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FINITE GROUPS AND DIVISION ALGEBRAS

by Charles FORD

The rational quaternions form a four dimensional division algebra over
the rational field. Contained as a multiplicative subgroup is the quaternion
group whose eight elements generate the algebra as a rational vector space.
The main purpose of our paper is to present, in sections one, two and three,
the existence and structure of certain division algebras which are generated
over the rational field by a finite multiplicative group. A more general
problem, the determination of all division algebras which are generated
over the rational field by some finite group, was made by Amitsur [2]. We
describe some of Amitsur’s results in section four. The most general con-
nection between finite groups and division algebras arises in the study of
the group algebra. The fifth section of this paper describes several general
results relating division algebras and finite groups and concludes with an
indication of some recent work in this area.

Usually, a proof of the existence of division algebras, as in Amitsur’s
paper or in Albert’s book [1], assumes a tremendous amount of back-
ground material, including the global and local theory of algebras and of
algebraic number theory. Some of the most important requisite theorems
are not proved in any text written in English. Our proofs are designed for
the first or second year graduate algebra student. We assume some familia-
rity with semi-simple ring theory and the Wedderburn structures theorems.
We also assume some knowledge of finite groups, finite field and Galois
theory. We have attempted to develop the factorization of ideals which we
require. References are given for any results used from ideal theory.

The outline of our proof follows a 1930 paper by Richard Brauer [5]
where many of the results presented here were first proved. The existence
of the division algebras is first reduced to a question about norms in a cyclo-
tomic field. Our arguments for this are new and elementary. The norm
question is answered using the factorization of ideals in the algebraic
integers of this field. This use of ideals closely follows Brauer’s paper, which
was written just as algebraic number theory was being developed. The
groups discussed here were first mentioned in a paper by W. Burnside

[9, p. 8.
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1. Structure of the Algebras. In this section we construct simple algebras,
each of which is generated by a finite group. Let p and g be prime numbers
and b a positive integer such that ¢® is the highest power of ¢ dividing p — 1.
Let a be a positive integer and let ¢ and @ be primitive p°~th and ¢®-th roots
of unity respectively. If n = p® ¢°, then p = ew is a primitive n-th root of
unity. Let Q denote the rational field, and let E denote the field Q (p). There
is an automorphism o on the field E of order ¢ which fixes w. Let F be the
subfield of E fixed by . For o in E let £ («) be the ¢ x g matrix

04

() =

q-—l
ao

with all entries off the main diagonal equal to zero. For « in F the matrix
R () is scalar. Also define the ¢ x g matrix

0. . .0

10

T (o) = 1
10

with ones immediately below the main diagonal, @ in the upper right
corner and zero’s elsewhere. Notice # (w) 1s a scalar matrix since w is fixed
under o. Notice also 7 (0)? = % (w). The elements Z (¢) and J (o)
generate a finite group in which the cyclic group generated by £ (e) is
normalized by the cyclic group generated by J (o).

The following relation can be verified for any « in E
(1) T @) 'R T (0) = Z().
q
The collection 4 of matrices of the form Y £ (a;) 7 (0)’, ;€ E is an
i=1

algebra. The subsets of matrices {2 (x) :a € E} and {Z (%) : « € F} form
subfields isomorphic to E and F respectively, and we will identify these
subsets with the fields E and F.
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We wish to prove that 4 is a simple algebra. Let 4* be the set of all
complex linear combinations of the matrices in 4. The algebra of matrices
commuting with A* consists only of the scalar matrices, since only a scalar
matrix can commute with both £ (¢) and I (o).

