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§ 1: la classification des corps (commutatifs) finis (« champs de Ga-
lois ») remonte essentiellement & Galois (1830).

§ 2: le fait que le groupe multiplicatif du corps F, est cyclique est di a
Euler (1760); sa démonstration utilisait les propriétés de D'« indicatrice
d’Euler ». Ce résultat est un ingrédient essentiel de la théorie des restes
quadratiques (Euler, Legendre, Gauss), cubiques (Jacobi, Eisenstein),
biquadratiques (Gauss, Jacobi), et plus généralement des restes de puis-
sances quelconques (Kummer, etc.); a ce sujet, voir par exemple Dickson,
History of the Theory of Numbers.

§ 3: les propositions 9 et 10 sont des cas particuliers du théoréme 90 de
Hilbert relatif aux extensions cycliques (voir [10], pp. 213-215).

CHAPITRE 2

POLYNOMES ET IDEAUX DE POLYNOMES

On sait que si K est un corps infini, et si F est un polyndme a une ou
plusieurs variables, a coefficients dans K, et identiquement nul sur K, alors
F est nul: tous ses coefficients sont nuls. Ceci n’est plus vrai pour un corps
fini: ainsi, sur k = F,, le polyndme X? — X, non nul, est pourtant identi-
quement nul (chap. 1, sect. 1.1 et 1.2); c’est & cette particularité des corps
finis qu’est consacré le présent chapitre.

Dans tout le cours de ce chapitre (ainsi que dans les chapitres sui-
vants), k désignera un corps fini & ¢ = p’ éléments, n un entier > 1, X
= (X, ..., X,) une famille de n variables, et k [X] = k [X}, ..., X,] ’anneau

~ des polyndmes en X, ..., X, a coefficients dans k; d’autre part, les éléments

a = (aq,..,a,) de k" seront appelés points (ou points rationnels sur k, si
cette précision est nécessaire); si Fek [X], si a est un point de k", et si
F(a) = 0, on dira que a est un zéro de F.

§ 1. Polynomes réduits et polynomes identiquement nuls.

1.1. Soit F un élément de k [X].
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DEFINITION 1. — Si le degré de F par rapport @ chacune des n variables X
est inférieur ou égal @ q — 1, on dit que F est un polynome réduit.

Les polyndmes réduits forment évidemment un sous-espace vectoriel R
de k [X] (le corps des scalaires étant k); une base naturelle de ce sous-espace
est ’ensemble des mondmes X, ... X,%" tels que 0 < d; <gq — 1 pour
i =1,..,n; Rest donc de dimension ¢g" sur k.

1.2. Soit encore F un élément de k [X].

DEFINITION 2. — On appelle fonction polynomiale associée a F [’appli-
cation X b F (X) de k" dans k. Si cette fonction polynomiale est nulle (donc si
F (x) = 0 en tout point x de k"), on dit que le polynome F est identiquement
nul.

Les polynomes identiquement nuls forment un idéal 7 de k [X]; notons
d’autre part I' I'idéal de k[X] engendré par les éléments X7 — X;
(i=1, ...,n); comme chacun de ces polyndmes est identiquement nul
- (chap. 1, § 1), il est clair que I' = I: on va voir qu’en fait, il y a égalité.

1.3. THEOREME 1. — (1) Dans k [X], les idéaux 1 et I' sont égaux.

(11) En tant qu’espace vectoriel sur k, k [X] est somme directe de R (voir
sect. 1.1) et de I :

(1.3.1) k[X]=R®T.
Démonstration. — On aura besoin de deux lemmes.

LEMME 1. — Si un polynéme F de k [X] est a la fois réduit et identiqguement
nul, alors il est nul ; autrement dit :

(1.3.2) Rnl =(0).

Ce lemme se démontre par récurrence sur n. Tout d’abord, la propriété
est vraie pour n = 1: si en effet F, polyndme & une variable, est réduit et
identiquement nul, il est de degré << g — 1 (déf. 1) et il posséde d’autre
part au moins g racines: les g éléments de k (déf. 2); et ceci n’est possible
que si F = 0. Ensuite, si la propriété est vraie pour n — 1 variables (avec
n > 2), elle est encore vraie pour n variables: soit en effet F un polynéme
réduit a n variables; en I’ordonnant suivant les puissances décroissantes de
X, on peut le mettre sous la forme

Fy(Xo o, X) X0+ o+ Fl (X, 0, X)) Xy + Fy (X, .0y X))

’
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les F; (1 <j <g) étant g polyndmes réduits, @ n — 1 variables X,, ..., X,.
Supposons maintenant F identiquement nul: alors, quel que soit le point
(x2, ...y X,) de k"7 1, le polyndme f1 X4 + ... + f,— 1 X; + f, (o0, par
définition, f; = F; (x,, ..., x,) pourj = 1, ..., q) est lui-méme identiquement
nul; mais c’est un polyndme réduit, a une seule variable X, : la premicre
partie de la démonstration prouve donc qu’il est nul, c’est-a-dire que
fi=..=f,=0, ou encore que F,(x,,..,Xx,) =..=F (x5..,X%,)
= 0; or ceci a lieu, rappelons-le, quel que soit (x,, ..., x,) dans k"~ *: ainsi,
les ¢ polyndmes F; sont identiquement nuls, et I’hypothése de récurrence
permet d’affirmer qu’ils sont nuls; mais alors, F est lui-méme nul, C.Q.F.D.

