rapporté 2 la base canonique 1, 7, j, k, on a n = 4 = 2% et Nrdy r(X)
= x;2 4+ %% + x3% + x,%); cette norme réduite ne s’annule que pour
x = 0, donc pour x; = ... = x, = 0; comme K est supposé¢ posséder la
propriété (C,), on a nécessairement n = d*> <d, donc d =1, n =1 et
L = K, C.QF.D.

Redémontrons alors le théoréme de Wedderburn; soit L un corps fini,
non supposé commutatif, et soit k son centre; k est un corps fini commutatif,
et il posséde la propriété (C,) (cor. 2), donc la propriété (B,) (prop. 1);
mais comme L est évidemment de degré fini sur k, on a alors L = k (par |
définition de (B,)), et par conséquent L est commutatif, C.Q.F.D.

§ 2. Seconde démonstration du théoréme de Chevalley-Warning.

2.1. Cette seconde démonstration, indépendante de la théorie des
polyndmes réduits, repose sur le théoréme suivant (dont on aura également
besoin au § 3):

THEOREME 2. — Soit Fe k [X] un polynéme a n variables, et de degré d.
Alors, si d < n(g—1), on a
(2.1.1) Y, F(x) =0.
xekn

Démonstration. — Par linéarité, on peut se ramener au cas ou F est un
mondme X, ... X,*", avecd = u; + ... + u, < n(g—1); on a alors

n
(2.1.2) YF® = [1(Y x");
xekn i=1 x;ek
I’inégalité relative & d montre que pour un i au moins, ¥; < g — 1, et il
suffit évidemment de prouver que, dans (2.1.2), le i-¢me facteur du membre
de droite est alors nul, ce qui résulte du lemme suivant:
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LEMME 1. — Soit u un entier >0, et posons S, = Y x“; alors

xek
(i) si u est non nul et divisible par ¢ — 1, S, = — 1;
(i1) sinon, S, = 0.

En particulier, siu < q — 1, S, = 0.

Prouvons ce lemme; comme x? = x pour tout x € k, on ne restreint pas
la généralité de la démonstration en supposant 0 << u < g — 1; on est ainsi
amené a distinguer trois cas:

(1) u = 0:8S, est alors somme de ¢ termes égaux a 1; comme ¢ est divi-
sible par la caractéristique p de k, on a bien S, = 0;

(2) u=gq — 1: alors x* = 0 pour x = 0, et x* = 1 sinon; S, est donc
somme de ¢ — 1 termes égaux a 1, et on conclut comme en (1);

(3) 0 <u<g— 1:la proposition 7 (chap. 1) avec d = u montre qu’il
existe dans £* un élément a tel que @* # 1;comme x > ax est une bijection
de k sur k, on peut écrire S, = Y, (ax)* = a"S,; mais ceci donne (a*—1) S,

xek

= 0, donc, en simplifiant par a* — 1 # 0, S, = 0, C.Q.F.D.

On aurait également pu régler les cas (2) et (3) de la fagon suivante: soit
g un générateur de k*; les éléments x de k sont alors O, et les g* avec 0 < i
<q —2; S, est donc égal & la somme de la progression géométrique
1 +g"+ g+ .. +g@ 2 dou §,=0-g" Y%(1—-g"), ce qui
vaut bien 0, puisque g?' = 0. Remarquons par ailleurs que la nullité
des ¢ — 2 quantités S, (O<u<g—1) équivaut, compte tenu des formules
de Newton, a la nullité des g — 2 fonctions symétriques élémentaires des
éléments de k* autres que le produit (voir chap. 1, sect. 1.1).

2.2. Utilisons maintenant le théoréme 2 pour redémontrer le théoréme
de Chevalley-Warning. Considérons le polyndme F défini par (1.1.2)
(sect. 1.1); il est de degré d(g—1) < n(g—1), puisqu’on a supposé n > d;
le théoréme 2 permet donc d’écrire

(2.2.1) Y F(x) = 0;

xekn
mais F (x) vaut 1 si xe V, et 0 si x ¢ V; d’olt une seconde égalité:
(2.2.2) Y F(x) = N.1;

xekn

(2.2.1) et (2.2.2) donnent alors N.1 = 0, soit, puisque & est de caractéristique
p, N = 0 (mod p), C.Q.F.D.
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§ 3. Le «second» théoréme de Warning.

