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Finally, the analog of Theorem 3 can be stated as follows:

THEOREM 6. Let ¥: M, — F o be a regular operator. In order that

Y (L,x)

(3.11) 7o)

-1 (x - o)

holds for every SV function L € M , it is necessary and sufficient that
(3.12) Y(1,x) -1 (x> o),
and that the asymptotic relations (3.9) and (3.10) hold for some n > 0.

4. PROOFS.

4.1. Proof of Theorem 1. The sufficiency of condition (2.2) follows
from the inequality

[P (f,x) | = Ve (1,%) | £] -

The necessity of (2.2) is proved by way of contradiction. Suppose that (2.2)
is not satisfied. Then
(4.1.1) Iim sup Ve (1,x) = 0.

In view of (4.1.1), (2.1) and the properties of ¥, it is possible to find by

induction an increasing sequence (x;) going to infinity and a sequence
(gr) of functions in ., such that, if 4, is defined by 4, = Vy (1, x;), then

(4.1.2) A; =16 and 4, =164,_,, k = 2,3,...,
k—
4.1.3 A, =16 (sup | ¥ 2k =2,3,..,
(413 4=16(sup | (2\/A )17 3,
and
B 3
(4.1.4) g, ] =1, lqj(gkaxk>]§ZAk> k=1,2,..
Let

© g;(x)

(4.1.5) g(x) == Z — .

i=1 N/A-

12
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By (4.1.2) and (4.1.4), this series is uniformly convergent and consequently
g is in /4. Also, g is bounded on R™ since

© 1g;(x)] 1
= . = -,
lg (x) | i; T 3
We shall show now that
(4.1.6) | ¥ (g,x)|—> o0 (x— ),

which is impossible by (2.1). Hence, (2.2) must be satisfied.
From the definition of g follows that

| ¥ (grs X | k=l g;
| ¥ (g, %) | = —— — | ¥( =, X;)
‘ N p3 Ja; "
d gi
- ¥P( —, X | -
z‘=;+l A; ’

By (4.1.3) we have

T(Z\/A

Finally, by (4.1.4) and (4.1.2)

i ;—}—1 \/A

Since ¥ is a regular operator, it follows that

i = g: (1)

S 91 1 1
¥ ( Z — xk) —== Vy (1, xk)—"\/Ak-
i=k1 Ay 3

From these inequalities follows that
3 - 1 — 1 — 1 —_ 1
IT<g>xk)l§Z\/Ak - Z\/Ak - 5\/Ak = g\/Akégllk,

and (4.1.6) is proved.

The arguments used here are essentially the same as the ones in the proof
of Nakano’s Theorem [6, Ch. IX] that the limit of a sequence of regular
functionals is a regular functional.

4.2. Proof of Theorem 2. The proof of Theorem 2 is quite similar. The
sufficiency of condition (2.4) follows from the inequality
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| ¥ (f,%) | = Wy (1,x) | ] -

The necessity of condition (2.4) is proved by way of contradiction. If
(2.4) is not satisfied, it is possible to construct by induction an increasing
sequence (x;) going to infinity and a sequence (g;) of functions in .#, such
that, if A4, is defined by 4, = Wy (1, x;), the inequalities (4.1.2), (4.1.3)
and (4.1.4) are satisfied and moreover

lg(x) | < 5% forallx>=x,, k = 2,3,...

and
9:(9) >0 (x> 00).
The function g defined by (4.1.5) has then the properties
gx)—>0 (x— )
and
| ¥ (g, %) > 0 (k- o0).

This contradicts hypothesis (2.3) and the necessity of condition (2.4) is
proved.

4.3.  Proof of Theorem 3. (Sufficiency). We have
| P (%) —cl=1¥(f—e,x)| +|c|. |P(1,x)—1].
Givene > 0, let X, be such that | /() — ¢| =¢ for all > X, and let
g1 = (SO ~ ¢) Zrox1(®
g2 (O = (fO) ~ €) X(xpooy (D -
We then have
[P (f =) [ =1¥(gux) | + ] ¥(92,%)].