A special case of Wedderburn’s theorem concerns an algebra of complex
matrices. It assets that if only a scalar matrix commutes with all matrices
in the algebra, then the algebra must be the full matrix algebra. Thus 4* 1s
the algebra of ¢ x g matrices, a simple algebra. If 4 had a non-trivial
nilpotent ideal, then the complex linear combinations of elements of this
ideal would form a non-trivial nilpotent ideal of A4*. This proves that 4 has
zero radical and is a semi-simple algebra. The Wedderburn structure theorem
asserts that A is isomorphic to the ring direct sum of simple algebras. If
A were not simple one could construct a central idempotent e (an element in
the center satisfying e? = ¢) by choosing an element which corresponds to
the identity in one component and zero in all others. This element would
be a central idempotent in 4*, different from zero or one, and would gen-
erate a proper non-zero ideal of A*. This contradiction to the simplicity of
A* establishes that 4 is a simple algebra.

The matrix J (o)’ for any power i < ¢ has the form

0 wl;

1

I _.

q—1

where 7; and /,_; are identity matrices of size i and ¢ — i respectively. This
matrix has non-zero entries along two diagonals and all other entries zero.
The matrix # («;) for any «; € E has non-zero entries only on the main
diagonal, so the product Z («;)  (¢)" has non-zero entries only on the

. q
same diagonals as J (¢)". Thus any sum ) £ («;) 7 (o)’ can equal zero
i=1

only if Z («;) = 0 for each of the field elements o, ..., «, in E. This shows
that the dimension of 4 over E is g. We also know the dimension of E over
F is g so that the dimension of 4 over F is g2. We can now see that F must
be the center of 4. Otherwise 4 would contain a central subfield L. of co-
dimension g. Then for any element 4 not in L, 4 would consist of all
polynomials in 4 with coefficients from L which is commutative.

1 s
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Our goal is to show that 4 is a division algebra. Part of Wedderburn’s
Theorem asserts that for some integer k the simple algebra 4 is isomorphic
to the algebra of £ x k matrices over some division algebra with center F.
The dimension of 4 over F would then be k% d, with d the dimension of
this division algebra over F. Since the dimension of 4 over F is ¢* where ¢ is
a prime, either k = 1 or d = 1 and 4 is either a division algebra or iso-
morphic to the g x g matrices with entries from F. We assume the latter
possibility holds and shall arrive at a contradiction in section three.

Thus we suppose there is an isomorphism under which J (o) and
X (o) for every a in E correspond to ¢ x ¢ matrices#” (o) and % (o) respect-
ively, with entries in F. The element £ () in 4 has as minimum polynomial
over F the minimum polynomial of « when regarded as an element in the
extension field E over F. Under the above isomorphism, % («) has the same
minimum polynomial. For « not in F this minimum polynomial has as
roots the distinct conjugates of « under the powers of ¢. This polynomial
has degree ¢ and must also be the characteristic polynomial of % («). For o
in F the matrix % («) is scalar.

Let V' be the underlying vector space on which the matrices #” (o) and
U (o) for oo in E may be regarded as linear transformations. We suppose
that the transformations act from the right. We know from the isomorphism
with A that % (0) % () = % (« f) for every o and f in E. Also the F-
linear combinations of the powers of % () form the ring { % (x) : 2 € E }
which is isomorphic to the field E. Since % (¢) has an irreducible minimum
polynomial of degree ¢, V' is a cyclic module for this ring of polynomials
in % (¢) over F.

Thus we can find a vector v € V' so that
V={v%(): aecE}

In fact each vector w in ¥ has a unique expression as w = v % («); for if
v U (o) = v % (B), then v would be an eigen-vector for % (x f~'). Thus
one would be a root to the characteristic polynomial of % (« f~*) which
would imply by our remarks on characteristic polynomials that o =% = 1.

Since every vector in V has a unique expression as v % («) for some « in
E the following equation uniquely defines a linear transformation & (o)
onV :

VU () & (0) = vU (&°) .

An argument similar to that just given shows & (o) is one-to-one, hence
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invertible. By replacing o by o' and multiplying by & (¢)”* one arrives
at the formula

v () & (0)"' = v (e ).

Therefore for any « and f in E
v (3) & () UB) F (o) = vU (@ f) S (o)
= v ((oc"—l,B)")
= 0 () % ()
For fixed B, allowing o to vary gives the following equality of transform-
ations on V

S @) UPB) S (o) =UP).

