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ASYMPTOTIC PROPERTIES OF LINEAR OPERATORS *

by R. Bosanic 2 and M. VUILLEUMIER

1. POSITIVE AND REGULAR LINEAR OPERATORS.

1.1. One of the most interesting and recent developments in the theory
of approximation is a systematic and very successful study of approximation
properties of sequences of positive linear operators. One of the best known
results in this direction is probably the theorem of Korovkin [25] which
states that if a sequence of positive linear operators approximates 1, x and
x % on [a, b], then it approximates every continuous function on [a, b] (see
also [26], pp. 192-196). As we shall see below, this result is typical in a
certain sense for positive linear operators. Generally speaking, if positive
linear operators have a certain property on a small class of functions, in
many cases it can be proved that they have the same property on a larger
class of functions. One of the principal aims of this paper is to extend the
class of positive linear operators to linear operators which are not necessarily
positive but preserve this typical property of positive linear operators.

In classical analysis and especially in the theory of summability there are
many examples of positive linear operators, such as the Laplace transform
Z (f, ) of an integrable function fon R™ = {x : x = 0}, defined by

Z(f,x) =§:joe—(t/x)f(z)dt (x>0).

One of the basic problems here is to study how well the transform of a
function preserves its asymptotic properties. Simplest results of this type
for the Laplace transform are:

If /'is a bounded, measurable function on R*, then the Laplace trans-

- D) A prgliminary version of this paper was communicated at the Symposium on
: JApprommatlon Theory, held at the University of Alberta, Edmonton, Alberta, May 28-
.+ June 1, 1972.
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dation under grant GP-9493.
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form £ (f,.) of fis also a bounded function. If, in addition, lim f(x) = «

X0

then lim % (f, x) = «.

X000

Results of this type can be easily extended to arbitrary positive linear
operators since positive linear operators preserve the inequalities and most
of the techniques in asymptotic analysis are based on order properties of R.
The results thus obtained are in many respects similar to the theorem of
Korovkin. To illustrate this point, let us consider the linear space & of all
real-valued functions on R* with the usual order relation << ). Let %, be
the linear subspace and sublattice of & consisting of all real-valued functions
in & which are bounded on every finite subinterval of R*.

We then have the following simple results:

(i) A positive linear operator ®: F , - F transforms a bounded function
into a bounded function if and only if @ (1,.) is a bounded function on R*.
This result follows immediately from the inequality

1D (f,x)|=d(|fl,x)=2(,x) | f]
where || f| = sup { | /()| :te R" }.

(i) A positive linear operator ®:F , — & is convergence preserving,
ie.
feF, and imf(f) = ¢ = lim &(f,x) = c,
t—> 00 X =00
if ®(1,x)— 1(x—>o0) and if there is a positive decreasing function ge F
converging to zero as x — oo such that @ (g, x) = 0 (x— ).
The proof of this result is also very simple. Suppose that fe %, and
that lim £ (f) = ¢. Since @ (f,x) —c = D (f—c, x) + ¢ (P (1, x) —1), we

t— 0

have, by positivity of &,
|&(fix) —c|=D(f —cl,x) + [c| |2(1,x) —1].

In order to estimate the first term on the right-hand side of this inequality,
observe that for all 1€ R™ we have

1f@) = el =(f]| +1eD xro.ax(®) + sup @) —cl

é%gunsgg @) —ecl.

1) f < gmeans f(x) < g (x) for every x € R™.
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Hence
o(lf - CI,x)éM—”g—(z)l—c—l ®(g,x) + f_i_g lf(®) —cl®(1,x),
and so

| & (f,x) --Clébiﬂ——f—l—f—l ®(g,x) + sup [f(t) —c|P(1,x)
g (4) >4

+lel.|2(1,x) —1].

Since, by hypotheses, @ (1, x) - 1 and & (g, x) = 0 (x—00), it follows
that
lim sup [ @(fax) —C l == sup If(t) —C I s

X =00 t>d4

and the result is proved since 4 can be chosen arbitrarily large.

