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Chapitre 3

THÉORÈMES DE CHEVALLEY ET WARNING

Ce chapitre est centré sur la propriété suivante: si un polynôme sans

terme constant sur un corps fini Hun nombre de variables strictement
supérieur à son degré, alors il admet sur k un zéro non trivial (c'est-à-dire
autre que le point (0,0)); ce résultat, conjecturé par Artin vers 1934, a
été démontré par Chevalley en 1935, puis précisé par Warning la même année

(pour plus amples détails, voir les Notes en fin de chapitre).
On conserve ici les conventions adoptées au début du chapitre 2.

§ 1. Le théorème de Chevalley-Warning.

1.1. Il s'agit du résultat suivant:

Théorème 1. — Soit Fx,..., Fs une famille de s polynômes appartenant à

k[X], de degrés respectifs du ds, et soit V l'ensemble des solutions dans

kn du système d'équations

(1.1.1) Ft 0, ...,FS 0;

soient enfin N card (F) le nombre de solutions de (1.1.1) dans kn, et

d dx + + ds la somme des degrés des polynômes Fj. Alors, si n > d,

le nombre N est divisible par p (la caractéristique de k).

Démonstration. — Introduisons les deux polynômes suivants :

(1.1.2) F (1 -^-^...(l-F/-1);
(1.1.3) Fv £ (1 -(X1-aiy'1)...(l-(Xn-any-1);

ae V

(avec les notations du chap. 2, sect. 2.1, on a donc Fv £ FJ. On voit
ae V

immédiatement que F et Fv prennent la valeur 1 en tout point de V, et la
valeur 0 partout ailleurs ; le polynôme G F — Fv est donc identiquement
nul; comme Fv est manifestement réduit, et que F Fv + G, Fv n'est

autre que le polynôme réduit associé à F (chap. 2, sect. 1.4), ce qui implique
(chap. 2, th. 2) deg (Fv) < deg (F donc, en utilisant l'hypothèse n > d,

deg (Fy) <*/(#— 1) < n(q— 1). Mais Fv comporte a priori un monôme
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en X1q'1 Xnq~\ de degré n(q- 1); le coefficient de ce monôme, égal à

(— 1)" N, doit donc être nul dans le corps k, de caractéristique/?: en d'autres

termes, N doit être divisible par /?, C.Q.F.D.
On verra (§ 4) que l'hypothèse n > d ne peut pas être affaiblie : on peut

en effet, quels que soient k et n, construire un polynôme de degré n, à n

variables et à coefficients dans k, et pour lequel on ait N 1.

Corollaire 1 (théorème de Chevalley). — Mêmes données et hypothèses

(notamment n > d) que dans le théorème 1. Si de plus chacun des polynômes

Fj (j= 1, s) est sans terme constant, alors le système (1.1.1) admet dans

kn une solution autre que la solution triviale (0, 0).

Démonstration. — L'absence de termes constants implique que (0, 0)

est solution du système (1.1.1): d'où N > 1 ; mais N est divisible par p
(th. 1); on a donc N > /?, et le nombre N — 1 de solutions non triviales est

donc >/?— 1>2— 1 1, C.Q.F.D.

Le théorème 1 et son corollaire 1 s'appliquent en particulier au cas

s l d'un seul polynôme de degré d, à n variables et tel que n > d. Ainsi,
toute forme quadratique à trois variables ou plus sur un corps fini k admet

un zéro non trivial sur k ; en langage géométrique, toute conique, quadrique,
projective, définie sur un corps fini k, admet au moins un point rationnel

sur k. On aura l'occasion de revenir fréquemment sur ce genre de propriété.
Notons par ailleurs qu'un polynôme satisfaisant à n > d peut être tel que
N 0; ainsi, si p # 2, le polynôme (Xt + + Xn)q~1 + 1, de degré q — 1,

ne peut prendre que les valeurs 1 et 2 ^ 0 (chap. 1, sect. 1.1): donc, si

grand que soit n, et en particulier si n > d q — 1, ce polynôme donne
lieu à N 0. Pour un autre exemple, voir le chapitre 4 (sect. 2.3).