This identity holds for any f in E. Now from identity (1) and the iso-
morphism between 4 and the ¢ x g matrix ring over F we have for any f in
E

(2) W (o) UB)W (o) = U ()

Combining these two equations one sees that # (o)~ & (o) centralizes
% (p) for every p in E.

Thus the matrix in A4 which corresponds under the isomorphism to
W (6)”"' & (0) must commute with Z (¢) and must therefore be diagonal.
However since the only diagonal matrices in 4 are actually in E, we see
that for some y in E

W (@)L (0) = UQ)
or
F(0) =W (0)U{7).

Since o is an automorphism of order g, we must have % (¢)? = 1. From
1dentity (2) we have
U)W (o) =W (0)U(°).
Therefore
(W (@)U =W @ UV () U)W (o) U (y)

=W @ UG)UG) W (0) U ()

= W@ UG ) UG U0).
Since#” (0)? = U (w) and % is multiplicative on elements of E we conclude
(3) L=y Ty ey

We will use this identity, which asserts that » is a norm under the auto-
morphism o, to arrive at a contradiction in section three.
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2. Factorization of ideals. Our object in this section is to factor the
ideal generated by p in the ring of algebraic integers of E into prime ideals
and to show that each prime ideal factor is invariant under o. Background
material can be found in Chapters 18 and 21 of Curtis and Reiner [11].
Let Z denote the ring of rational integers. The notation of a ring followed
by an element in square brackets denotes the polynomial ring in that ele-
ment. An important result in algebraic number theory [11, Theorem 21.13,
p. 140] asserts that Z [p] and Z [w] are the rings of algebraic integers in the
fields Q (p) and Q (w) respectively. The major theorem about the ring of
algebraic integers asserts that each ideal can be factored uniquely into a
product of prime (or maximal) ideals [11, pages 111, 112].

Let f(x) denote the g”-th cyclotomic polynomial. We shall use round
parentheses to denote “ideal generated by.” The homomorphism of Z[x]
onto Z [w] induced by mapping x to o has kernel (f (x)). The ideal
(p, f (x)) is mapped to the ideal p Z [w]. We have the isomorphisms

“ z[o] 2]  Z[¥]
Zlol | (/&) (F6)

where Z denotes the field of integers modulo p and f (x)is the reduction of
f(x) modulo p. Since p and ¢° are relatively prime, x? — 1 has a non zero
derivative in Z [x] and must have distinct roots in any splitting field. There-
fore the polynomial f (x) must have distinct irreducible factors f, (x), ..., f, (x)
in 7 [x]. |

According to the Chinese remainder theorem [11, Theorem 18.19,
p. 113] the last quotient displayed in (4) is isomorphic to the direct sum
taken over i = 1, ..., r of the fields Z [x]/( f; (x)). If P; is the maximal
ideal of Z [w] corresponding under the isomorphism in (4) to ( f; (x)) then
p Z [w] is the intersection of the P;. In our rings the intersection of ideals
equals the product of the ideals [11, 18.16, p. 112]. Therefore

(5) pLZ[iw] = P,...P,

where the P; are distinct maximal ideals of Z [w].
For the n-th root of unity p there is an isomorphism similar to (4)

Zlp] . Z[~]
pZ[p] (¢ (x)

where ¢, (x) and ¢, (x) represent the n-th cyclotomic polynomial and its
reduction modulo p. Since in a field of characteristic p one is the only p-
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power root of unity, the polynomial ¢, (x) has repeated roots; in fact each
root is repeated e times where e = ¢ (p%) = p*~ L(p—=1). Thus ¢, (x)
= f(x)¢ and

Zlp] . ZI[x]

pZ[p]  (F)F

Appealing again to the Chinese remainder theorem we conclude that the
quotient above is isomorphic to the direct sum over i = 1, ---, r of the rings
Zx1/( f; (x))°. Let Q; be the (maximal) ideal of Z [p] corresponding to
( f: (x)). We have

(6) pZ[p] = QF - Q.°.