Hence,

(4.3.1) | ¥ (%) —cl=][¥(g.,%) ]
TP @0 +1cl [P(,x) - 1],

First, we have | g, (f) | = for every e R* and g, = o (1). Hence, by
definition of W,

(4.3.2) [P (g,,%) ] =& Wg(l,x).
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: N
Next, we can find a simple function & = ) Ay, where E, i=1,..., N

i=1

are measurable subsets of [0, X,], such that

1001 =] ] 10x,® and [g —h] < s.
Then

(4.3.3) (G0 =120 )|+ ¥ (0|
N
=eWe (L) + T 1411 (g0

From (4.3.1), (4.3.2), (4.3.3) and the hypotheses (2.7) and (2.8) follows
finally that
lim sup | P (f,x) —c| =2 We (1, )]
X0
and Theorem 1 is proved since ¢ can be chosen arbitrarily small.

(Necessity). The necessity of condition (2.9) follows from Theorem 2.
The necessity of conditions (2.7) and (2.8) is obvious.

4.4. Proof of Theorem 4. (Sufficiency). Let [/ be any O-regular function
in .# ,. Define p, and g, by

(4.4.1) p.(x) = Oiug L (Xpo,11(0) + £ X(1,0) (1)
and
(4.4.2) q,(x) = sup (1)t %,

Then it can be shown, using representation (3.3), that there exists ¢ > 0
such that

(4.4.3) P, (x) = O(x*1(x)) (x > o)
and
(4.4.4) g, (x) = 0(x7*1(x)) (x > 0).

To show that (3.5) is satisfied, we start with the inequality

(445) I ':P(I,X) I é[ T(IX[O,x]a X) I =+ | lI](ZX(x,oo)ax) l .
First we have by (4.4.1)
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L () Xro,x1 (D)
= 1(t) (X017 (1) + taX(l,oo)(t)) Xo,x1 (D) (X[0,1](t) + 7% (1,00 (D)
= py (%) (X017 () + t—aX(l,oo)(t))
for all £ = 0. Likewise, by (4.4.2), we have
l(t) X(x,oo)(t) == du (x) ta
for all £ > 0. By definition of Vi and (4.4.5), it follows then that
| P (1, %) | = pux) Ve (200,11()) + 17 X(1,00)()> X) + 42(x) Ve (7, X) .

Hence _
—1—‘ | ¥ (I, x) | 4< Pelx) )xa 27 (X[o 11D + 1% xa oo)(t)a x)
(x) I (x) ’ ’
QX)) \ .1
+ (x—al(x)>x V‘P(t Jx)3

and (3.5) follows from (4.4.3), (4.4.4) and hypotheses (3.6) and (3.7).

(Necessity). Let « > 0 and let fe.# , be a bounded function on R*. Let
g() = Q| f] +5@)x*.

Then g is an O-regular function, and

!lf!l

P(f(O1*x) = — El’(g, Y (1", x

sv(g, x) llfll

= [ f] +/6) P, x) .

Hence, by (3.5), we have
P(fH ", x) = 0(x) (x - ),

for every bounded function fin .# . Thus, the regular operator ¥, defined
by

1
'Pa(fax) = ; Y/(f(t)t“,x)

transforms every bounded function in .#, into a bounded function. By
Theorem 1, it follows that

(4.4.6) Vo 1,%) = O(1) (x — o).
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But given any g e ./, such that | g () | = % we have

g() %) g(t),x)

x| Y, (—=
| “( ta
Hence, the supremum of the left hand side over all ge.#, such that
| g (¥) | = t* must satisfy the same inequality:

I V‘I’ (taa X) | éxaV‘I’a(ls X)

and (3.6) follows by (4.4.6).
The proof of (3.7) is similar to that of (3.6) except that the function
t*, « > 0, has to be replaced in the argument by the function yg,17(?)

+ 177 (1,0 (0)

LY (g,x) | =i = x* Ve, (1, %) .

4.5. Proof of Theorem 5. (Sufficiency). Given any SV function L e ./Z
and any n > 0, let

P,(x) = sup t"L(1)

0=r=x

and

Q,(x) = sup t7" L(1).
Then a

P, (x)
(4.5.1) LG 1 (x - o0)
and

Q, (%)
(4.5.2) L0 -1 (x> o).

The proofs of these relations for continuous SV functions can be found
n [12] and [13]. For measurable SV functions, the proofs follow easily
from the representation theorem.

