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§1: la classification des corps (commutatifs) finis («champs de Ga-
lois ») remonte essentiellement à Galois (1830).

: § 2 : le fait que le groupe multiplicatif du corps Fp est cyclique est dû à

Euler (1760); sa démonstration utilisait les propriétés de 1'« indicatrice
d'Euler ». Ce résultat est un ingrédient essentiel de la théorie des restes

quadratiques (Euler, Legendre, Gauss), cubiques (Jacobi, Eisenstein),
I biquadratiques (Gauss, Jacobi), et plus généralement des restes de

puissances quelconques (Kummer, etc.); à ce sujet, voir par exemple Dickson,
History of the Theory of Numbers.

§ 3: les propositions 9 et 10 sont des cas particuliers du théorème 90 de

Hilbert relatif aux extensions cycliques (voir [10], pp. 213-215).

Chapitre 2

POLYNÔMES ET IDÉAUX DE POLYNÔMES

On sait que si K est un corps infini, et si F est un polynôme à une ou
plusieurs variables, à coefficients dans K, et identiquement nul sur K, alors
F est nul: tous ses coefficients sont nuls. Ceci n'est plus vrai pour un corps
fini: ainsi, sur k Fq9 le polynôme Xq — X, non nul, est pourtant
identiquement nul (chap. 1, sect. 1.1 et 1.2); c'est à cette particularité des corps
finis qu'est consacré le présent chapitre.

Dans tout le cours de ce chapitre (ainsi que dans les chapitres
suivants), k désignera un corps fini à q pf éléments, n un entier > 1, X

(Xl9..., Xn) une famille de n variables, et k [X] k [Xu Xn] l'anneau
des polynômes en J1? à coefficients dans k\ d'autre part, les éléments

a (au an) de kn seront appelés points (ou points rationnels sur k9 si

cette précision est nécessaire); si Fek [X], si a est un point de kn9 et si

F (a) 0, on dira que a est un zéro de F.

§ 1. Polynômes réduits et polynômes identiquement nuls.

1.1. Soit F un élément de k [X].
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Définition 1. — Si le degré de F par rapport à chacune des n variables

est inférieur ou égal à q — 1, on dit que F est un polynôme réduit.

Les polynômes réduits forment évidemment un sous-espace vectoriel R
de k [X] (le corps des scalaires étant k); une base naturelle de ce sous-espace
est l'ensemble des monômes Xtdl Xndn tels que 0 < dt < q — 1 pour
i 1R est donc de dimension qn sur k.

1.2. Soit encore F un élément de k [X].

Définition 2. — On appelle fonction polynomiale associée à F l 'application

x }-> F (x) de kn dans k. Si cette fonction polynomiale est nulle (donc si
F (x) 0 en tout point x de kn), on dit que le polynôme F est identiquement
nul.

Les polynômes identiquement nuls forment un idéal 1 de k [X] ; notons
d'autre part r l'idéal de k [X] engendré par les éléments Xtq — X{
(/= 1, n); comme chacun de ces polynômes est identiquement nul
(chap. 1, § 1), il est clair que r al: on va voir qu'en fait, il y a égalité.

1.3. Théorème 1. — (i) Dans k [X], les idéaux I et T sont égaux.

(ii) En tant qu \espace vectoriel sur k, k [X] est somme directe de R (voir
sect. 1.1) et de r :

(1.3.1) k[X] R® r.
Démonstration. — On aura besoin de deux lemmes.

Lemme 1. — Si un polynôme F de k [X] est à la fois réduit et identiquement
nul, alors il est nul ; autrement dit :

(1.3.2) R r\I (0)

Ce lemme se démontre par récurrence sur n. Tout d'abord, la propriété
est vraie pour n 1 : si en effet F, polynôme à une variable, est réduit et
identiquement nul, il est de degré < q - 1 (déf. 1) et il possède d'autre
part au moins q racines: les q éléments de k (déf. 2); et ceci n'est possible
que si F 0. Ensuite, si la propriété est vraie pour n - 1 variables (avec
n > 2), elle est encore vraie pour n variables : soit en effet F un polynôme
réduit à n variables; en l'ordonnant suivant les puissances décroissantes de
Xl9 on peut le mettre sous la forme

F1 (X2,Xn) X^1 + + Fq_t(X2...,Xn) + Xn),
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les Fj (1 cf) étant q polynômes réduits, # tz 1 variables X^^ •••>

Supposons maintenant F identiquement nul: alors, quel que soit le point
(x2,x„) de le""1, le polynôme fyXyq~l + +fq-1X1 + fq (où, par
définition, fj Fj (x2,..., xn) pour j 1,..., q) est lui-même identiquement
nul ; mais c'est un polynôme réduit, à une seule variable Xt : la première
partie de la démonstration prouve donc qu'il est nul, c'est-à-dire que
/1 fq 0, ou encore que (x2,..., (x2,..., xn)

0; or ceci a lieu, rappelons-le, quel que soit (x2, xn) dans /c""1 : ainsi,
les q polynômes Fj sont identiquement nuls, et l'hypothèse de récurrence

permet d'affirmer qu'ils sont nuls; mais alors, Fest lui-même nul, C.Q.F.D.