1.2. Le théorème de Chevalley fournit une démonstration du théorème
de Wedderburn autre que celles mentionnées au chapitre 1. Soient en effet K
un corps commutatif et r un nombre réel positif ; on dit que K possède la
propriété (Cr) si tout polynôme homogène, de degré d, h n variables, à
coefficients dans K, et tel que n > d\ admet dans Kn un zéro non trivial
(voir par exemple [7], p. 6); avec cette terminologie, le théorème 1 (ou son
corollaire 1) implique:

Corollaire 2. — Tout corps fini commutatif) possède la propriété (Cf).
Convenons d'autre part, toujours pour un corps commutatif K, de

désigner par (B0) la propriété suivante: tout corps gauche de centre K et de
degré fini sur K est égal àl.Ona alors le résultat suivant:
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Proposition 1. — Si un corps commutatif K possède la propriété (C^),
alors il possède la propriété (B0).

Démonstration. — Soit en effet L un corps gauche de centre Ket de degré
fini n sur K. On sait que n est un carré (soit n d2) et que si eu en est

une base de L sur K (en tant qu'espace vectoriel), la norme réduite NrdLjK(x)
d'un élément quelconque x xlel + + xnen de L est un polynôme
homogène et de degré d, à coefficients dans K, par rapport aux composantes

xu xn de x, qui sont dans K (voir par exemple Bourbaki, Algèbre, chap.

VIII, § 12; dans le cas bien connu du corps H des quaternions ordinaires

sur R, rapporté à la base canonique 1, i,j, k, on a n 4 22 et ArJH/R(x)
x±2 + x22 + x32 + x42); cette norme réduite ne s'annule que pour

x 0, donc pour xl xn 0; comme K est supposé posséder la

propriété (C^), on a nécessairement n d2 < d, donc d 1, n 1 et

L — K, C.Q.F.D.
Redémontrons alors le théorème de Wedderburn; soit L un corps fini,

non supposé commutatif, et soit k son centre ; k est un corps fini commutatif\
et il possède la propriété (Ci) (cor. 2), donc la propriété (B0) (prop. 1);
mais comme L est évidemment de degré fini sur k, on a alors L k (par
définition de (R0))> et par conséquent L est commutatif, C.Q.F.D.

§ 2. Seconde démonstration du théorème de Chevalley- Warning.

2.1. Cette seconde démonstration, indépendante de la théorie des

polynômes réduits, repose sur le théorème suivant (dont on aura également
besoin au § 3) :

Théorème 2. — Soit F ek [X] un polynôme à n variables, et de degré d.

Alors, si d < n(q— 1), on a

(2.1.1) Y,F(x) 0.
xekn

Démonstration. — Par linéarité, on peut se ramener au cas où F est un
monôme Xx"1... X"n, avec d ui+ + u„1); on a alors

(2.1.2) X F(x)f[( Y xiui);
xekn i= 1 X{ek

l'inégalité relative à d montre que pour un i au moins, ut< q — 1, et il
suffit évidemment de prouver que, dans (2.1.2), le z-ème facteur du membre

de droite est alors nul, ce qui résulte du lemme suivant:
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Lemme 1. — Soit uun entier > 0, et posons Su ^ x" : alors
xek

(i) si u est non nul et divisible par q — 1, Su — 1 ;

(ii) sinon, Su 0.

En particulier, si u < q — 1, Su 0.

Prouvons ce lemme ; comme xq — x pour tout xek, on ne restreint pas

la généralité de la démonstration en supposant 0 < u < q — 1 ; on est ainsi

amené à distinguer trois cas:

(1) u 0 : Su est alors somme de q termes égaux à 1 ; comme q est divisible

par la caractéristique p de k, on a bien Su 0;

(2) u — q — 1 : alors xu — 0 pour x 0, et xu 1 sinon ; Su est donc

somme de q — 1 termes égaux à 1, et on conclut comme en (1);

(3) 0 < u < q — 1 : la proposition 7 (chap. 1) avec d — u montre qu'il
existe dans k* un élément a tel que au # 1 ; comme x \-+ ax est une bijection
de k sur k, on peut écrire Su £ (ax)u auSu; mais ceci donne (au— 1) Su

xek
0, donc, en simplifiant par au — 1 ^ 0, Su 0, C.Q.F.D.

On aurait également pu régler les cas (2) et (3) de la façon suivante : soit

g un générateur de A:* ; les éléments x de k sont alors 0, et les g1 avec 0 < i
< q — 2 ; Su est donc égal à la somme de la progression géométrique
1 + gu + g2u + + d'où (l-g(q-1)u)/(l-ga% ce qui
vaut bien 0, puisque gq~x 0. Remarquons par ailleurs que la nullité
des q — 2 quantités Su (0<u<q— 1) équivaut, compte tenu des formules
de Newton, à la nullité des q — 2 fonctions symétriques élémentaires des

éléments de k* autres que le produit (voir chap. 1, sect. 1.1).