From the earlier result (5) we deduce that

pZ[p] = PZ[p] - P, Z[p].

By comparison with (6) we see that each P; Z [p] must be a product of the
Q;. We assert that

(7) PZ[p] = Q).

If this were not so, some Q; would appear in the factorization of two ideals
P, Z [p] and P, Z [p]. Then Q; would contain both P, and P, and also
their sum. Since the sum of two distinct maximal ideals of Z [w] would
equal Z [w], Q; would contain one, an impossibility since the Q; are proper
ideals. Since the left side of (7) is invariant under the automorphism o, we
see that (Q,°)° = (Q,°)’ = Q,° According to unique factorization, we
conclude that

Q° = 0;.

3. The existence proof. We have assumed 4 is not a division algebra
and our object is to arrive at a contradiction using identity (3). Any element
in the field E can be expressed as a quotient of an algebraic integer by an
ordinary integer [11, p. 105]. Express v = a/a with « in Z [p] and a in Z.
Then from (3) we have

(8) oo’ o = qgt.

Suppose p° is the highest power of p dividing a for some non-negative integer
c. Then according to (6) the ideal of Z [p] generated by a? contains in its
factorization the product Q,°“?... 0,*Y. For a fixed i, the multiplicity with

which Q; appears in the factorization of the ideal generated by «° is the
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same for each j = 1, ---, ¢. This is because Q; is fixed under ¢ as was proved
at the end of section two. There are ¢ terms on the left side of (8) so the

ideal generated by each o°’ contains the factor Q:°. Since this is true for
each i = 1, ---, r the ideal generated by « contains as a factor the ideal

Q- Q. = p°ZL[p].

Therefore the ideal generated by p° contains the ideal generated by « and
we can write « = p°« for some algebraic integer a. By replacing o with o
and a with @’ = a/p°, but keeping the unprimed notation, we havey = o/a
where « is an algebraic integer and @ an ordinary integer relatively prime
to p.

Let QO = Q, for some i. The quotient ring Z [p]/Q is a finite field of
characteristic p. Since 1 is the only p-power root of unity in a field of charac-
teristic p, we have ¢ = 1 (mod Q). Thus p = we = w (mod Q) and every
element in the quotient field is represented by a polynomial in w with
integral coefficients. Since ¢® divides p — 1, the field of p elements contains
a primitive g°~th root of unity. Thus p is congruent to an integer modulo Q,
and the quotient field is the field of p elements.

Any power of ¢ is congruent to 1 modulo Q and since w is fixed by o,
p°=¢e’w =w (mod Q).

The algebraic integer o can be expressed oo = g (p) as a polynomial in p
with rational integral coefficients. Thus we have

0’ =g(p°) =g(w) (mod Q).
Therefore (8) yields
wg(w)? = a? (mod Q).
Raise both sides to the power s = p — 1/q
w'g(w)? ™t =a?"! (mod Q).

The maximal ideal QO intersects the ring of integers Z in a maximal 1deal
which, since Q contains p, must be p Z. Since a is relatively prime to p we
conclude that a is not contained in Q. So a £ 0 (mod Q) and consequently
g (w) £ 0 (mod Q). By Fermat’s little theorem

g? t=a"1=1 (modQ).
Hence
w*=1 (mod Q).
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The highest power of ¢ dividing s is ¢°~ ', so ® is a primitive g-th root
of unity and satisfies the g-th cyclotomic polynomial ¢, (x). In the reduction
modulo O, the residue class w® + Q = 1 + Q will satisfy the reduced poly-
nomial ¢, (x). Since the roots of ¢, (x) are residue classes represented by
g — 1 integers, not including 1, we must have

1=j (modQ)

for some integer j between 2 and p — 1. But then Q would contain j — 1
which is impossible since Q intersects the rational integers in the ideal p Z.
This contradiction establishes that A4 is a division ring.

