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ASYMPTOTIC PROPERTIES OF LINEAR OPERATORS *

by R. Bosanic 2 and M. VUILLEUMIER

1. POSITIVE AND REGULAR LINEAR OPERATORS.

1.1. One of the most interesting and recent developments in the theory
of approximation is a systematic and very successful study of approximation
properties of sequences of positive linear operators. One of the best known
results in this direction is probably the theorem of Korovkin [25] which
states that if a sequence of positive linear operators approximates 1, x and
x % on [a, b], then it approximates every continuous function on [a, b] (see
also [26], pp. 192-196). As we shall see below, this result is typical in a
certain sense for positive linear operators. Generally speaking, if positive
linear operators have a certain property on a small class of functions, in
many cases it can be proved that they have the same property on a larger
class of functions. One of the principal aims of this paper is to extend the
class of positive linear operators to linear operators which are not necessarily
positive but preserve this typical property of positive linear operators.

In classical analysis and especially in the theory of summability there are
many examples of positive linear operators, such as the Laplace transform
Z (f, ) of an integrable function fon R™ = {x : x = 0}, defined by

Z(f,x) =§:joe—(t/x)f(z)dt (x>0).

One of the basic problems here is to study how well the transform of a
function preserves its asymptotic properties. Simplest results of this type
for the Laplace transform are:

If /'is a bounded, measurable function on R*, then the Laplace trans-
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form £ (f,.) of fis also a bounded function. If, in addition, lim f(x) = «

X0

then lim % (f, x) = «.

X000

Results of this type can be easily extended to arbitrary positive linear
operators since positive linear operators preserve the inequalities and most
of the techniques in asymptotic analysis are based on order properties of R.
The results thus obtained are in many respects similar to the theorem of
Korovkin. To illustrate this point, let us consider the linear space & of all
real-valued functions on R* with the usual order relation << ). Let %, be
the linear subspace and sublattice of & consisting of all real-valued functions
in & which are bounded on every finite subinterval of R*.

We then have the following simple results:

(i) A positive linear operator ®: F , - F transforms a bounded function
into a bounded function if and only if @ (1,.) is a bounded function on R*.
This result follows immediately from the inequality

1D (f,x)|=d(|fl,x)=2(,x) | f]
where || f| = sup { | /()| :te R" }.

(i) A positive linear operator ®:F , — & is convergence preserving,
ie.
feF, and imf(f) = ¢ = lim &(f,x) = c,
t—> 00 X =00
if ®(1,x)— 1(x—>o0) and if there is a positive decreasing function ge F
converging to zero as x — oo such that @ (g, x) = 0 (x— ).
The proof of this result is also very simple. Suppose that fe %, and
that lim £ (f) = ¢. Since @ (f,x) —c = D (f—c, x) + ¢ (P (1, x) —1), we

t— 0

have, by positivity of &,
|&(fix) —c|=D(f —cl,x) + [c| |2(1,x) —1].

In order to estimate the first term on the right-hand side of this inequality,
observe that for all 1€ R™ we have

1f@) = el =(f]| +1eD xro.ax(®) + sup @) —cl

é%gunsgg @) —ecl.

1) f < gmeans f(x) < g (x) for every x € R™.
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Hence
o(lf - CI,x)éM—”g—(z)l—c—l ®(g,x) + f_i_g lf(®) —cl®(1,x),
and so

| & (f,x) --Clébiﬂ——f—l—f—l ®(g,x) + sup [f(t) —c|P(1,x)
g (4) >4

+lel.|2(1,x) —1].

Since, by hypotheses, @ (1, x) - 1 and & (g, x) = 0 (x—00), it follows
that
lim sup [ @(fax) —C l == sup If(t) —C I s

X =00 t>d4

and the result is proved since 4 can be chosen arbitrarily large.

1.2. The most general linear transformations in the theory of sum-
mability are not necessarily positive. If Y (x,.) is a Lebesgue integrable
function on R* for every fixed x € R™, and if & is the family of all measur-
able functions f on R* such that

oj? [V (x,0)| |f(®)]|dt < oo for every xe R",
0

then & is a linear space and we can define a linear operator G on & by

(1.1) G(f,x) = Zjotll(x,t)f(t)dt.

We shall consider here, in particular, the subspace &, of &, consisting
of all functions in & which are bounded on finite subintervals of R™.

The classical results of H. Hahn [1] and H. Raff [2], [3] give necessary
and sufficient conditions for the operator G to transform every bounded
function in & into an eventually bounded function and a convergent
function in & into a convergent function:

A. - In order that, as x — 0,
fe&o and f(x) = 0(1) = G(f,x) =0(1)

it is necessary and sufficient that

:f Y (x,0) |dt = 0(1).

L’Enseignement mathém., t. XIX, fasc. 3-4. 19
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B. In order that

fe&y and lim f(x) = ¢ = lim G(f,x) = ¢

X0 X 0

it is necessary and sufficient that

(1) Tlﬁ(x, Hdt -1 (x—o0),
0

(ii) g W(x,t) yg()dt -0 (x—00)

for all bounded measurable sets E < R* ,

(iif) 10 W (x,0) |dt = O(1) (x—00).