2.2. Utilisons maintenant le théorème 2 pour redémontrer le théorème
de Chevalley-Warning. Considérons le polynôme F défini par (1.1.2)
(sect. 1.1); il est de degré d(q— 1) < n (q— 1), puisqu'on a supposé n > d;
le théorème 2 permet donc d'écrire

(2.2.1) £i?(x) 0;
xelt»

mais F (x) vaut 1 si x 6 V,et0 si x £ V;d'oùune seconde égalité:

(2.2.2) Y F(x) N.l;
xekn

(2.2.1) et (2.2.2) donnent alors N.1 =0, soit, puisque est de caractéristique
p, N 0 (mod p), C.Q.F.D.
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§3. Le «second» théorème de Warning.

3.1. Il s'agit du résultat suivant, établi par Warning, en même temps
que le théorème 1, dans son article déjà cité (Warning (1935)):

Théorème 3. — Mêmes données et hypothèses (en particulier n > d)
que dans le théorème 1. Alors, si N > 0 (donc si le système (1.1.1 admet au
moins une solution), on a en fait N > qn~d.

Démonstration. — Plaçons-nous dans l'espace affine kn, et soit toujours
F l'ensemble des solutions de (1.1.1); pour abréger, convenons (dans cette
section seulement) de dire variété au lieu de sous-variété affine de kn\ alors :

Lemme 1. — Si Wx et W2 sont deux variétés parallèles de dimension d
dt + + ds (voir th. 1J, on a la congruence

(3.1.1) card(W±nF) card(W2nF) (mod p).

Prouvons ce lemme. On peut se limiter au cas où W1 =£ W2, puis, quitte
à effectuer un changement de coordonnées dans kn (ce qui ne modifie pas
les dj), supposer que et W2 sont définies respectivement par les systèmes

d'équations X1 0, X2 0, ...,Xn_d 0, et Xx 1, X2 0, Xn_d
0. Introduisons le polynôme (à une seule variable T)

R(T) - 1 n (T-a),
aek*

puis le polynôme (à n variables Xu Xn, mais ne dépendant en fait que de

G(X) (-1 )"-"R(X2)...R(Xn_ä)n&i-a);
aï 0,1

G est un polynôme de degré total (n — d)(q— 1) — 1; de plus, il vaut
évidemment — 1 sur Wt, 1 sur W2 et 0 ailleurs; F désignant toujours le
polynôme défini par (1.1.2) (sect. 1.1), H GF est donc un polynôme à n

variables, de degré total (n — d)(q— 1) — 1 + d(q— 1) n(q— 1) — 1

< n(q— 1), et ce polynôme vaut — 1 sur Wt n F, 1 sur W2 n F, et 0

partout ailleurs; d'où:

(3.1.2) Y, ^(x) (card(IF2nF) - card(IF1nF)). 1 ;
xefc»

mais le théorème 2 est applicable à H: le second membre de (3.1.2) est donc

égal à 0, dans le corps k de caractéristique p, ce qui équivaut à (3.1.1), et

prouve le lemme 1.
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Passons à la démonstration du théorème 3, et distinguons deux cas:

(1) Il existe au moins une variété W de dimension d telle que card W rv F)
=é 0 (modp): le lemme 1 montre alors que pour toute variété W' parallèle

à W et de même dimension d, on a également card (W n F) ^ 0 (mod p);
comme il existe exactement qn~d telles variétés W' (W comprise), qu'elles

forment une partition de kn, et que chacune d'elles contient évidemment au

moins un point de F, l'inégalité N > qn~d se trouve immédiatement établie

dans ce premier cas.

(2) Pour toute variété W de dimension d, on a card (WnV) =0 (mod p);
puisque V contient (par hypothèse) au moins un point, on peut cependant

affirmer ceci: il existe un entier m (1 < m < d) possédant la propriété
suivante :

pour toute variété M de dimension m, on a card (M n V) 0 (mod p),
mais il existe une variété L de dimension m — 1 telle que card (LnF)
fé 0 (mod p).