3.1. 1II s’agit du résultat suivant, établi par Warning, en méme temps
que le théoréme 1, dans son article déja cité (Warning (1935)):

THEOREME 3. — Mémes données et hypothéses (en particulier n > d)
que dans le théoréme 1. Alors, si N > 0 (donc si le systeme (1.1.1) admet au
moins une solution), on a en fait N > q" .

Démonstration. — Plagons-nous dans I’espace affine k", et soit toujours
V I'ensemble des solutions de (1.1.1); pour abréger, convenons (dans cette
section seulement) de dire variété au lieu de sous-variété affine de k"; alors :

LEMME 1..— Si W, et W, sont deux variétés paralléles de dimension d
=d; + ..+ d (voir th. 1), on a la congruence '
(3.1.1) - card (W, nV) = card (W,nV) (mod p).

- Prouvons ce lemme. On peut se limiter au cas ou W, # W,, puis, quitte
a effectuer un changement de coordonnées dans k" (ce qui ne modifie pas
les d;), supposer que W et W, sont définies respectivement par les systémes
d’¢quations X; =0, X, =0,..,X,_,=0,et X, =1, X, =0, .., X,_,
= (. Introduisons le polyndme (2 une seule variable 7") ’

R(T) = Tt —1 = [[(T-a),

ack*
puis le polynéfne (a2 n variables X 15 ...‘, X,, mais ne dépendant en fait que de
Xl, ey Xn_d) v '
G(X) = (=D""R(X) ... R(X,_)) 1_[ (Xy—a);

a¥0,1

G est un polynéme de degré total (n—d)(g—1) — 1; de plus, il vaut évi-
demment — 1 sur W, 1 sur W, et 0 ailleurs; F désignant tdujours le poly-
néme défini par (1.1.2) (sect. 1.1), H = GF est donc un polyndme 3 n
variables, de degré total (n—d)(g—1) — 1+ d(g—1) =n(g—1) — 1
<n(g—1), et ce polynome vaut — 1 sur W, nV, 1 sur W, nV, et 0
partout ailleurs; d’ou:
3.1.2) Y. H(x) = (card(W,nV) — card (W,nV)).1;

xekn ? ‘
mais le théoréme 2 est applicable & H: le second membre de (3.1.2) est donc
égal a 0, dans le corps k de caractéristique p, ce qui équivaut a (3.1.1), et
prouve le lemme 1. ‘
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Passons & la démonstration du théoréme 3, et distinguons deux cas:

(1) 1 existe au moins une variété W de dimension d telle que card (W ' V)
= 0 (mod p): le lemme 1 montre alors que pour toute variété W' paralléle
3 W et de méme dimension d, on a également card (W' nV) = 0 (mod p);
comme il existe exactement g" ¢ telles variétés W' (W comprise), qu’elles
forment une partition de k", et que chacune d’elles contient évidemment au
moins un point de V, 'inégalité N > ¢"~¢ se trouve immédiatement établie
dans ce premier cas. | |

(2) Pour toute variété W de dimension d, on a card (WnV) = 0 (mod p);
puisque ¥ contient (par hypothése) au moins un point, on peut cependant
affirmer ceci: il existe un entier m (1 <m << d) possédant la propriété
suivante:

pour toute variété M de dimension m, on a card (M nV) = 0 (mod p),
mais il existe une variété L de dimension m — 1 telle que card (LnV)

= 0 (mod p).

Fixons une telle variété L, et désignons par a le reste de division de
card (LN V) par p; on a donc 1 << a <p — 1. Considérons maintenant les
variétés M de dimension m passant par L; il y en a exactement

(@ =Dlg-1D =q¢""+ ... +q+1

(nombre de points rationnels sur k dans I’espace projectif -de dimension
n — m); chacune de ces variétés M contient au moins a points de V (ceux
qui sont dans L n V), et comme par ailleurs card (MnV) = 0 (mod p),
chaque différence ensembliste M — L contient au moins p — a > 1 points
de V'; mais les différences M — L forment une partition de k" — L; ainsli,

N=card(V) >¢" ™+ ... + ¢+ 1> ¢4,

ce qui regle le second cas et achéve de prouver le théoréme 3.

3.2. On verra au paragraphe suivant (sect. 4.3) que, sous les hypothéses
du théoréme 3, I'inégalité N > ¢" ¢ est la meilleure possible.