Clearly, if P, is defined by

(4.5.3) P, (x) = sup (X[0,1](t) + tnX(l,oo)(t)) L(t),

0=r=x

it will have again the property (4.5.1).
To prove that (3.8) is satisfied, we start with the inequality

(454) I 4 (L9 X) I = I 'P(LX[O,x]a x) I + l T(LX(x,oo)a X) ] .
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First we have by (4.5.3),

L(?) X[O,x](t)
= (Xr0,11(8) + 119 (1,00)(0) LD Lo, %1 (xpo.11(t) + 177 Y 0))
= P,(x) (X[o,u(t) + 17" X(l,oo)(t))

for all £ = 0. Since
L(1) X[O,x](t) =o(™" (t=o) >
it follows, by definition of Wy, that

P.(x)
x" L(x)

| ¥ (Lo, ¥) | = L(x)< )x"WW (xr0,118) + 17" Xc1,00)(D5 %) - .

By (4.5.1) and hypothesis (3.10), it follows that
(4.5.5) | ¥ (Lo, %) | = O(L(x)) (x = 00).
In a similar way we have
L(1) X (x,00)(®) = @, (01",
for all t = 0, and
L(t) = o(t") (t - ).
Hence, by definition of Wy, it follows that

Q(x)

l T(LX(x,oo)a X) l éL(X) <x~” L(X)

>x"" Wy (17, x) .
Using (4.5.2) and hypothesis (3.9) we find that
(4.5.6) | Y (LY (x.000, %) | = O(L(x)) (x = ).
From (4.5.4), (4.5.5) and (4.5.6) follows finally that
¥Y(L,x) = O(L(x)) (x> ).

(Necessity). We shall prove first that, if (3.8) is true for all SV functions
L e, then

(4.5.7) We (L,x) = O(L(x)) (x — ).
Let f be a function in .# such that f(x) - 0 (x — o0), and let
I(x) = (2 H f l| + f(x)) L(x) .
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The function / is clearly a SV function in .#, and we have
w(l,x) = 2| /] ¥ (Lx) + ¥(Lx). |
If we define ¥, by

1
V(%) = 15 PU LD |
then ¥, is a regular operator and

2|71
(4.5.8) Y.(f,x) = (2] f] +f(x))l—(—)'lf(l = I ¥ (L,x).

Since, by hypothesis, ¥ (, x) = O (I (x)) and ¥ (L, x) = O (L(x)) (x —0),
the operator ¥, transforms every function f in .#, that converges to zero
as x — oo into a bounded function. Hence by Theorem 2, we must have

We, (1,x) = O(1) (x —> 00).

Take now any ge.#, such that | g| =L and g = o (L).

We then have
g ,
[P (g,x)| = L(x)]| Y’z.(-i,x) | = L(x) Wy (1, x)

and it follows that
W (L, %) = Lx) Wy, (1,%) = O (L(x) (x > o).

Thus (4.5.7) is proved.
Note that we have in particular

(4.5.9) We(1,x) = O (1) (x — 00).

We shall now prove that relation (4.5.7) implies (3.9).
Suppose by way of contradiction that there exists no 5 > 0 such that
(3.9) holds. Then

lim sup x~ " We, (1*",x) = o, for n = 1,2, ...

X0

It is then possible to construct by induction a sequence of numbers
(x,) and a sequence (g,) of functions in .#, such that for alln = 1, 2, ...,

Xn+1 é2xn> X1 > 09

(4.5.10) Wy (111", x,) = nx, '™,
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|g,(¥) | =xM", g, (x) = o(x'") (x > ),
3 4 1/n
(451]) | T(gn)xn)léz W“P(t 7xn)
and
L
(4.5.12) [gu(t) | = 1 m for t=>x,.q.
Let
[0,0=u < x,,
e () — X, =U< X411, B = 1,2,...,
n
and
e(u
L(x) = exp (‘[*(-—) du) .
0

L is clearly a continuous and increasing SV function. We shall show that
L does not satisfy condition (4.5.7).
If x, =t < x,,,, we have

Ly B0
Lo = exp (J‘ du) = (—)'"".