Fixons une telle variété L, et désignons par a le reste de division de

card (L n V) par p; on a donc 1 < a < p — 1. Considérons maintenant les

variétés M de dimension m passant par L ; il y en a exactement

(qn-m+1 — i)/(^r — i) qn'm + + q + 1

(nombre de points rationnels sur k dans l'espace projectif de dimension

n — m); chacune de ces variétés M contient au moins a points de V (ceux

qui sont dans L n F), et comme par ailleurs card (MnF) 0 (mod p),
chaque différence ensembliste M — L contient au moins p — a > 1 points
de V; mais les différences M — L forment une partition de kn — L; ainsi,

N card (F) > qn~m + + q + 1 > qn~d

ce qui règle le second cas et achève de prouver le théorème 3.

3.2. On verra au paragraphe suivant (sect. 4.3) que, sous les hypothèses
du théorème 3, l'inégalité N > qn~d est la meilleure possible.

§ 4. Polynômes normiques et théorème de Terjanian.

4.1. Le théorème 1 utilise de façon essentielle l'hypothèse n > d. Si

n < d, il tombe en défaut, comme on peut le voir sur l'exemple suivant (dans
cet exemple et dans tout le reste de ce chapitre, on se limite au cas d'un seul
polynôme: ^ 1):



soit n un entier > 1, et soit K l'unique extension de degré n de k, c'est-
à-dire le corps ¥qn; soit œ1, con une base de K sur k, et posons

(4.1.1) P (X) "n (cV% +... + œfjXn) ;

j=o

les (0 <y < tz — 1) étant les conjugués de cot dans l'extension galoi-
sienne Kjk (chap. 1, prop. 8), P est à coefficients dans k\ de plus, P est un
polynôme de degré n, k n variables (on a donc n d, n étant d'ailleurs
quelconque); enfin, P n'admet dans kn que le zéro trivial x (0,..., 0):
en effet, si x (xl9..., xn) est un point de kn, et si on pose £ co^x
4- + conxn, il est évident (voir chap. 1, sect. 3.3) que P(x) est égal à la
norme de £ dans l'extension K/k ; l'égalité P (x) 0 ne peut donc avoir lieu

que si £ — 0, c'est-à-dire si xx xn — 0. Ainsi, si N désigne le

nombre de solutions dans kn de l'équation P 0, on sl N 1, et A ^ 0

(mod p), comme annoncé.

(Notons au passage que le théorème 3 reste vrai si n < d, mais qu'il perd
alors tout intérêt, puisqu'il se réduit à l'énoncé suivant: si N > 0, on a

N>llqd~n).

4.2. L'exemple donné dans la section 4.1 justifie la définition ci-dessous :

Définition 1. — On appelle polynôme normique de degré n sur k tout
polynôme F de degré n à n variables, à coefficients dans k, et ayant pour
seul zéro dans kn le point (0, 0) (un polynôme normique est donc sans

terme constant).

Les polynômes normiques possèdent la propriété suivante, mise en
évidence par Terjanian:

Théorème 4. — Soit F ek [X] un polynôme normique de degré n, et soit
G ek [X\ un polynôme (quelconque) de degré strictement inférieur à n.

Alors l'équation

(4.2.1) F(X) G(X)

admet au moins une solution dans kn.

Démonstration. — Introduisons nq variables notées Xtj (1 < i < n,
1 <7 < q), et, pour tout /, soit St e k [Xn,..., Xiq] un polynôme normique
de degré q (de tels St existent effectivement: utiliser l'exemple donné dans

la section 4.1, avec n q). Introduisons une variable supplémentaire T,

et considérons le polynôme R h n(R) nq + l variables défini par
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RF(SU...,SJ - y«"1.

Son degré rf(jR) est < nq9 d'où n (R) > d(R); de plus, R n'a pas de terme

constant, puisque F et les St n'en ont pas, et que G (Su Sn) se trouve

multiplié par Yq~K Le théorème de Chevalley montre alors que R admet

dans knq+1 un zéro non trivial (xll9 y); si on pose ^ St (xiL,

xi3), on a

(4.2.2) F($u...,Sn) - G^,...^)/"1 =0.

Mais y n'est certainement pas nul: sinon, on aurait F(sl9..., sn) 0, donc

(F étant normique) sl sn 0, donc (les St étant eux-mêmes nor-
miques) xxl 0, et en définitive (xll9xnq, y) (0,..., 0, 0)

dans knq+1, ce qui est exclu par hypothèse. Or, cette propriété (y^ 0)

implique 1 1 ; il résulte alors de (4.2.2) que (sl9..., sn) est une solution
de (4.2.1) dans kn9 et le théorème 4 est démontré.

Corollaire 1. — Soit Fek [X] un polynôme normique. Alors, quel que
soit aek, l 'équation F (X) a admet au moins une solution dans kn. Autrement

dit, la fonction polynomiale associée à un polynôme normique est sur-

jective.