1.2. The most general linear transformations in the theory of sum-
mability are not necessarily positive. If Y (x,.) is a Lebesgue integrable
function on R* for every fixed x € R™, and if & is the family of all measur-
able functions f on R* such that

oj? [V (x,0)| |f(®)]|dt < oo for every xe R",
0

then & is a linear space and we can define a linear operator G on & by

(1.1) G(f,x) = Zjotll(x,t)f(t)dt.

We shall consider here, in particular, the subspace &, of &, consisting
of all functions in & which are bounded on finite subintervals of R™.

The classical results of H. Hahn [1] and H. Raff [2], [3] give necessary
and sufficient conditions for the operator G to transform every bounded
function in & into an eventually bounded function and a convergent
function in & into a convergent function:

A. - In order that, as x — 0,
fe&o and f(x) = 0(1) = G(f,x) =0(1)

it is necessary and sufficient that

:f Y (x,0) |dt = 0(1).

L’Enseignement mathém., t. XIX, fasc. 3-4. 19
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B. In order that

fe&y and lim f(x) = ¢ = lim G(f,x) = ¢

X0 X 0

it is necessary and sufficient that

(1) Tlﬁ(x, Hdt -1 (x—o0),
0

(ii) g W(x,t) yg()dt -0 (x—00)

for all bounded measurable sets E < R* ,

(iif) 10 W (x,0) |dt = O(1) (x—00).

In order to extend the preceding results to more general linear operators,
let us observe first that the operator (1.1) can be expressed as a difference
of two positive linear operators:

1) GU¥) = Of U e, 0 () di — }o (e, 0 () di,
where, as usual, ¢ = max (q, 0), a~ = —min (a, 0).

It seems therefore that the most natural generalization of the operator
(1.1) as well as arbitrary positive linear operators, to operators for which
the results of type 4 and B would be true, should be the class of linear
operators which can be expressed as a difference of two positive linear
operators. A linear operator which has this property is called a regular
operator. General theory of regular operators on partially ordered linear
spaces can be found in L. V. Kantorovi¢, B. Z. Vulih, A. G. Pinsker ([5],
Ch. VII), B. Z. Vulih ([6], Ch. VIII) and in H. Nakano [7].

For completeness sake, we shall give here an outline of the most im-
portant properties of regular operators which will be needed in this paper.

1.3. We shall use here the following definition of regular operators:

Definition : Let & ;, i = 1,2 be linear subspaces and sublattices of . A
linear operator ¥Y: %, - F, is called a regular operator if there exist
positive linear operators ®;: F | - F,i = 1,2 such that ¥V (f, x) = @, (f,x)

— @, (f, x) for every fe #,, and x€ R™.
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This definition of regular operator does not require the operators @
and @, to have values in &% ,. In the problems considered here such a re-
quirement is not essential.

We have now the following result.

THEOREM 1. A linear operator ¥: F, — F , is regular if and only if
there exists a positive linear operator &: F | - F such that

(1.3) | P (f,x) [ =2(f],%)
for every fe &, and xe R™.
If ¥ is a regular operator, we have clearly
[P (x| =12.(f,0] +12,(f,%)]
=0, (If,x) + &, (I/],%) = 2(f1],x)

where @ (f, x) = @, (f, x) + &, (f, x) is a positive linear operator from
F , into #. Conversely, if (1.3) holds true, let

P, (f,x) = 9(f,x),
@2(fax) = @(f,X) - l*y(fax)

Then ¥ (f, x) = &, (f, x) — @, (f, x). Here &, is obviously a positive linear
operator from %, into &, and, if /=0 on R™, we have

P, (f,x) = (f,%) =V (f,x)=P(f,x) = | ¥ (f,x)| =0
so that @, is also a positive linear operator from % ; into &.

