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degré qm~1, admet pour racines les qm éléments de K: absurde): elle est donc

surjective, ce qui prouve la première assertion, et ce qui montre en outre

que le noyau de Tr est un hyperplan de K\ comme Tr (yq —y) 0 pour tout
élément y de K, il reste, pour établir l'équivalence de (a) et (b), à prouver que
l'ensemble des éléments de la forme yq — y (y e K) est également un hyper-
plan de K) et il suffit pour cela de remarquer que l'application y h> yq — y
de K dans K est k-linéaire et de rang m — 1, puisque son noyau (formé des

y e K tels que yq y, donc égal à k\ prop. 2, ou prop. 8) est de dimension 1.

3.3. Mêmes données et notations que ci-dessus. Soit maintenant
N: K -» k, l'application norme. La proposition 8 montre que, pour tout
élément x de K', on a

(3.3.1) N{x)x.x4...x«m-1

En outre:

Proposition 10. — L'application NK*-> k*, est surjective. Si x e K*,
les deux assertions suivantes sont équivalentes :

(a) N (x)1;

(b) il existe y g K* tel que x — yq~ '

Démonstration. — N est un homomorphisme du groupe K* dans le

groupe k*, et il résulte de (3.3.1) et de la proposition 7 (avec 1)/
(q-1)) que le noyau de N est d'ordre (qm-1 1); comme l'ordre de
est égal à qm — 1, l'image de N est nécessairement d'ordre q — 1 card (A:*),
d'où la surjectivité de N. Le noyau de N contenant évidemment tous les
éléments de K* de la forme yq~1 (y eK*), qui en constituent un sous-groupe,
il reste donc, pour établir l'équivalence de (a) et (b), à montrer que ce sous-
groupe est précisément d'ordre (qm- l)/(q-1); mais il suffit pour cela de
remarquer que l'application y h-y9"1 de K* dans est un homomorphisme

dont le noyau (formé des y eK* tels que y"1'1 1, donc égal à k*)
est d'ordre q -1, et dont l'image est alors effectivement d'ordre 1)/
(q-1), puisque K* est lui-même d'ordre qm - 1.

Notes sur le chapitre premier

Théorème de Wedderburn: pour la démonstration originale, voir
Wedderburn (1905); l'idée d'utiliser (comme dans [1] ou [19]) les propriétés
des polynômes cyclotomiques pour simplifier cette démonstration est due
à Witt (1931).
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§1: la classification des corps (commutatifs) finis («champs de Ga-
lois ») remonte essentiellement à Galois (1830).

: § 2 : le fait que le groupe multiplicatif du corps Fp est cyclique est dû à

Euler (1760); sa démonstration utilisait les propriétés de 1'« indicatrice
d'Euler ». Ce résultat est un ingrédient essentiel de la théorie des restes

quadratiques (Euler, Legendre, Gauss), cubiques (Jacobi, Eisenstein),
I biquadratiques (Gauss, Jacobi), et plus généralement des restes de

puissances quelconques (Kummer, etc.); à ce sujet, voir par exemple Dickson,
History of the Theory of Numbers.

§ 3: les propositions 9 et 10 sont des cas particuliers du théorème 90 de

Hilbert relatif aux extensions cycliques (voir [10], pp. 213-215).

Chapitre 2

POLYNÔMES ET IDÉAUX DE POLYNÔMES

On sait que si K est un corps infini, et si F est un polynôme à une ou
plusieurs variables, à coefficients dans K, et identiquement nul sur K, alors
F est nul: tous ses coefficients sont nuls. Ceci n'est plus vrai pour un corps
fini: ainsi, sur k Fq9 le polynôme Xq — X, non nul, est pourtant
identiquement nul (chap. 1, sect. 1.1 et 1.2); c'est à cette particularité des corps
finis qu'est consacré le présent chapitre.

Dans tout le cours de ce chapitre (ainsi que dans les chapitres
suivants), k désignera un corps fini à q pf éléments, n un entier > 1, X

(Xl9..., Xn) une famille de n variables, et k [X] k [Xu Xn] l'anneau
des polynômes en J1? à coefficients dans k\ d'autre part, les éléments

a (au an) de kn seront appelés points (ou points rationnels sur k9 si

cette précision est nécessaire); si Fek [X], si a est un point de kn9 et si

F (a) 0, on dira que a est un zéro de F.

§ 1. Polynômes réduits et polynômes identiquement nuls.

1.1. Soit F un élément de k [X].
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