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AN INTEGRAL INEQUALITY
IN ANALYTIC FUNCTION THEORY

by Hiroshi HARUKI

The following theorem was proved in [1]:

THEOREM A. Suppose that f = f(z) is an entire function of a complex
variable z. Then the only solutions of the functional inequality

(D f(G+n2) = (If® 1+ 1FW1)/2,

where x, y are complex variables, are f(z) = (Az+ B)" and f(z) = exp (4z
+ B) where A, B are arbitrary complex constants and n is an arbitrary positive
integer.

Now, we shall prove that (1) implies the following integral inequality:

(2) | 1y =x) o f(@dz| <(If®) ] + 1 fW1)/2,

where f = f(z) is an entire function of z, x, y are complex variables (x# y)
and C is an arbitrary contour joining two points x and y.

To this end we shall apply the following lemma, the easy proof of which
1s omitted:

LemMmA 1. If & = k (¢) is a real-valued continuous function of a real
variable ¢ and if k is convex on [a, b], then

b
1/(b—a) | k(ndt < (k(a) + k(b))2.

Now, we put g () = |f(x+(y—x)r)|, where 1[0, 1] and x, y are
arbitrary distinct complex constants. g (¢) is a real-valued continuous

function on [0, 1]. By (1) g (¢) is convex on [0, 1]. Hence, by Lemma 1 we
" have

1
g g(®dt =(g(0) +g(1)/2.

- Therefore we have
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] .

JIfe+@=x)0)ldt =(1fC) |+ 1fD)1)/2

0

and |
(3) |1/(y—x)£f(2)d21§(|f(X)l+If(y)l)/2,

where L is the line segment joining the two points x and y. By Cauchy’s
Integral Theorem (3) implies (2).

The purpose of this note is to solve (2), i.e., to prove the following

THEOREM. Suppose that f = f(z) is an entire function of z. Then the only
solutions of (2) are f(z) = (Az+ B)" and f(z) = exp (Az+ B) where A, B
are arbitrary complex constants and n is an arbitrary positive integer.

To this end we shall apply the following two lemmas:

LEmMA 2. (See [1].) Suppose that f = f(z), g = g (z) are entire functions
of z. If | f(z) | £ | g (z) | holds in | z | < + oo, then f(z) = Cg (z) where
C is a complex constant with | C | < 1.

Proof. The proof is clear from Riemann’s Theorem concerning a remov-
able singularity and Liouville’s Theorem.

LemMmA 3. Suppose that H = H (z) is an entire function of z. If 4 (¢)
= | H (1 exp (ip)) |2 where 1, ¢ are real and ¢ is arbitrarily fixed, then we
have

(i) A”(0) = 2Re(exp (2ip) H" (0) H(0)) + 2| H' (0) |7,
(i) A® (0) = 2Re(exp (4ip) H® (0) H (0)
4 dexp (2ip) H (0)H' (0)) + 6| H" (0) .

Proof. Since the proof is easy, we omit it.

We may now prove our theorem.

Let F = F (z) be an entire function such that F' (z) = f(z). By (2) we
have for all complex x, y

21F() —F® I =1y =x[(If® ]+ /D).

By a corollary of Schwarz’s Inequality ((a+b)? < 2 (a®+0b2), a, b real) we
have

21F(x) —FOWM P £ 1x =y PP+ 1017 .
Replacing x, y by x + y, x — y, respectively, we get
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| F(x+y) —Fx=p P <21y P/ G+ P+ 1fG=»1%).
Putting y = ¢ exp (ip) where ¢, ¢ are real we have
| F (x +texp (ip)) — F (x —texp (ip)) |*
< 222 (1f(x +texp(i@) |* + [ f(x —texp (ip)) |?).
Keeping x, ¢ arbitrarily fixed and putting

p(t) =22 (1f(x+rexp (ip)) > + [f(x —texp (ip)) [*)
— | F(x+texp(ip))— F(x—texp (ip)) |*,

p (t) is a real-valued function of ¢ and is of course four times differentiable
on | ¢| < + oo. Further p (¢) is an even function of 7. Hence we have

(4) p'(0) =0, p»(©) =0.

By Lemma 3 we have

(5) p"(0) =8(IfX)I* = F'(0)[*) =0,

p®(0) = 96 Re (exp (2ip) f" (x)f (x)) + 96 |/ (x) |7

— 32 Re(exp (2ip) F®) (x) F' (x))
= 64 Re (exp (2ip) f " (x)f(x)) + 96 |/ (x) |*.

p (t) has a minimum at r = 0 (p(f) = 0 on l t ‘ < + o0, p(0) = 0). Hence,
by (4), (5) we have p™® (0) = 0, or

2 Re(exp ip) f" (X)f(x)) + 31f" () 2 2 0.
x, ¢ were arbitrarily fixed. An appropriate choice of ¢, gives

Re (exp (2ipo) f" () (%) = = I/ () fx) | = — [f"()f ()]

Hence we have in | x | < + oo
21/ f(x) ] =31 (x) 2,
and by Lemma 2
(6) JrX)f(x) = Kf' (0)?,
where K is a complex constant with | K | < 3/2.

Solving (6) and taking into account the fact that 7' is an entire function,
we have
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(7) f(z2) = (Az+B) or f(z) = exp(Az+B),

where A, B are complex constants and » is an arbitrary positive integer.

By Theorem A, (7) satisfies (1). Since (1) implies (2) as already proved,
(7) satisfies (2). Q.E.D.
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