Si on applique ce corollaire 1 au polynôme P défini par (4.1.1) (sect. 4.1),

on retrouve le fait, démontré différemment au chapitre 1, que la norme relative

à l'extension K\k est surjective.

4.3. Terminons ce paragraphe en montrant que l'inégalité N > qn~d

du théorème 3 est la meilleure possible; de façon précise: quels que soient

«, et d < 72, il existe un polynôme Fek [X]9 de degré d, et tel que l 'équation
F 0 admette exactement qn~d solutions dans kn. En effet, soit P un
polynôme normique de degré d (donc à d variables) sur k (l'existence d'un tel P
est assurée par l'exemple de la section 4.1, avec d au lieu de n); posons alors

F(XU Xn) P(XU Xd) (les variables Xd+l9..., Xn ne figurent donc

pas dans F); pour que F(x) 0 (xekn)9 il est évidemment nécessaire et
suffisant que les d premières composantes de x soient nulles ; mais les points
x de kn possédant cette propriété sont exactement en nombre qn~d, et
l'assertion ci-dessus se trouve démontrée. Remarquons qu'un raisonnement
analogue permet d'ailleurs plus généralement de prouver le résultat suivant:

Théorème 5. — Soit Fek [X] un polynôme à n variables, et soit N le
nombre de zéros de F dans kn. Si m variables seulement figurent explicitement
dans F, alors N est divisible par qn~m.
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Notes sur le chapitre 3

§ 1: le théorème de Chevalley-Warning a une histoire intéressante. En
1933, Tsen avait prouvé que le corps K — C(T) des fractions rationnelles
à une variable T sur un corps algébriquement clos C possède la propriété
(B0) (autrement dit, a un groupe de Brauer nul: Tsen (1933)); Artin nota
que la démonstration de Tsen consistait: (1) à prouver que K possède la
propriété (Cx); puis (2) à déduire directement la propriété (B0) de la
propriété (CJ, sans utiliser la définition particulière de K; comme les corps finis
possèdent la propriété (B0) (théorème de Wedderburn et que par ailleurs
ils « ne sont pas trop loin » de leur clôture algébrique (chap. 1, § 1), Artin
fut amené à conjecturer que les corps finis possèdent la propriété (Cx);
ce qui fut aussitôt démontré en caractéristique 2 par Volsch, puis en
caractéristique quelconque par Chevalley, sous une forme d'ailleurs plus forte

que celle prévue par Artin (Chevalley (1935)); c'est Warning qui, examinant
la démonstration de Chevalley, s'aperçut que, pour les corps finis, la
« bonne » propriété n'était pas la propriété (CJ, mais la divisibilité de N par
p (Warning (1935)): d'où finalement le nom de «théorème de Chevalley-
Warning » attribué au théorème 1. Ce théorème a d'ailleurs été amélioré par
Ax (1964), qui a prouvé ceci (mêmes notations que dans le th. 1): si b est

le plus grand entier strictement inférieur à njd, N est divisible par qb (donc

par pfb). Ce résultat d'Ax a lui-même été perfectionné récemment par Katz
(1971); à ce sujet, voir le chapitre 7.

Indiquons que l'étude de la propriété (Cx) (et plus généralement de la

propriété (CrJ) a été reprise systématiquement dans les années cinquante par
Lang (1952) et Nagata (1957) et a connu depuis lors des développements

importants; à ce sujet, voir [7], ainsi que Terjanian (1972). Signalons par
ailleurs qu'il existe des corps possédant la propriété (B0), « très proches »

de leur clôture algébrique (de façon précise, quasi-finis), et ne possédant

pourtant pas la propriété (Cx), ni même la propriété (Cr), si grand que soit r :

voir Ax (1965, a, b; 1968).

§ 2: le calcul modulo p de N par la formule (2.2.2) est parfois baptisé
« méthode de Kronecker » ou « méthode de Lebesgue » (voir Lebesgue

(1837, I), th. 1); pour des généralisations de cette formule, voir Dwork
(1960, a; 1966, b); voir également les chapitres 7 et 9.

§ 3 et 4: comme indiqué dans le texte, les théorèmes 3 et 4 sont dus

respectivement à Warning (1935) et Terjanian (1966). Pour des résultats

analogues au théorème 5 (mais moins triviaux voir Carlitz (1953, b;
1954, b), et Redei (1946).
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