In order to extend the preceding results to more general linear operators,
let us observe first that the operator (1.1) can be expressed as a difference
of two positive linear operators:

1) GU¥) = Of U e, 0 () di — }o (e, 0 () di,
where, as usual, ¢ = max (q, 0), a~ = —min (a, 0).

It seems therefore that the most natural generalization of the operator
(1.1) as well as arbitrary positive linear operators, to operators for which
the results of type 4 and B would be true, should be the class of linear
operators which can be expressed as a difference of two positive linear
operators. A linear operator which has this property is called a regular
operator. General theory of regular operators on partially ordered linear
spaces can be found in L. V. Kantorovi¢, B. Z. Vulih, A. G. Pinsker ([5],
Ch. VII), B. Z. Vulih ([6], Ch. VIII) and in H. Nakano [7].

For completeness sake, we shall give here an outline of the most im-
portant properties of regular operators which will be needed in this paper.

1.3. We shall use here the following definition of regular operators:

Definition : Let & ;, i = 1,2 be linear subspaces and sublattices of . A
linear operator ¥Y: %, - F, is called a regular operator if there exist
positive linear operators ®;: F | - F,i = 1,2 such that ¥V (f, x) = @, (f,x)

— @, (f, x) for every fe #,, and x€ R™.
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This definition of regular operator does not require the operators @
and @, to have values in &% ,. In the problems considered here such a re-
quirement is not essential.

We have now the following result.

THEOREM 1. A linear operator ¥: F, — F , is regular if and only if
there exists a positive linear operator &: F | - F such that

(1.3) | P (f,x) [ =2(f],%)
for every fe &, and xe R™.
If ¥ is a regular operator, we have clearly
[P (x| =12.(f,0] +12,(f,%)]
=0, (If,x) + &, (I/],%) = 2(f1],x)

where @ (f, x) = @, (f, x) + &, (f, x) is a positive linear operator from
F , into #. Conversely, if (1.3) holds true, let

P, (f,x) = 9(f,x),
@2(fax) = @(f,X) - l*y(fax)

Then ¥ (f, x) = &, (f, x) — @, (f, x). Here &, is obviously a positive linear
operator from %, into &, and, if /=0 on R™, we have

P, (f,x) = (f,%) =V (f,x)=P(f,x) = | ¥ (f,x)| =0
so that @, is also a positive linear operator from % ; into &.

In most applications, if a regular operator ¥ is given, it is important to
have an intrinsic definition of the operator @ for which (1.3) is true. This is
possible, in view of the following result:

THEOREM II. A linear operator ¥: F  — F , is regular if and only if
for every fe F,,f=0, and every x € R* we have
(1.4) Ve (f,x) <
where
(1.5) Ve (f,x) = sup{|¥(g,x)|: ge F, and |g|=f}.

If condition (1.4) is satisfied, we have clearly Vy (f, .) € & and the
proof that ¥ is regular is carried out in three steps. First, one shows that
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Vg is additive on non-negative functions in & ; and homogeneous with
respect to multiplication by positive real numbers:

fi=0and f,=0=Ve(fi+/f2,%) = Ve(f1,X) + Ve (f2,%),
a>0and f=0= Vy(af,x) = aVe(f,x).

The operator Vy is then extended to a positive linear operator @y : F ; — F,
which coincides with V, on non-negative functions, in the usual way: if
f=f"—=f",then &y (f,x) = Vo (f*,x) — Vo (f~, x). Finally, if fe &,
we have | Y (f,x)| =Vy (|f],x) = &y (| f], x). Hence, by Theorem I,
the operator ¥ is regular.

Conversely, if ¥ is regular, by Theorem I, we have a positive linear
operator @: % ; — & such that

| ¥(9,%) | =2 (lg],%) =D (f, %)

for every ge #,,| g | =/, and every x € R*. Hence, the condition (1.4) of
Theorem II is satisfied.

If we consider the operator G' defined by (1.1), then

Ve (fox) = :sj W e, 0) 1 £ 2) di

From the statement of the theorems of Hahn and Raff mentioned earlier,
we can expect that the operator Vy will play an important role in the
extension of these results to general regular operators. In fact, as in the
theory of positive linear operators, some asymptotic property of the regular
operator ¥ will hold for a large class of functions if and only if the operator
Ve has certain properties on a much smaller class of functions.

2. BOUNDEDNESS AND CONVERGENCE
PRESERVING REGULAR OPERATORS.

In this section and the following one we shall extend to regular operators
some of the well-known results about the asymptotic behavior of the
special transform G defined by (1.1).

Let us consider the linear space .# of real valued measurable functions
on R* and let.# , be the subspace of .# consisting of all measurable functions
on R* which are bounded on every finite interval of R*.

The basic result which characterizes regular operators from .#, into
F , that preserve boundedness can be stated as follows:
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