In most applications, if a regular operator ¥ is given, it is important to
have an intrinsic definition of the operator @ for which (1.3) is true. This is
possible, in view of the following result:

THEOREM II. A linear operator ¥: F  — F , is regular if and only if
for every fe F,,f=0, and every x € R* we have
(1.4) Ve (f,x) <
where
(1.5) Ve (f,x) = sup{|¥(g,x)|: ge F, and |g|=f}.

If condition (1.4) is satisfied, we have clearly Vy (f, .) € & and the
proof that ¥ is regular is carried out in three steps. First, one shows that




— 288 —

Vg is additive on non-negative functions in & ; and homogeneous with
respect to multiplication by positive real numbers:

fi=0and f,=0=Ve(fi+/f2,%) = Ve(f1,X) + Ve (f2,%),
a>0and f=0= Vy(af,x) = aVe(f,x).

The operator Vy is then extended to a positive linear operator @y : F ; — F,
which coincides with V, on non-negative functions, in the usual way: if
f=f"—=f",then &y (f,x) = Vo (f*,x) — Vo (f~, x). Finally, if fe &,
we have | Y (f,x)| =Vy (|f],x) = &y (| f], x). Hence, by Theorem I,
the operator ¥ is regular.

Conversely, if ¥ is regular, by Theorem I, we have a positive linear
operator @: % ; — & such that

| ¥(9,%) | =2 (lg],%) =D (f, %)

for every ge #,,| g | =/, and every x € R*. Hence, the condition (1.4) of
Theorem II is satisfied.

If we consider the operator G' defined by (1.1), then

Ve (fox) = :sj W e, 0) 1 £ 2) di

From the statement of the theorems of Hahn and Raff mentioned earlier,
we can expect that the operator Vy will play an important role in the
extension of these results to general regular operators. In fact, as in the
theory of positive linear operators, some asymptotic property of the regular
operator ¥ will hold for a large class of functions if and only if the operator
Ve has certain properties on a much smaller class of functions.

2. BOUNDEDNESS AND CONVERGENCE
PRESERVING REGULAR OPERATORS.

In this section and the following one we shall extend to regular operators
some of the well-known results about the asymptotic behavior of the
special transform G defined by (1.1).

Let us consider the linear space .# of real valued measurable functions
on R* and let.# , be the subspace of .# consisting of all measurable functions
on R* which are bounded on every finite interval of R*.

The basic result which characterizes regular operators from .#, into
F , that preserve boundedness can be stated as follows:
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Tueorem 1. Let ¥: .My — F, be a regular operator. In order that,
as x — oo,
(2.1) fedy and f(x) = 0(1) = Y(f,x) =0()
it is necessary and sufficient that
(2.2) Ve(1,x) = 0(1)
where Vy is defined by (1.5).

This result is clearly a natural extension of the results for the special opera-
tor G mentioned in section /.2 under A. The corresponding result for regular
operators which transform functions in &, converging to zero as x — 0
into bounded functions is given by the following theorem.

THEOREM 2. Let Y: My, — F, be a regular operator. In order that,
- as x — oo,

23 fedy and f(x) >0 = W(f,x) = 0(1)

it is necessary and sufficient that

(2.4) We (1,x) = 0(1)
| where Wy is defined for every fe M o, f = 0, by
(2.5) Wo(f,x) =sup{|¥(g,x)|: geto,|gl=f,g =0(f)}V.

Condition (2.4) in Theorem 2 is less restrictive than the corresponding

condition (2.2) in Theorem 1, since Wy (f, x) = Vy (f, x) for every fe 4 ,,
f =0 and for every xe R™.

It is now easy to obtain a generalization of the results for the special
operator G mentioned in section /.2 under B., i.e. to establish necessary and
sufficient conditions for a regular operator to be convergence preserving:

THEOREM 3. Let W: M, — F, be a regular operator. In order that,
as x — oo,
(2.6) fedly and f(x) > ¢ = Y(f,x)—>c

it is necessary and sufficient that

(2.7) P(l,x)~>1,

Dg=o0(f)meansg () =o(f(1) (t > =).
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(2.8 ¥ (xg,x) = 0
for every bounded measurable subset E of R”, and

(2.9) Wy (1,x) = 0(1).