4. Groups which generate a division algebra. A group ® is called the
semi-direct product of a normal subgroup $ with a subgroup K& provided
$ and & intersect in the identity and & = $HK. Each of the division algebras
determined above is generated over the rational field by a finite group.
This group is the semi-direct product of the cyclic normal subgroup generated
by Z (¢) with the cyclic subgroup generated by Z (¢). The order of this
group is p* ¢°* ! and the scalar matrix 7 (¢)? = % (w) of order ¢° generates
the center of the group. The group of smallest odd order which generates a
division algebra over Q has order 63 and is generated by the matrices

R(e) = &2

- l
and

where Z (¢) has off diagonal equal to zero and ¢ and w are primitive 7-th
and 3-rd roots of unity respectively. This group was first mentioned by
Burnside [9, p. 4] and Schur [21, p. 179]. Their discussion concerns whether
a complex matrix S exists for which the matrices S™' % (¢) S and
S™' 7 (o) S have entries in the subfield F of index three in the field
E = Q (¢, w). In fact this question is asked as an exercise on page 319 of
Burnside’s book The Theory of Groups of Finite Order! This question is
related to whether the algebra 4 generated by these matrices is a division
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algebra. Were such a matrix S to exist, the correspondence of 7 (o) with
S™* 7 (0) S and of % («) with S™' 2 (o)) S for every « in E would induce
an isomorphism between 4 and the 3 x 3 matrices over F.

The dimension of any finite dimensional division algebra over its center
is a perfect square. The square root of this dimension is called the index
of the algebra. The algebras constructed in section one have index ¢g. By a
very similar construction division algebras of certain non-prime indices
can be produced. Let p be a prime congruent to 1 modulo 4. Let ¢ be a
primitive p°-th root of unity for some positive integer a. Let w be a primitive
(p—1)-st root of unity. The field E = Q (¢, ®) has an automorphism of
order p — 1 fixing w. We define two (p—1) x (p—1) matrices; £ (¢) has
the conjugates of ¢ under the powers of ¢ on the main diagonal and all
other entries zero, J (o) has ones just below the main diagonal, @ in the
upper right corner and all other entries zero. The group generated by Z (¢)
and J (o) has order p®(p—1)2. Then the Q-linear combinations of this
group of matrices is a division algebra of index p — 1 with center iso-
morphic to the subfield F of E fixed by o.

The proof that the algebras just constructed are division algebras was
given by Amitsur [2, Theorem 5.2 a, p. 372]. In that paper Amitsur deter-
mined all finite groups ® which generate some rational division algebra 4
over Q. We shall state part of Amitsur’s results; but first some preliminary
development. The groups involved have a very special form: the Sylow sub-
groups are either cyclic or generalized quaternion. This will follow from a
well known theorem [18, p. 189] once we have proved the following result.
For each prime divisor p of the order of ®, a p-Sylow subgroup ‘B has only
one subgroup of order p. We now prove this.

Multiplication of the elements of 4 on the right by a particular element
G of ® is a linear transformation on 4. Choose a basis and denote the cor-
responding matrix by X (G). The mapping sending G to X (G) is a homo-
morphism of ®. We assert that, unless G is the identity, X (G) cannot have
eigenvalue one. For to have a non-zero eigenvector D in 4 of eigenvalue
one means that DG = D or D (G—1) = 0, which, in a division algebra,
implies G = 1.

Any finite p-group has a non trivial center, so we may choose a central
element Z of order p in B. We wish to show that the subgroup generated by
Z is the only subgroup of order p in . Suppose that P also generates a
subgroup of order p. Since X (Z) and X (P) commute, they can be simul-
taneously diagonalized. Thus for some complex matrix S, the matrices
S™1X(Z)S and S™* X (P) S are diagonal. Let &; and &, be, respectively,
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the first entries in the two diagonal matrices. Since all characteristic roots
of X(Z) and X (P) are primitive p-th roots of unity, there is an integer i
with &, = &,*. The matrix S™! X (Z ~'P) S thus has first entry one and
X (Z ~'P) has eigenvalue one. Therefore Z P =1 and so P = Z*
generates the same group as Z. This completes the proof that ® has just
one subgroup of order p and is either cyclic or generalized quaternion.