Lemme 2. — Pour tout polynôme F de k [X], il existe un polynôme réduit
F* tel que F F* (mod F) ; autrement dit :

(1.3.3) k[X] R + r.
Prouvons ce lemme : par linéarité, on peut se ramener au cas où F est

un monôme Xxdl... Xndn; F étant un idéal, on peut même se limiter au cas

où ce monôme ne contient qu'une seule variable, par exemple, au cas où

F Xxdl\ mais alors, pour d± < q — 1, il n'y a rien à démontrer (faire
F* 0) ; et pour dx > q, il suffit de raisonner par récurrence sur dl9 en remarquant

qu'on a la congruence Xdl (mod F).

Démontrons maintenant le théorème 1 lui-même. Comme F c /, il
résulte du lemme 1 que

(1.3.4) R r\ T (0).

Les égalités (1.3.3) et (1.3.4) montrent alors que k [X] — R © F: (ii) se

trouve ainsi établi. Reste à prouver (i), et il suffit évidemment de montrer

que / c= F ; mais si Fe/, on peut écrire (lemme 2)

(1.3.5) F F* + G (F*eR, Ger) ;

comme F cz I, F* F — G, différence de deux éléments de /, est un
élément de /, donc un polynôme identiquement nul; le lemme 1 montre alors

que F* est nul, et (1.3.5) donne F G e F, ce qui prouve bien l'inclusion

I a F. Le théorème est ainsi démontré.

1.4. D'après le théorème 1, tout polynôme Fek [X] s'écrit d'une façon
et d'une seule F F* + G, avec F* réduit et G identiquement nul.

Définition 3. — On dit que F* est le polynôme réduit associé à F.



— 13 —

La démonstration du lemme 2 donne une méthode effective pour calculer

F* à partir de F, et permet en outre d'énoncer:

Théorème 2. — Si F est un élément de k [X], et si F* est le polynôme

réduit associé à F, on a l'inégalité deg (F*) < deg (F).

§ 2. Fonctions polynomiales.

2.1. Soit A l'ensemble de toutes les applications de kn dans F, et soit

ç l'application qui, à tout polynôme Fe k [X], fait correspondre sa fonction

polynomiale associée. Il est clair que A est muni naturellement d'une

structure de /^-algèbre (ainsi d'ailleurs que k [X]) et que cp : k [X] -> A,
est un homomorphisme de fc-algèbres.

Théorème 3. — (i) L'homomorphisme cp est surjectifet a pour noyau l'idéal

r ; <p donne donc lieu à un isomorphisme d'algèbres

(ii) Soit (pR la restriction à R c k [X] de l'homomorphisme cp; cpR est

un isomorphisme de l'espace vectoriel R sur l'espace vectoriel A. Si F est

un élément de k [X], on a cpR_1 (cp (F)) F*.

Démonstration. — (ii) est une conséquence immédiate de (i) et de l'égalité
(1.3.1) (th. 1, (ii)). Prouvons (i): le noyau de cp est par définition égal à

/; mais / F (th. 1, (i)); le noyau de cp est donc bien F. Reste à établir la
surjectivité de cp, c'est-à-dire le lemme suivant:

Lemme 3. — Pour toute application f: kn-+k, il existe dans k [X] un

polynôme F tel que F (x) / (x) en tout point x de k11.

Prouvons ce lemme; pour tout point a (au an) de kn, notons /a
l'application de kn dans k définie par

La famille (fa)aekn est évidemment une base sur k de l'espace vectoriel A ;

par linéarité, on peut donc se limiter au cas où/est de la forme/a; mais il
suffit alors de prendre pour F le polynôme

(voir chap. 1, sect. 1.1). Ceci démontre le lemme 3, et achève de prouver le
théorème 3.

(2.1.1) kixyr ^ A.

(2.1.2)
x a ;

x 7^ a.