3. TRANSFORMATIONS OF (-REGULAR
AND SLOWLY VARYING FUNCTIONS BY REGULAR OPERATORS.

3.1. The class of positive functions which are eventually bounded
away from zero and infinity has been extended to the class of O-regular
functions defined as follows:

A positive, measurable function / on R™ is O-regular if

[ (Ax)
[(x)

(3.1) = 0 (1) (x— )

for every 4 > 0.

For example, any function / such that ax* == [ (x) = 4x*, where « € R,
clearly satisfies condition (3.1).

The class of O-regular functions and related classes of functions have
been studied extensively by V. G. Avakumovi¢ [8, 9, 10, 11], J. Karamata
[14], N. K. Bari, S. B. SteCkin [15], M. A. Krasnoselskii, T. B. Rutickii [16],
W. Matuszewska [17] and others.

The closely related class of slowly varying (S¥) functions, introduced
by J. Karamata ([12], [13]), generalizes the class of functions converging
to a positive limit. A positive, measurable function L defined on R* is a
slowly varying function if

25 . L(Ax)
(3.2) lim L0

for every A > 0.
Clearly, every measurable function on R* which converges to a positive
limit as x — oo is a SV function. Also, functions like

1,0=x < e, _ sin x
co(x)—{ examo s B =2+ =)0 (),

and their iterations are SV functions. More generally, any measurable
function g on R™ such that ¢ (x) =g (x) = ¢ (x) + \/cp (x)1is a SV function.

The most important properties of O-regular and SV functions can be
stated as follows:
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REPRESENTATION THEOREMS: If [ is an O-regular function, there exist
B > 0 and bounded measurable functions o and B on [B, o] such that

(3.3) [(x) = exp (oc(x) + E%@dt) for x=1B.

B

If L is a SV function, then for some B > 0,

X

(3.4) L(x) = exp (11 (x) -I—j 8—§th) for x=B8B,
B

where n and ¢ are bounded measurable functions on [B, oo] such that n (x) — ¢
and & (x) = 0 (x —»0).
A proof of these results for continuous O-regular and SV functions can
- be found in [12], [13], and [14]. These results were subsequently extended to
J measurable O-regular and SV functions by a number of authors (see [18]
for details).
One of the typical and simplest results about the asymptotic behavior
of special linear transforms of SV functions is probably the following
“result of K. Knopp [19]:
If L is a SV function, and if L € #,, then

o0

Jef(‘/x) L) dt -1 (x—00).

0

1
x L(x)

Similar results involving more or less special transformations have been
obtained by G. H. Hardy and W. W. Rogosinski [4], S. Aljan¢i¢, R. Bojanic,
M. Tomi¢ [20], R. Bojani¢ and J. Karamata [21], and, in slightly different
form, by D. Drasin ([22], Th. 6). The most general result of this type,
obtained by M. Vuilleumier [23], [24], can be stated as follows:

Let G be defined by (1.1). In order that

G (L, x)
L(x)

- 1 (x » o)

holds for every SV function L e H , it is necessary and sufficient that, as
X — o0,

() af Y (x, ) dt — 1,
0
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(i1) there exists n > 0 such that 1

X [ee]

J 1P, 0t™"dt =07 and | | P(x,0)|dt = O(x").

0 X

3.2. Theorem 1 characterizes boundedness preserving operators. A 1
natural extension of that result is the theorem which characterizes regular
operators ¥ with the property that ¥ (/, x) = O (I (x)) (x—0) holds for
every O-regular function /e.#,. In this direction we have the following |
result: |

THEOREM 4. Let Y: M, — F, be a regular operator. In order that -
(3.5) W(l,x) = 0(I() (- o),

holds for every O-regular function le # , it is necessary and sufficient that
forallw > 0, as x — o0,

(3.6) Ve (t*,x) = O (x%
and
(3.7) Ve (X[o,1](t) + 17 X 1,09 (D)s x) = 0(x™%

where Vy is defined by (1.5).