LEMME 2. — Pour tout polynéme F de k [ X], il existe un polynéme réduit
F* tel que F = F* (mod I'); autrement dit :

(1.3.3) k[X] =R +T.

Prouvons ce lemme: par linéarité, on peut se ramener au cas ou F est
un mondme X;% ... X,%»; I" étant un idéal, on peut méme se limiter au cas
ol ce mondme ne contient qu’une seule variable, par exemple, au cas ou
F = X,"; mais alors, pour d; <gq — 1, il n’y a rien & démontrer (faire
F*=0);et pour d, > g, il suffit de raisonner par récurrence sur d,, en remar-
quant qu'on a la congruence X, = X, @D (mod I).

Démontrons maintenant le théoréme 1 lui-méme. Comme I' < 1, il
résulte du lemme 1 que

(1.3.4) RnI =(0).

Les égalités (1.3.3) et (1.3.4) montrent alors que £ [X] = R@® I': (ii) se
trouve ainsi établi. Reste & prouver (i), et il suffit évidemment de montrer
que / < I'; mais si F'el, on peut écrire (lemme 2)

(1.3.5) F =F* + G (F*eR, GeI');
comme I' = I, F¥ = F — G, différence de deux éléments de I, est un
élément de I, donc un polyndme identiquement nul; le lemme 1 montre alors

que F* est nul, et (1.3.5) donne F = G €I, ce qui prouve bien I’inclusion
I = I'. Le théoréme est ainsi démontré.

1.4. D’aprés le théoréme 1, tout polyndme F e k [X] s’écrit d’une fagon
et d’une seule F = F* + G, avec F* réduit et G identiquement nul.

DEFINITION 3. — On dit que F* est le polyndme réduit associé a F.
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| Ia démonstration du lemme 2 donne une méthode effective pour calculer
F* 3 partir de F, et permet en outre d’énoncer:

THEOREME 2. — Si F est un élément de k [X], et si F* est le polynémé
réduit associé a F, on a l'inégalité deg (F*) < deg (F).

§ 2. Fonctions polynomiales.

2.1. Soit A ensemble de toutes les applications de k" dans k, et soit
o lapplication qui, & tout polyndme F € k [X], fait correspondre sa fonction
polynomiale associée. Il est clair que A est muni naturellement d’une
structure de k-algébre (ainsi d’ailleurs que k [X]) et que @: k [X] — 4,
est un homomorphisme de k-algébres.

THEOREME 3. — (i) L *homomorphisme @ est surjectif et a povr noyau l’idéal
I'; @ donne donc lieu a un isomorphisme d’algebres

(2.1.1) k[X1T > A.

(ii) Soit @g la restriction @ R < k[X] de I’homomorphisme ¢; Qg est
un isomorphisme de l’espace vectoriel R sur l’espace vectoriel A. Si F est
un élément de k [X1, on a pg~ " (¢ (F)) = F*.

Démonstration. — (ii) est une conséquence immédiate de (i) et de ’'égalité
(1.3.1) (th. 1, (ii)). Prouvons (i): le noyau de ¢ est par définition égal a
I; mais I = I (th. 1, (i)); le noyau de ¢ est donc bien I'. Reste a établir la
surjectivité de ¢, c’est-a-dire le lemme suivant:

LeMME 3. — Pour toute application f- k" — k, il existe dans k [X] un
polynéme F tel que F (xX) = f(X) en tout point X de k".

Prouvons ce lemme; pour tout point a = (ay, ..., a,) de k", notons f,
Iapplication de k" dans k définie par

_ 1 Si X = a:
2.1.2 - >
( ) fa (¥) {0 sSi X # a.