§ 4. Polynémes normiques et théoréme de Terjanian.

4.1. Le théoréme 1 utilise de fagon essentielle I’hypothése n > d. Si
n < d, il tombe en défaut, comme on peut le voir sur I’exemple suivant (dans

cet exemple et dans tout le reste de ce chapitre, on se limite au cas d’un seul
polyndme: s = 1):
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soit # un entier > 1, et soit K 'unique extension de degré » de k, C’est-
a-dire le corps F,; soit oy, ..., w, une base de K sur k, et posons

n—1

(4.1.1) P(X) = [] (%X, +...+0,7X,);
j=0

les 0 (0 <j<n-— 1) étant les conjugués de w; dans ’extension galoi-
sienne K/k (chap. 1, prop. 8), P est a coefficients dans k; de plus, P est un
polyndome de degré n, a n variables (on a donc n = d, n étant d’ailleurs
quelconque); enfin, P n’admet dans k" que le zéro trivial x = (0, ..., 0):
en effet, si x = (x,, ..., x,) est un point de k", et si on pose & = wx;
+ ... + o,x,, 1l est évident (voir chap. 1, sect. 3.3) que P (x) est égal a la
norme de ¢ dans ’extension K/k; I’égalité P (x) = 0 ne peut donc avoir lieu
que st & = 0, cest-a-dire si x; = ... = x, = 0. Ainsi, si N désigne le
nombre de solutions dans k" de I’équation P = O, ona N = 1, et N =£0
(mod p), comme annoncé.

(Notons au passage que le théoréme 3 reste vrai si n < d, mais qu’il perd
alors tout intérét, puisqu’il se réduit & I’énoncé suivant: si N > 0, on a
N > 1/¢""".

4.2. D’exemple donné dans la section 4.1 justifie 1a définition ci-dessous:

DEFINITION 1. — On appelle polyndme normique de degré n sur k tout
polynéme F de degré n a n variables, a coefficients dans k, et ayant pour
seul zéro dans k" le point (0, ..., 0) (un polynéme normique est donc sans
terme constant).

Les polyndmes normiques possédent la propriété suivante, mise en évi-
dence par Terjanian:

THEOREME 4. — Soit F € k [X] un polynéme normique de degré n, et soit
Gek [X] un polynome (quelconque) de degré strictement inférieur a n.
Alors 1’équation

(4.2.1) F(X) = G(X)
admet au moins une solution dans k".

Démonstration. — Introduisons ng variables notées X;; (1 <i <n,
1 <j < ¢g), et, pour tout i, soit S; € k [X4, ..., X;,] un polyndme normique
de degré g (de tels S; existent effectivement: utiliser ’exemple donné dans
la section 4.1, avec n = g). Introduisons une variable supplémentaire Y,
et considérons le polyndme R a n(R) = ng + 1 variables défini par
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R = F(Sy,...,S,) — G(Sy, .0, Sp) Y271

Son degré d (R) est < ngq, d’ou n(R) > d(R); de plus, R n’a pas de terme
constant, puisque F et les S; n’en ont pas, et que G (Sy, ..., S,) se trouve
multiplié par Y?~!. Le théoréme de Chevalley montre alors que R admet
dans k™" ! un zéro non trivial (X{y, ..., X, ¥); Si on pose s5; = S; (X5, -y
X;,), On a

(4.2.2) F(SgyeesSy) — G(5q5 ey sy 1 =0.

Mais y n’est certainement pas nul: sinon, on aurait F (s, ..., s,) = 0, donc
(F étant normique) s; = ... = §, = 0, donc (les S; étant eux-mémes nor-
miques) X;; = ... = X,, = 0, et en définitive (X 1, ..., X0, ¥) = (0, ..., 0, 0)
dans k™*1, ce qui est exclu par hypothése. Or, cette propriété (y#0)
implique 2~ = 1; il résulte alors de (4.2.2) que (54, ..., §,) est une solution
de (4.2.1) dans k", et le théoréme 4 est démontré.

COROLLAIRE 1. — Soit Fe k [X] un polynéme normique. Alors, quel que
soit a € k, I’équation F (X) = a admet au moins une solution dans k". Autre-
ment dit, la fonction polynomiale associée a un polynéme normique est sur-
jective.