Likewise, as an analog of Theorem 2, the following theorem charac-
terizes regular operators which have the property that

¥ (L,x) = 0(L(x) (x— o)
holds for every SV function L e ./ ,:

THEOREM 5. Let ¥Y: My — F  be a regular operator. In order that
(3.8) Y (L,x) = O(L(x)) (x> )

holds for every SV function L € . , it is necessary and sufficient that there
exists 1 > 0 such that, as x - o,

(3.9) We (17, x) = O (x")
and

(3.10) W, (X[o,u(t) + 17" X(l,oo)(t)’x) = 0"
where Wy is defined by (2.5).
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Finally, the analog of Theorem 3 can be stated as follows:

THEOREM 6. Let ¥: M, — F o be a regular operator. In order that

Y (L,x)

(3.11) 7o)

-1 (x - o)

holds for every SV function L € M , it is necessary and sufficient that
(3.12) Y(1,x) -1 (x> o),
and that the asymptotic relations (3.9) and (3.10) hold for some n > 0.

4. PROOFS.

4.1. Proof of Theorem 1. The sufficiency of condition (2.2) follows
from the inequality

[P (f,x) | = Ve (1,%) | £] -

The necessity of (2.2) is proved by way of contradiction. Suppose that (2.2)
is not satisfied. Then
(4.1.1) Iim sup Ve (1,x) = 0.

In view of (4.1.1), (2.1) and the properties of ¥, it is possible to find by

induction an increasing sequence (x;) going to infinity and a sequence
(gr) of functions in ., such that, if 4, is defined by 4, = Vy (1, x;), then

(4.1.2) A; =16 and 4, =164,_,, k = 2,3,...,
k—
4.1.3 A, =16 (sup | ¥ 2k =2,3,..,
(413 4=16(sup | (2\/A )17 3,
and
B 3
(4.1.4) g, ] =1, lqj(gkaxk>]§ZAk> k=1,2,..
Let

© g;(x)

(4.1.5) g(x) == Z — .

i=1 N/A-

12
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By (4.1.2) and (4.1.4), this series is uniformly convergent and consequently
g is in /4. Also, g is bounded on R™ since

© 1g;(x)] 1
= . = -,
lg (x) | i; T 3
We shall show now that
(4.1.6) | ¥ (g,x)|—> o0 (x— ),

which is impossible by (2.1). Hence, (2.2) must be satisfied.
From the definition of g follows that

| ¥ (grs X | k=l g;
| ¥ (g, %) | = —— — | ¥( =, X;)
‘ N p3 Ja; "
d gi
- ¥P( —, X | -
z‘=;+l A; ’

By (4.1.3) we have

T(Z\/A

Finally, by (4.1.4) and (4.1.2)

i ;—}—1 \/A

Since ¥ is a regular operator, it follows that

i = g: (1)

S 91 1 1
¥ ( Z — xk) —== Vy (1, xk)—"\/Ak-
i=k1 Ay 3

From these inequalities follows that
3 - 1 — 1 — 1 —_ 1
IT<g>xk)l§Z\/Ak - Z\/Ak - 5\/Ak = g\/Akégllk,

and (4.1.6) is proved.

The arguments used here are essentially the same as the ones in the proof
of Nakano’s Theorem [6, Ch. IX] that the limit of a sequence of regular
functionals is a regular functional.

4.2. Proof of Theorem 2. The proof of Theorem 2 is quite similar. The
sufficiency of condition (2.4) follows from the inequality
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| ¥ (f,%) | = Wy (1,x) | ] -

The necessity of condition (2.4) is proved by way of contradiction. If
(2.4) is not satisfied, it is possible to construct by induction an increasing
sequence (x;) going to infinity and a sequence (g;) of functions in .#, such
that, if A4, is defined by 4, = Wy (1, x;), the inequalities (4.1.2), (4.1.3)
and (4.1.4) are satisfied and moreover

lg(x) | < 5% forallx>=x,, k = 2,3,...

and
9:(9) >0 (x> 00).
The function g defined by (4.1.5) has then the properties
gx)—>0 (x— )
and
| ¥ (g, %) > 0 (k- o0).