La famille (f,),n st évidemment une base sur k& de I’espace vectoriel 4;
par linéarité, on peut donc se limiter au cas ol f est de la forme f,; mais il
suffit alors de prendre pour F le polynome

(2.1.3) F, = (1-(X;—a)" ) ...(1=-(X,—a,)*™Y)

(voir chap. 1, sect. 1.1). Ceci démontre le lemme 3, et achéve de prouver le
théoréme 3.
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2.2. Concrétement, le théoréme 3 signifie ceci: toute application
S k" — k, est une fonction polynomiale, et on peut supposer que le poly-
ndome F tel que F(x) = f(x) en tout point x de k" est réduit; F est alors
entierement déterminé par f. Si on remarque que le polyndome F, défini
par (2.1.3) est réduit, on voit qu’on peut méme écrire explicitement

(2.2.4) F(X) = ) f@F,(X).

aekn

2.3. On a remarqué (sect. 1.1) que la dimension de ’espace vectoriel R
est égale a ¢"; comme k [X] = R @ I', ’espace quotient k [X]/I" est aussi
de dimension ¢". Par ailleurs, I’espace vectoriel 4, qui admet pour base sur
k la famille (f,),cxn (sect. 2.1), est également de dimension g”. L’homo-
morphisme injectif (2.1.1) est donc en fait bijectif, ce qui donne une deuxiéme
démonstration de la surjectivité de ¢. Exercice pour le lecteur: donner une
troisitme démonstration de la surjectivité de ¢ en utilisant la théorie des
polyndmes d’interpolation.

2.4. Le théoréme 3 permet d’évaluer la « probabilité » pour qu’une
équation F = 0 (Fe k [X]) admette au moins une solution dans k". Tout
d’abord, on ne modifie pas I’ensemble des solutions de I’équation en rem-
plagant F par F*; on peut donc supposer F réduit, et on s’apergoit ainsi
qu’il existe essentiellement card (R) = ¢?" équations distinctes. D’autre
part, les polyndmes réduits F tels que I’équation F = 0 »’ait aucune solution
correspondent bijectivement par ¢z aux applications de k" dans k*; il y en
a donc exactement (g—1)7", et il existe ainsi ¢?" — (¢g—1)?" polyndmes
réduits F tels que ’équation F = 0 ait au moins une solution. En définitive,
la « probabilité » cherchée est donc égale & 1 — (1—gq~ )",

§ 3. Idéaux de polynomes.

3.1. Soit Fy, ..., F une famille de s éléments de k [X], et soit J I'idéal
de k [X] engendré par les F; (j=1, ..., 5); considérons le systéme d’équations

(3.1.1) F, =0,..,F, =0,

et soit ¥ ’ensemble des solutions de (3.1.1) dans k", c’est-a-dire ’ensemble
des zéros de J rationnels sur k. Soit enfin I (V') I’ensemble des polyndmes
G € k [X] qui s’annulent en tout point de V; I (V') est évidemment un idéal
de k [X]; I (V) contient J; et ausst I'; I (V') contient donc J + I'; en fait:
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THEOREME 4. — On a l’égalité

(3.1.2) (V) =J + r.

Démonstration. — Considérons le polyndome
(3.13) F=1-(=FY. .(1-F&Y;

F appartient a I’idéal J: en effet, considéré comme polyndme par rapport
aF,,..,F,le second membre de (3.1.3) ne contient pas de terme constant;
d’autre part, F prend constamment la valeur O sur V, et la valeur 1 en dehors
de V (voir chap. 1, sect. 1.1). Soit alors H un élément de I (V'), donc un
polyndme nul sur ¥; il est clair que le polyndme G = H — HF est identi-
quement nul, et appartient donc a I'; il est clair également, puisque J est
un idéal contenant F, que HF appartient & J; on voit ainsi que H = HF
+ G appartient 8 J + I', donc que I (V) <« J + I', C.Q.F.D.

3.2. Le théoréme de la base finie de Hilbert (voir [10], p. 144) montre
que tout idéal de k [X] peut étre engendré par un nombre fini de polyndmes:
le théoréme 4 est donc en fait applicable & n’importe quel idéal J de k [X]
(dans le méme ordre d’idées, on peut d’ailleurs remarquer que dans la
démonstration du théoréme 4, on a implicitement remplacé 1'idéal J en-
gendré par Fy, ..., F,, par I’idéal principal (F), contenu dans J, et dont
I’ensemble des zéros dans k" est le méme que celui de J).

Notons d’autre part que le théoréme des zéros de Hilbert ([10], p. 256,
[12], p. 32, ou [15], p. 4) implique que, dans I’anneau k [X]. I'idéal J + I
= I (V) est égal & sa racine, c’est-a-dire a I'intersection des idéaux premiers
qui le contiennent; comme dim (V) = 0 (V est un ensemble fini de points
rationnels sur k), ces idéaux premiers sont d’ailleurs tous maximaux, ce
sont exactement les idéaux de la forme M, = (X;,—ay, ..., X,—a,),
a = (ay, ..., a,) parcourant ’ensemble V.

Notes sur le chapitre 2

§ 1 et 2: les résultats contenus dans ces deux paragraphes sont essen-
tiellement dus a Chevalley (1935); ils donneront notamment (chap. 3,

sect. 1.1) une démonstration immédiate du « théoréme de Chevalley-
Warning ».

§ 3: le théoréeme 3 est dii a Terjanian (1966).
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