Si on applique ce corollaire 1 au polyndme P défini par (4.1.1) (sect. 4.1),
on retrouve le fait, démontré différemment au chapitre 1, que la norme rela-
tive a I’extension K/k est surjective.

4.3. Terminons ce paragraphe en montrant que I'inégalité N > g" ¢

du théoré¢me 3 est la meilleure possible; de fagon précise: quels que soient
n, et d < n, il existe un polynome F € k [X], de degré d, et tel que l’équation
F = 0 admette exactement q"~* solutions dans k". En effet, soit P un poly-
ndme normique de degré d (donc & d variables) sur k£ (I’existence d’un tel P
est assurée par I'’exemple de la section 4.1, avec d au lieu de #); posons alors
F(X .y Xy) = P(Xy, ..., Xp) (les variables X, 4, ..., X, ne figurent donc
pas dans F); pour que F(x) = 0 (x € k"), il est évidemment nécessaire et
suffisant que les d premiéres composantes de x soient nulles; mais les points
x de k" possédant cette propriété sont exactement en nombre ¢" ¢, et
'assertion ci-dessus se trouve démontrée. Remarquons qu’un raisonnement
analogue permet d’ailleurs plus généralement de prouver le résultat suivant:

THEOREME 5. — Soit Fek [X] un polynéme a n variables, et soit N le
nombre de zéros de F dans k". Si m variables seulement figurent explicitement
dans F, alors N est divisible par q"~ ™.
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Notes sur le chapitre 3

§ 1: le théoréme de Chevalley-Warning a une histoire intéressante. En
1933, Tsen avait prouvé que le corps K = C (T) des fractions rationnelles
3 une variable 7 sur un corps algébriquement clos C posséde la propriété
(By) (autrement dit, a un groupe de Brauer nul: Tseun (1933)); Artin nota
que la démonstration de Tsen consistait: (1) & prouver que K posséde la
propriété (C,); puis (2) & déduire directement la propriété (B,) de la pro-
priété (C,), sans utiliser la définition particuliére de K; comme les corps finis
possedent la propriété (B,) (théoréme de Wedderburn !) et que par ailleurs
1ls « ne sont pas trop loin » de leur cloture algébrique (chap. 1, § 1), Artin
fut amené a conjecturer que les corps finis possédent la propriété (C,);
ce qui fut aussitdt démontré en caractéristique 2 par Voélsch, puis en carac-
téristique quelconque par Chevalley, sous une forme d’ailleurs plus forte
que celle prévue par Artin (Chevalley (1935)); c’est Warning qui, examinant
la démonstration de Chevalley, s’apergut que, pour les corps finis, la
« bonne » propriété n’était pas la propriété (C,), mais la divisibilité de N par
p (Warning (1935)): d’out finalement le nom de « théoréme de Chevalley-
Warning » attribué au théoreme 1. Ce théoréme a d’ailleurs été amélioré par
Ax (1964), qui a prouvé ceci (mé€mes notations que dans le th. 1): si b est
le plus grand entier strictement inférieur a n/d, N est divisible par ¢” (donc
par p’?). Ce résultat d’Ax a lui-méme été perfectionné récemment par Katz
(1971); a ce sujet, voir le chapitre 7.

Indiquons que 1’étude de la propriété (C,) (et plus généralement de la
propriété (C,)) a été reprise systématiquement dans les années cinquante par
Lang (1952) et Nagata (1957) et a connu depuis lors des développements
importants; a ce sujet, voir [7], ainsi que Terjanian (1972). Signalons par
ailleurs qu’il existe des corps possédant la propriété (B,), « trés proches »
de leur cloture algébrique (de fagon précise, quasi-finis), et ne possédant
pourtant pas la propriété (C,), ni méme la propriété (C,), si grand que soit r:
voir Ax (1965, a, b; 1968).

§ 2: le calcul modulo p de N par la formule (2.2.2) est parfois baptisé
« méthode de Kronecker » ou « méthode de Lebesgue » (voir Lebesgue
(1837, 1), th. 1); pour des généralisations de cette formule, voir Dwork
(1960, a; 1966, b); voir également les chapitres 7 et 9.

§ 3 et 4: comme indiqué dans le texte, les théorémes 3 et 4 sont dus
respectivement & Warning (1935) et Terjanian (1966). Pour des résultats
analogues au théoréme 5 (mais moins triviaux !), voir Carlitz (1953, b;
1954, b), et Redei (1946).
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