This contradicts hypothesis (2.3) and the necessity of condition (2.4) is
proved.

4.3.  Proof of Theorem 3. (Sufficiency). We have
| P (%) —cl=1¥(f—e,x)| +|c|. |P(1,x)—1].
Givene > 0, let X, be such that | /() — ¢| =¢ for all > X, and let
g1 = (SO ~ ¢) Zrox1(®
g2 (O = (fO) ~ €) X(xpooy (D -
We then have
[P (f =) [ =1¥(gux) | + ] ¥(92,%)].

Hence,

(4.3.1) | ¥ (%) —cl=][¥(g.,%) ]
TP @0 +1cl [P(,x) - 1],

First, we have | g, (f) | = for every e R* and g, = o (1). Hence, by
definition of W,

(4.3.2) [P (g,,%) ] =& Wg(l,x).
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: N
Next, we can find a simple function & = ) Ay, where E, i=1,..., N

i=1

are measurable subsets of [0, X,], such that

1001 =] ] 10x,® and [g —h] < s.
Then

(4.3.3) (G0 =120 )|+ ¥ (0|
N
=eWe (L) + T 1411 (g0

From (4.3.1), (4.3.2), (4.3.3) and the hypotheses (2.7) and (2.8) follows
finally that
lim sup | P (f,x) —c| =2 We (1, )]
X0
and Theorem 1 is proved since ¢ can be chosen arbitrarily small.

(Necessity). The necessity of condition (2.9) follows from Theorem 2.
The necessity of conditions (2.7) and (2.8) is obvious.

4.4. Proof of Theorem 4. (Sufficiency). Let [/ be any O-regular function
in .# ,. Define p, and g, by

(4.4.1) p.(x) = Oiug L (Xpo,11(0) + £ X(1,0) (1)
and
(4.4.2) q,(x) = sup (1)t %,

Then it can be shown, using representation (3.3), that there exists ¢ > 0
such that

(4.4.3) P, (x) = O(x*1(x)) (x > o)
and
(4.4.4) g, (x) = 0(x7*1(x)) (x > 0).

To show that (3.5) is satisfied, we start with the inequality

(445) I ':P(I,X) I é[ T(IX[O,x]a X) I =+ | lI](ZX(x,oo)ax) l .
First we have by (4.4.1)
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L () Xro,x1 (D)
= 1(t) (X017 (1) + taX(l,oo)(t)) Xo,x1 (D) (X[0,1](t) + 7% (1,00 (D)
= py (%) (X017 () + t—aX(l,oo)(t))
for all £ = 0. Likewise, by (4.4.2), we have
l(t) X(x,oo)(t) == du (x) ta
for all £ > 0. By definition of Vi and (4.4.5), it follows then that
| P (1, %) | = pux) Ve (200,11()) + 17 X(1,00)()> X) + 42(x) Ve (7, X) .

Hence _
—1—‘ | ¥ (I, x) | 4< Pelx) )xa 27 (X[o 11D + 1% xa oo)(t)a x)
(x) I (x) ’ ’
QX)) \ .1
+ (x—al(x)>x V‘P(t Jx)3

and (3.5) follows from (4.4.3), (4.4.4) and hypotheses (3.6) and (3.7).

(Necessity). Let « > 0 and let fe.# , be a bounded function on R*. Let
g() = Q| f] +5@)x*.

Then g is an O-regular function, and

!lf!l

P(f(O1*x) = — El’(g, Y (1", x

sv(g, x) llfll

= [ f] +/6) P, x) .

