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| Ia démonstration du lemme 2 donne une méthode effective pour calculer
F* 3 partir de F, et permet en outre d’énoncer:

THEOREME 2. — Si F est un élément de k [X], et si F* est le polynémé
réduit associé a F, on a l'inégalité deg (F*) < deg (F).

§ 2. Fonctions polynomiales.

2.1. Soit A ensemble de toutes les applications de k" dans k, et soit
o lapplication qui, & tout polyndme F € k [X], fait correspondre sa fonction
polynomiale associée. Il est clair que A est muni naturellement d’une
structure de k-algébre (ainsi d’ailleurs que k [X]) et que @: k [X] — 4,
est un homomorphisme de k-algébres.

THEOREME 3. — (i) L *homomorphisme @ est surjectif et a povr noyau l’idéal
I'; @ donne donc lieu a un isomorphisme d’algebres

(2.1.1) k[X1T > A.

(ii) Soit @g la restriction @ R < k[X] de I’homomorphisme ¢; Qg est
un isomorphisme de l’espace vectoriel R sur l’espace vectoriel A. Si F est
un élément de k [X1, on a pg~ " (¢ (F)) = F*.

Démonstration. — (ii) est une conséquence immédiate de (i) et de ’'égalité
(1.3.1) (th. 1, (ii)). Prouvons (i): le noyau de ¢ est par définition égal a
I; mais I = I (th. 1, (i)); le noyau de ¢ est donc bien I'. Reste a établir la
surjectivité de ¢, c’est-a-dire le lemme suivant:

LeMME 3. — Pour toute application f- k" — k, il existe dans k [X] un
polynéme F tel que F (xX) = f(X) en tout point X de k".

Prouvons ce lemme; pour tout point a = (ay, ..., a,) de k", notons f,
Iapplication de k" dans k définie par

_ 1 Si X = a:
2.1.2 - >
( ) fa (¥) {0 sSi X # a.

La famille (f,),n st évidemment une base sur k& de I’espace vectoriel 4;
par linéarité, on peut donc se limiter au cas ol f est de la forme f,; mais il
suffit alors de prendre pour F le polynome

(2.1.3) F, = (1-(X;—a)" ) ...(1=-(X,—a,)*™Y)

(voir chap. 1, sect. 1.1). Ceci démontre le lemme 3, et achéve de prouver le
théoréme 3.
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2.2. Concrétement, le théoréme 3 signifie ceci: toute application
S k" — k, est une fonction polynomiale, et on peut supposer que le poly-
ndome F tel que F(x) = f(x) en tout point x de k" est réduit; F est alors
entierement déterminé par f. Si on remarque que le polyndome F, défini
par (2.1.3) est réduit, on voit qu’on peut méme écrire explicitement

(2.2.4) F(X) = ) f@F,(X).

aekn

2.3. On a remarqué (sect. 1.1) que la dimension de ’espace vectoriel R
est égale a ¢"; comme k [X] = R @ I', ’espace quotient k [X]/I" est aussi
de dimension ¢". Par ailleurs, I’espace vectoriel 4, qui admet pour base sur
k la famille (f,),cxn (sect. 2.1), est également de dimension g”. L’homo-
morphisme injectif (2.1.1) est donc en fait bijectif, ce qui donne une deuxiéme
démonstration de la surjectivité de ¢. Exercice pour le lecteur: donner une
troisitme démonstration de la surjectivité de ¢ en utilisant la théorie des
polyndmes d’interpolation.

2.4. Le théoréme 3 permet d’évaluer la « probabilité » pour qu’une
équation F = 0 (Fe k [X]) admette au moins une solution dans k". Tout
d’abord, on ne modifie pas I’ensemble des solutions de I’équation en rem-
plagant F par F*; on peut donc supposer F réduit, et on s’apergoit ainsi
qu’il existe essentiellement card (R) = ¢?" équations distinctes. D’autre
part, les polyndmes réduits F tels que I’équation F = 0 »’ait aucune solution
correspondent bijectivement par ¢z aux applications de k" dans k*; il y en
a donc exactement (g—1)7", et il existe ainsi ¢?" — (¢g—1)?" polyndmes
réduits F tels que ’équation F = 0 ait au moins une solution. En définitive,
la « probabilité » cherchée est donc égale & 1 — (1—gq~ )",

§ 3. Idéaux de polynomes.

3.1. Soit Fy, ..., F une famille de s éléments de k [X], et soit J I'idéal
de k [X] engendré par les F; (j=1, ..., 5); considérons le systéme d’équations

(3.1.1) F, =0,..,F, =0,

et soit ¥ ’ensemble des solutions de (3.1.1) dans k", c’est-a-dire ’ensemble
des zéros de J rationnels sur k. Soit enfin I (V') I’ensemble des polyndmes
G € k [X] qui s’annulent en tout point de V; I (V') est évidemment un idéal
de k [X]; I (V) contient J; et ausst I'; I (V') contient donc J + I'; en fait:



	§2. Fonctions polynomiales.