Since | g, (t)| =t'/"forall te R*, we have

] gn(t) { X{xn,xnﬁ}_l](t) = tl/" X[xn xn+1](t)
oz xl/n L(t)
" L(x,)

X[ X ]()4 ]n/n' L(t) .
Xn,Xn+1 L(Xn)

On the other hand

L@ R
L(x,,)x ,,) (t— 0) .

Hence, by definition of Wy, for n = 1,2, ..., we have the inequality

| 9.(1) | Aixmxns 120D = 0(

(4513) | T(gn X[xn,xn+1]7xn) | = 1/’1 WI’ (L xn)

L(x) "~

By linearity of ¥, we have

L’Enseignement mathém., t. XIX, fasc. 3-4. 20
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( l{/ (gn X[xn,xn+1]> x) {

= I ll/(gnaxn)! - l T(gn X[O,xn)ﬂxn)l - I gj(gn X(xn+1,oo)9xn) ] “

Using (4.5.11), (4.5.12) and the definition of Wy, we find that
(4514) l T(gn X[xn,xn+1]axn) l

4
From (4.5.13), (4.5.14) and (4.5.10) it follows that

3 1
== — W‘P (tl/n: xn) - xln/n W‘P(la xn) - ; WI’ (t1/n> xn) .

1
— Wy (L, x,)=— x, """ Wy, (1", x,) — We (1, x
L(X) ‘P( n) 4x ‘I—’( n) ‘P( n)

n

é;in — We(l,x,) > 0 (n— ).

But this is impossible, by (4.5.7). This contradiction proves the necessity

of condition (3.9.)

In order to prove (3.10), observe first that, in view of the inequality

Wy (X[o,u(t) + 1 K1, eoy(D) X)
= Wy (X[o,1](t) + X(l,x)(t)a x) + x "Wy (1,x),

which is valid for all x > 1, and (4.5.9), it is sufficient to prove that for some

n >0
(4.5.15) Wy (X[o,1](t) + 1 1,00, x) =0(x"") (x—>0).
Suppose, by way of contradiction, that (4.5.15) is not true. Let

h,(t) = Xxpo,11(t) + g Xc1,00(1) -
Then we have

lim sup x*" Wy (h, %po.xppX) = 00, n = 1,2,..

X = o

It follows that we can find a sequence (x,) of numbers and a sequence

( f,) of functions in .# , such that

x; >1, x, >0 (n—>0w0),
(4.5.16) X" Wy (hy Hpo.xys X) =n, n = 1,2,...,
(4.5.17) | fol = hy tpo,xp0 fu(8) = 0(t71") (1> 00)

and
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3
(4518) [ '}I(ufna xn) I £ Z WE’ (hn X[O,xn]a xn) .

0, 0=u<x<l,
g(u) =41

where x, = 1, and let

Define

& (u)

L(x) = exp( J du).

The function L is clearly a decreasing and continuous SV function.
Moreover, we have

L(?)

(4.5.19) o)

( ) 1/n for X,.1 =1< X, n=1,2,..,

and
(4.5.20) h,()x, """ L(x,) = L(t), for 0=t=x,, n =1,2,..

The first equality follows immediately from the definition of L. As far
as (4.5.20) is concerned, for 0 =¢ < 1, both sides are equal to 1; for
1 =t = x, the inequality follows from (4.5.19) by induction: supposing
that (4.5.20) i1s true for some n = r, we shall prove that it is true for
n=r+ 1.1If1 =t=x, we have

hr+1(t)x1r/:-—*1.1 L<xr+1) — ( ) tekd L(xr-t-l)
Xpt+1

1/r(r+1 L r+1
=(xi)_1”L(xr)( ) ’L()Ei)l)(x )Tt = L(1) .

If x, < t = x,, 1, we have by (4.5.19)

hr+1(t)x1r/ﬁ1 L(x,41) = (

) U L) = L(D).

xr+1

Thus (4.5.20) is proved.
From (4.5.17) and (4.5.18) follows that
L(t)

L(x,)

xlr/zn !fn(t) I = xlr/ln hn(t) X[O,xn](t) ==
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for all t = 0 and
L(?)
L(x,)

since f, (t) = O for ¢t = x,. Hence by definition of Wy, (4.5.18) and (4.5.16),
we find that

XD = o ) (t—0)

1 i 3 i
7 Wy (L, x,) =x"/ I‘P(fn,xn)léleﬁ W (i 210, 5,15 Xn)

3
éé—‘naoo (n—0).

