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La démonstration du lemme 2 donne une méthode effective pour calculer

F* à partir de F, et permet en outre d'énoncer:

Théorème 2. — Si F est un élément de k [X], et si F* est le polynôme

réduit associé à F, on a l'inégalité deg (F*) < deg (F).

§ 2. Fonctions polynomiales.

2.1. Soit A l'ensemble de toutes les applications de kn dans F, et soit

ç l'application qui, à tout polynôme Fe k [X], fait correspondre sa fonction

polynomiale associée. Il est clair que A est muni naturellement d'une

structure de /^-algèbre (ainsi d'ailleurs que k [X]) et que cp : k [X] -> A,
est un homomorphisme de fc-algèbres.

Théorème 3. — (i) L'homomorphisme cp est surjectifet a pour noyau l'idéal

r ; <p donne donc lieu à un isomorphisme d'algèbres

(ii) Soit (pR la restriction à R c k [X] de l'homomorphisme cp; cpR est

un isomorphisme de l'espace vectoriel R sur l'espace vectoriel A. Si F est

un élément de k [X], on a cpR_1 (cp (F)) F*.

Démonstration. — (ii) est une conséquence immédiate de (i) et de l'égalité
(1.3.1) (th. 1, (ii)). Prouvons (i): le noyau de cp est par définition égal à

/; mais / F (th. 1, (i)); le noyau de cp est donc bien F. Reste à établir la
surjectivité de cp, c'est-à-dire le lemme suivant:

Lemme 3. — Pour toute application f: kn-+k, il existe dans k [X] un

polynôme F tel que F (x) / (x) en tout point x de k11.

Prouvons ce lemme; pour tout point a (au an) de kn, notons /a
l'application de kn dans k définie par

La famille (fa)aekn est évidemment une base sur k de l'espace vectoriel A ;

par linéarité, on peut donc se limiter au cas où/est de la forme/a; mais il
suffit alors de prendre pour F le polynôme

(voir chap. 1, sect. 1.1). Ceci démontre le lemme 3, et achève de prouver le
théorème 3.

(2.1.1) kixyr ^ A.

(2.1.2)
x a ;

x 7^ a.

(2.1.3) Fa (1
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2.2. Concrètement, le théorème 3 signifie ceci : toute application

/: kn -> k, est une fonction polynomiale, et on peut supposer que le
polynôme F tel que F (x) /(x) en tout point x de kn est réduit ; F est alors
entièrement déterminé par /. Si on remarque que le polynôme Ea défini

par (2.1.3) est réduit, on voit qu'on peut même écrire explicitement

(2.2.4) F(X)=y/(a)F.(*).
a ek

2.3. On a remarqué (sect. 1.1) que la dimension de l'espace vectoriel R
est égale à qn; comme k [X] R © r, l'espace quotient k [X]/r est aussi

de dimension qn. Par ailleurs, l'espace vectoriel A, qui admet pour base sur
k la famille (fa)aekn (sect. 2.1), est également de dimension qn. L'homo-
morphisme injectif (2.1.1) est donc en fait bijectif, ce qui donne une deuxième

démonstration de la surjectivité de (p. Exercice pour le lecteur: donner une
troisième démonstration de la surjectivité de cp en utilisant la théorie des

polynômes d'interpolation.

2.4. Le théorème 3 permet d'évaluer la « probabilité » pour qu'une
équation F — 0 (F e k [X]) admette au moins une solution dans kn. Tout
d'abord, on ne modifie pas l'ensemble des solutions de l'équation en

remplaçant F par F* ; on peut donc supposer F réduit, et on s'aperçoit ainsi

qu'il existe essentiellement card (R) qqn équations distinctes. D'autre
part, les polynômes réduits F tels que l'équation F 0 n 'ait aucune solution

correspondent bijectivement par cpR aux applications de kn dans k*; il y en

a donc exactement (q — l)qn, et il existe ainsi qqn — (q— l)qn polynômes
réduits F tels que l'équation F 0 ait au moins une solution. En définitive,
la « probabilité » cherchée est donc égale à 1 — (1—q~ 1)qn.

§ 3. Idéaux de polynômes.

3.1. Soit Fu Fs une famille de s éléments de k [X], et soit J l'idéal
de k [X] engendré par les Fj(j= 1, s); considérons le système d'équations

(3.1.1) F1 0 ,...9Fs 0,

et soit V l'ensemble des solutions de (3.1.1) dans kn, c'est-à-dire l'ensemble
des zéros de J rationnels sur k. Soit enfin I (F) l'ensemble des polynômes
G ek [X] qui s'annulent en tout point de V; I(V) est évidemment un idéal
de k [X]; I (V) contient /, et aussi r ; I (V) contient donc J + T; en fait:
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