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(2.8 ¥ (xg,x) = 0
for every bounded measurable subset E of R”, and

(2.9) Wy (1,x) = 0(1).

3. TRANSFORMATIONS OF (-REGULAR
AND SLOWLY VARYING FUNCTIONS BY REGULAR OPERATORS.

3.1. The class of positive functions which are eventually bounded
away from zero and infinity has been extended to the class of O-regular
functions defined as follows:

A positive, measurable function / on R™ is O-regular if

[ (Ax)
[(x)

(3.1) = 0 (1) (x— )

for every 4 > 0.

For example, any function / such that ax* == [ (x) = 4x*, where « € R,
clearly satisfies condition (3.1).

The class of O-regular functions and related classes of functions have
been studied extensively by V. G. Avakumovi¢ [8, 9, 10, 11], J. Karamata
[14], N. K. Bari, S. B. SteCkin [15], M. A. Krasnoselskii, T. B. Rutickii [16],
W. Matuszewska [17] and others.

The closely related class of slowly varying (S¥) functions, introduced
by J. Karamata ([12], [13]), generalizes the class of functions converging
to a positive limit. A positive, measurable function L defined on R* is a
slowly varying function if

25 . L(Ax)
(3.2) lim L0

for every A > 0.
Clearly, every measurable function on R* which converges to a positive
limit as x — oo is a SV function. Also, functions like

1,0=x < e, _ sin x
co(x)—{ examo s B =2+ =)0 (),

and their iterations are SV functions. More generally, any measurable
function g on R™ such that ¢ (x) =g (x) = ¢ (x) + \/cp (x)1is a SV function.

The most important properties of O-regular and SV functions can be
stated as follows:
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REPRESENTATION THEOREMS: If [ is an O-regular function, there exist
B > 0 and bounded measurable functions o and B on [B, o] such that

(3.3) [(x) = exp (oc(x) + E%@dt) for x=1B.

B

If L is a SV function, then for some B > 0,

X

(3.4) L(x) = exp (11 (x) -I—j 8—§th) for x=B8B,
B

where n and ¢ are bounded measurable functions on [B, oo] such that n (x) — ¢
and & (x) = 0 (x —»0).
A proof of these results for continuous O-regular and SV functions can
- be found in [12], [13], and [14]. These results were subsequently extended to
J measurable O-regular and SV functions by a number of authors (see [18]
for details).
One of the typical and simplest results about the asymptotic behavior
of special linear transforms of SV functions is probably the following
“result of K. Knopp [19]:
If L is a SV function, and if L € #,, then

o0

Jef(‘/x) L) dt -1 (x—00).

0

1
x L(x)

Similar results involving more or less special transformations have been
obtained by G. H. Hardy and W. W. Rogosinski [4], S. Aljan¢i¢, R. Bojanic,
M. Tomi¢ [20], R. Bojani¢ and J. Karamata [21], and, in slightly different
form, by D. Drasin ([22], Th. 6). The most general result of this type,
obtained by M. Vuilleumier [23], [24], can be stated as follows:

Let G be defined by (1.1). In order that

G (L, x)
L(x)

- 1 (x » o)

holds for every SV function L e H , it is necessary and sufficient that, as
X — o0,

() af Y (x, ) dt — 1,
0
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(i1) there exists n > 0 such that 1

X [ee]

J 1P, 0t™"dt =07 and | | P(x,0)|dt = O(x").

0 X

3.2. Theorem 1 characterizes boundedness preserving operators. A 1
natural extension of that result is the theorem which characterizes regular
operators ¥ with the property that ¥ (/, x) = O (I (x)) (x—0) holds for
every O-regular function /e.#,. In this direction we have the following |
result: |

THEOREM 4. Let Y: M, — F, be a regular operator. In order that -
(3.5) W(l,x) = 0(I() (- o),

holds for every O-regular function le # , it is necessary and sufficient that
forallw > 0, as x — o0,

(3.6) Ve (t*,x) = O (x%
and
(3.7) Ve (X[o,1](t) + 17 X 1,09 (D)s x) = 0(x™%

where Vy is defined by (1.5).

Likewise, as an analog of Theorem 2, the following theorem charac-
terizes regular operators which have the property that

¥ (L,x) = 0(L(x) (x— o)
holds for every SV function L e ./ ,:

THEOREM 5. Let ¥Y: My — F  be a regular operator. In order that
(3.8) Y (L,x) = O(L(x)) (x> )

holds for every SV function L € . , it is necessary and sufficient that there
exists 1 > 0 such that, as x - o,

(3.9) We (17, x) = O (x")
and

(3.10) W, (X[o,u(t) + 17" X(l,oo)(t)’x) = 0"
where Wy is defined by (2.5).
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Finally, the analog of Theorem 3 can be stated as follows:

THEOREM 6. Let ¥: M, — F o be a regular operator. In order that

Y (L,x)

(3.11) 7o)

-1 (x - o)

holds for every SV function L € M , it is necessary and sufficient that
(3.12) Y(1,x) -1 (x> o),
and that the asymptotic relations (3.9) and (3.10) hold for some n > 0.

4. PROOFS.

4.1. Proof of Theorem 1. The sufficiency of condition (2.2) follows
from the inequality

[P (f,x) | = Ve (1,%) | £] -

The necessity of (2.2) is proved by way of contradiction. Suppose that (2.2)
is not satisfied. Then
(4.1.1) Iim sup Ve (1,x) = 0.

In view of (4.1.1), (2.1) and the properties of ¥, it is possible to find by

induction an increasing sequence (x;) going to infinity and a sequence
(gr) of functions in ., such that, if 4, is defined by 4, = Vy (1, x;), then

(4.1.2) A; =16 and 4, =164,_,, k = 2,3,...,
k—
4.1.3 A, =16 (sup | ¥ 2k =2,3,..,
(413 4=16(sup | (2\/A )17 3,
and
B 3
(4.1.4) g, ] =1, lqj(gkaxk>]§ZAk> k=1,2,..
Let

© g;(x)

(4.1.5) g(x) == Z — .

i=1 N/A-

12
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