We assume until further notice that & has odd order. Thus ® has no
generalized quaternion Sylow subgroups and so all Sylow subgroups of ®
are cyclic. In [18, Theorem 9.4.3, p. 146] such a group is shown to have the
following form: ® is the semi-direct product of a cyclic normal subgroup $
of order % with a cyclic group & of order k, for relatively prime integers £
and k. (The assertion that these subgroups have relatively prime order is
not stated in the theorem cited above but it is proved at the end of the
second last paragraph of the proof.)

For a prime divisor p of A, the p-Sylow subgroup P of ® is a normal
subgroup. A necessary condition that & generate a division algebra is that
® be the direct product of subgroups, one for each prime divisor p of A.
Specifically, for each prime ¢ dividing k, a g-Sylow subgroup of & which
does not centralize § must centralize all other Sylow subgroups. Let D be
the product of all the Sylow subgroups of & which do not centralize ®. The
semi-direct product 8 D must then be a direct factor of G.

Assume ® has the structure of a direct product as described in the
previous paragraph. Let the centralizer of ¥ in D have index x in © and
order y. The number x divides p — 1. Let ¢ be a prime divisor of x and
suppose ¢’ is the highest power of ¢ dividing p — 1. A necessary condition
is that ¢* divide y. Suppose ¢*"* is the highest power of ¢ dividing y. Let f be
a prime divisor of the order of ® and / the smallest integer satisfying the
equation

pP=1 (modf).

if

A necessary and sufficient condition that & generate a division algebra over
Q 1s that for each prime f dividing the order of ®, other than p or ¢, ¢**1
must not divide the order / of p modulo f. This condition must hold for every
pair of primes p and ¢ for which p divides 4 and a g-Sylow subgroup of &
does not centralize the p-Sylow subgroup of ®.

The paper of Amitsur gives necessary and sufficient conditions for any
finite group, of odd or even order to generate a division algebra. We have
restricted attention to groups of odd order because the statement for
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groups of even order is still more complicated! The proofs given by Amitsur
are quite difficult and rely on some very advanced algebraic number theory.
The construction of the division algebra for a group & described in the
previous paragraph follows the procedure used in section one. Before
describing the construction we need one preliminary result.

We must show that the center of & is a subgroup of & Every subgroup
of ® is the semi-direct product of a subgroup of § with a subgroup of K.
Thus it is sufficient to show that only the identity subgroup of § is central.
From the third paragraph of the proof cited above [18, p. 147] we see that
9, generated by the element A, is the commutator subgroup of ®. The
element B generates &, and A" ' B™' 4B = 4"~ ! generates the com-
mutator subgroup of &. Therefore A"~ ! generates §. The equation B~ ! AB
= A" can be raised to the power jtoyield B~' 47 B = A" orA "B~ 4’ B
= A~ D If 47 is central the left side of this last equation equals one.
Since A"~ ! and 4 have the same order we conclude that 4’ = 1. Thus the
center of ® is a subgroup of ]. Let z be the order of the center. Notice
that z, a divisor of k, is relatively prime to /.

To construct the algebra, choose ¢ and w primitive A-th and z-th roots
of unity respectively. The field Q (¢) has an automorphism sending ¢ to &"
which corresponds to the action of & on £. Extend this to the automorphism
o on the field E = Q (e, w). Let F be the subfield of E fixed by ¢. Then the
matrices Z (¢) and J (o) defined as in section one generate the division
algebra over Q.