(2.1.3) Fa (1
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2.2. Concrètement, le théorème 3 signifie ceci : toute application

/: kn -> k, est une fonction polynomiale, et on peut supposer que le
polynôme F tel que F (x) /(x) en tout point x de kn est réduit ; F est alors
entièrement déterminé par /. Si on remarque que le polynôme Ea défini

par (2.1.3) est réduit, on voit qu'on peut même écrire explicitement

(2.2.4) F(X)=y/(a)F.(*).
a ek

2.3. On a remarqué (sect. 1.1) que la dimension de l'espace vectoriel R
est égale à qn; comme k [X] R © r, l'espace quotient k [X]/r est aussi

de dimension qn. Par ailleurs, l'espace vectoriel A, qui admet pour base sur
k la famille (fa)aekn (sect. 2.1), est également de dimension qn. L'homo-
morphisme injectif (2.1.1) est donc en fait bijectif, ce qui donne une deuxième

démonstration de la surjectivité de (p. Exercice pour le lecteur: donner une
troisième démonstration de la surjectivité de cp en utilisant la théorie des

polynômes d'interpolation.

2.4. Le théorème 3 permet d'évaluer la « probabilité » pour qu'une
équation F — 0 (F e k [X]) admette au moins une solution dans kn. Tout
d'abord, on ne modifie pas l'ensemble des solutions de l'équation en

remplaçant F par F* ; on peut donc supposer F réduit, et on s'aperçoit ainsi

qu'il existe essentiellement card (R) qqn équations distinctes. D'autre
part, les polynômes réduits F tels que l'équation F 0 n 'ait aucune solution

correspondent bijectivement par cpR aux applications de kn dans k*; il y en

a donc exactement (q — l)qn, et il existe ainsi qqn — (q— l)qn polynômes
réduits F tels que l'équation F 0 ait au moins une solution. En définitive,
la « probabilité » cherchée est donc égale à 1 — (1—q~ 1)qn.

§ 3. Idéaux de polynômes.

3.1. Soit Fu Fs une famille de s éléments de k [X], et soit J l'idéal
de k [X] engendré par les Fj(j= 1, s); considérons le système d'équations

(3.1.1) F1 0 ,...9Fs 0,

et soit V l'ensemble des solutions de (3.1.1) dans kn, c'est-à-dire l'ensemble
des zéros de J rationnels sur k. Soit enfin I (F) l'ensemble des polynômes
G ek [X] qui s'annulent en tout point de V; I(V) est évidemment un idéal
de k [X]; I (V) contient /, et aussi r ; I (V) contient donc J + T; en fait:
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Théorème 4. — On a l'égalité

(3.1.2) I(V)=J + r.
Démonstration. — Considérons le polynôme

(3.1.3) F1 — (1 —Fi9'1)•••(!—jF/-1) Î

F appartient à l'idéal J: en effet, considéré comme polynôme par rapport
à F1?..., Fs, le second membre de (3.1.3) ne contient pas de terme constant;
d'autre part, F prend constamment la valeur 0 sur V, et la valeur 1 en dehors

de V (voir chap. 1, sect. 1.1). Soit alors H un élément de I(V), donc un

polynôme nul sur V; il est clair que le polynôme G H — HF est

identiquement nul, et appartient donc à F ; il est clair également, puisque J est

un idéal contenant F, que HF appartient à J; on voit ainsi que H HF
+ G appartient à J + F, donc que I(V) a J + F, C.Q.F.D.

3.2. Le théorème de la base finie de Hilbert (voir [10], p. 144) montre

que tout idéal de k [X] peut être engendré par un nombre fini de polynômes :

le théorème 4 est donc en fait applicable à n'importe quel idéal J de k [X]
(dans le même ordre d'idées, on peut d'ailleurs remarquer que dans la
démonstration du théorème 4, on a implicitement remplacé l'idéal J
engendré par Fl5 Fs, par l'idéal principal (F), contenu dans J, et dont
l'ensemble des zéros dans k11 est le même que celui de J).

Notons d'autre part que le théorème des zéros de Hilbert ([10], p. 256,

[12], p. 32, ou [15], p. 4) implique que, dans l'anneau k [X]„ l'idéal J + F
/ (V) est égal à sa racine, c'est-à-dire à l'intersection des idéaux premiers

qui le contiennent; comme dim (V) — 0 (V est un ensemble fini de points
rationnels sur k), ces idéaux premiers sont d'ailleurs tous maximaux, ce

sont exactement les idéaux de la forme 9Ka (X\ — au Xn — an),

a (al9 an) parcourant Fensemble V.

Notes sur le chapitre 2

§ 1 et 2: les résultats contenus dans ces deux paragraphes sont
essentiellement dus à Chevalley (1935); ils donneront notamment (chap. 3,
sect. 1.1) une démonstration immédiate du «théorème de Chevalley-
Warning ».

§ 3: le théorème 3 est dû à Terjanian (1966).


	Chapitre 2  POLYNÔMES ET IDÉAUX DE POLYNÔMES
	§1. Polynômes réduits et polynômes identiquement nuls
	§2. Fonctions polynomiales.
	§3. Idéaux de polynômes.
	Notes sur le chapitre 2