But this is impossible by (4.5.7). This contradiction proves the necessity of
condition (3.10).

4.6. Proof of Theorem 6. (Sufficiency). We have to show that for every
SV function L e A4 ,

(4.6.1) lim L&Y
X~ o0 L(x)
First we have |
Y (L,x) _ L(t) B B
(4.6.2) W—-II_]T(E(—X—) l,x) + |P(,x) —1].

Let0 <a <1 < f < o0. Then we have

I '4 <£@ ~1,x) ‘
L(x)
‘ L) L(?)
= l T<(I-4_()-C_) - 1))( [O,ax)(t)9x> -+ T<(KX)- - 1) X[ax’/}x](t)ﬂx> [
| L
(4.6.3) + I 9/((% ~1) X(I,x’oo)(t),x>

= Y00 | + | Yraxpxrl 1 ¥ pro |-
As in the proof of Theorem 5, we can show that

L()

] =
f(;) 1 [ X000y (1) =

P, (ax)
L(x)

+ (ox)" ) ( Xpo,11(8) + 7T X(l,oo)(t))

for x > 1/a and 1€ R™. Since the left-hand side of this inequality is zero
for t = x, we have, by definition of W,
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l lP[O,acx) I

+ 1>Oﬂnon~P (X[o,u(t) + 177 Xet,0)(D)s ;x) .

_ P, (ax)  L(ox)
- ((ocx)" L(ax)  L(x)

By (4.5.1) and hypothesis (3.10), it follows that

(4.6.4) lim sup | Yo | =o"M.
Likewise, for x > 1/x and t e R, we have

Q, (bx)
L(x)

+ (ﬁx)‘") .

— —1 1) =
5% ‘X(ﬁx,oo)() <

Since ¢ "L (t) —» 0 (t—0), it follows, by definition of Wy, that

N < 0,(fx)  L(pv)
e (Bx) TIL(BY) T L(x)
By (4.5.2) and hypothesis (3.9) we find that

+ 1>ﬁ‘”x"” W (1, %) .

(4.6.5) lim sup | ¥ pramyl=MB™".

X = o0

As for the second term of (4.6.3), we have

I—Ii(t—) —I’W.y(l,x).

Vsl = su
I [ax,p ]I p L(X)

ax =t=fx

From the Representation Theorem for SV functions follows immediately
that

L(1) :  L(x) : 0 )
su — - = — — X— 00).
axétiﬂx L(x) azi=p | L(x)
Hence
(4.6.6) xlim | Yiwxpx;l = 0.

From (4.6.3), (4.6.4), (4.6.5) and (4.6.6) it follows that

‘P(L—(Q - 1,x)

lim sup
L(x)

X =

=(@"+p""M,

and (4.6.1) is proved by choosing o arbitrarily small and f arbitrarily large.
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(Necessity). The necessity of (3.12) is obvious. As for (3.8) and (3.9), in
view of the proof of Theorem 5, it will be sufficient to show that our hypoth-
esis (3.11) implies (4.5.7).

Let f'e.#, be such that lim f(x) = ¢. If L is any SV function in .#, let

[(x) = 2] f]| +/x)L) .
The function / is clearly a SV function in .#, and we have
Y(fL,x) = Y(,x) = 2| f]| ¥(L,x).
If we define the operator ¥, by

1
!PL(f:x) :’L(—X)— T(Lf,X),

then ¥, is a regular operator and

1
'PL(fax) = TS Y’(jL,x)

L(x)
¥ (1, x) ¥ (L, x)
= CI+10) =57 =2

By (3.11) we have ¥ (/, x)// (x) = 1 and ¥ (L, x)/L (x) - 1 (x—>0) and so

lI’L(f,x)—>2Hf” +c ——2’|f|| =c¢ (x—0).

Hence, by Theorem 3, the operator ¥, preserves convergence and conse-
quently

We (1,x) = O0(1) (x—0).
But

1
WWL(LX) = m Wy (L, x)

and the necessity of (4.5.7) is proved.
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