There are an infinite number of finite groups which generate the real
quaternion algebra. Those with order divisible by eight have a generalized
quaternion Sylow subgroup and cannot be expressed as a semi-direct
product. All the groups have a center of order two and the quotients modulo
these centers include the family of dihedral groups of order 2m for every
integer m > 2. There are exactly three other groups. Their quotients are
the rotation groups of the regular tetrahedron, octahedron and icosahedron
[2, Theorem 11, p. 385].

5. Division algebras in the group algebra. The group algebra of a finite
group over a field of characteristic zero decomposes as the direct sum of
simple algebras. Each simple component is a full matrix algebra with entries
in some division algebra. We shall call such division algebras coefficient
algebras for the group. A very striking theorem, conjectured by the author,
was proved by M. Benard and M. Schacher in [4]. It concerns the center F
of a coeflicient algebra 4 of index m. The theorem states that F must contain
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a primitive m-th root of unity ¢. Using this result the author [17] has given
generators A and B for 4 over F satisfying the relations

1) A™'B7'4B =¢
2) A"eF
3) B"eF

For the algebras described in section one, 4 corresponds to
q .
>, R(TET)
j=0

where { = o lisa primitive g-th root of unity. The element B corresponds
to I (o).

In an early paper [8], Brauer and E. Noether proved some major theorems
concerning coefficient algebras. Here is a description of their main results.
We know that a simple component I' of the rational group algebra of a
finite group is isomorphic to the k x k matrices over a coefficient algebra
A, for some integer k. Suppose F is the center of 4. Let d = m k where m is
the index of 4. Then there exists a finite dimensional extension field E of F
so that I' is isomorphic to the F-linear combinations of a finite group of
d x d matrices whose entries belong to E. Furthermore a field E has this
property if and only if E is isomorphic to a subfield of 4 and has dimension
m over F.

This allows us to state a criterion that a group generates a division
algebra. Let ¢ and w be any roots of unity of relatively prime order and
E = Q (¢, w). Let ¢ be an automorphism of E of order d fixing a subfield F
which contains w. The d x d matrices # (¢) and J (o) defined as in section
one generate a finite group. The algebra generated over @ by this group is a
division algebra if and only if there exists no matrix S for which the matrices
ST % () S and S™' 7 () S have entries in a field extension of F of
dimension smaller than d.

An important unsolved problem is to characterize the coefficient division
algebras in some manner. The most significant general result, proved
independently by Brauer [6] and Witt [23], relates the coefficient algebras
for a group ® to coefficient algebras for certain special types of subgroups.
To state their conclusion, suppose 71 1s the index of some coefficient division
algebra for ®. Let p be a prime divisor of m and p® the highest power of p
dividing m. Then there is a subgroup € of ® which has a coefficient algebra
of index p“. This subgroup € is the semi-direct product of a cyclic group U of
order prime to p with a p-group B which normalizes . Furthermore there
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is a close relationship between the two coefficient algebras. A new proof of
this result was given by Solomon [22, Theorem 3]. This proof can be found
in [11, p. 475-479).

The theorem was further refined by Brauer [7] and Witt [23]. They showed
that for some quotient group € of B, the quotient F = A€ of € has a
coeflicient algebra of index p®. The group € contains a cyclic normal sub-
group 3 for which €/3 is Abelian. A proof of this is given in [16, Lemma 1].
Yamada [24], [25] and [26] has investigated coefficient division algebras
for certain special types of the groups just described.

The index m of a coeflicient algebra must divide the order g of the group.
Another bound on the index states that for a prime divisor p of m, the
highest power of p dividing m must also divide ¢ — 1 for some prime
divisor g of g. An exception to this can occur if g is a power of two; we may
have m = 2 in this case. This theorem is implicit in the work of Witt [23,
Satz 12, p. 245] and was stated and proved independently by the author in
[16].

Suppose a field F is given and the question is asked: which division
algebras with center F appear as the coefficient algebras in some group
algebra. This question has been answered for different fields by several
authors in [3], [4], [13], [14], [15], [19] and [27]. Closely related problems
have been investigated in [12].
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