Hence, by (3.5), we have
P(fH ", x) = 0(x) (x - ),

for every bounded function fin .# . Thus, the regular operator ¥, defined
by

1
'Pa(fax) = ; Y/(f(t)t“,x)

transforms every bounded function in .#, into a bounded function. By
Theorem 1, it follows that

(4.4.6) Vo 1,%) = O(1) (x — o).
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But given any g e ./, such that | g () | = % we have

g() %) g(t),x)

x| Y, (—=
| “( ta
Hence, the supremum of the left hand side over all ge.#, such that
| g (¥) | = t* must satisfy the same inequality:

I V‘I’ (taa X) | éxaV‘I’a(ls X)

and (3.6) follows by (4.4.6).
The proof of (3.7) is similar to that of (3.6) except that the function
t*, « > 0, has to be replaced in the argument by the function yg,17(?)

+ 177 (1,0 (0)

LY (g,x) | =i = x* Ve, (1, %) .

4.5. Proof of Theorem 5. (Sufficiency). Given any SV function L e ./Z
and any n > 0, let

P,(x) = sup t"L(1)

0=r=x

and

Q,(x) = sup t7" L(1).
Then a

P, (x)
(4.5.1) LG 1 (x - o0)
and

Q, (%)
(4.5.2) L0 -1 (x> o).

The proofs of these relations for continuous SV functions can be found
n [12] and [13]. For measurable SV functions, the proofs follow easily
from the representation theorem.

Clearly, if P, is defined by

(4.5.3) P, (x) = sup (X[0,1](t) + tnX(l,oo)(t)) L(t),

0=r=x

it will have again the property (4.5.1).
To prove that (3.8) is satisfied, we start with the inequality

(454) I 4 (L9 X) I = I 'P(LX[O,x]a x) I + l T(LX(x,oo)a X) ] .
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First we have by (4.5.3),

L(?) X[O,x](t)
= (Xr0,11(8) + 119 (1,00)(0) LD Lo, %1 (xpo.11(t) + 177 Y 0))
= P,(x) (X[o,u(t) + 17" X(l,oo)(t))

for all £ = 0. Since
L(1) X[O,x](t) =o(™" (t=o) >
it follows, by definition of Wy, that

P.(x)
x" L(x)

| ¥ (Lo, ¥) | = L(x)< )x"WW (xr0,118) + 17" Xc1,00)(D5 %) - .

By (4.5.1) and hypothesis (3.10), it follows that
(4.5.5) | ¥ (Lo, %) | = O(L(x)) (x = 00).
In a similar way we have
L(1) X (x,00)(®) = @, (01",
for all t = 0, and
L(t) = o(t") (t - ).
Hence, by definition of Wy, it follows that

Q(x)

l T(LX(x,oo)a X) l éL(X) <x~” L(X)

>x"" Wy (17, x) .
Using (4.5.2) and hypothesis (3.9) we find that
(4.5.6) | Y (LY (x.000, %) | = O(L(x)) (x = ).
From (4.5.4), (4.5.5) and (4.5.6) follows finally that
¥Y(L,x) = O(L(x)) (x> ).

(Necessity). We shall prove first that, if (3.8) is true for all SV functions
L e, then

(4.5.7) We (L,x) = O(L(x)) (x — ).
Let f be a function in .# such that f(x) - 0 (x — o0), and let
I(x) = (2 H f l| + f(x)) L(x) .
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The function / is clearly a SV function in .#, and we have
w(l,x) = 2| /] ¥ (Lx) + ¥(Lx). |
If we define ¥, by

1
V(%) = 15 PU LD |
then ¥, is a regular operator and

2|71
(4.5.8) Y.(f,x) = (2] f] +f(x))l—(—)'lf(l = I ¥ (L,x).

Since, by hypothesis, ¥ (, x) = O (I (x)) and ¥ (L, x) = O (L(x)) (x —0),
the operator ¥, transforms every function f in .#, that converges to zero
as x — oo into a bounded function. Hence by Theorem 2, we must have

We, (1,x) = O(1) (x —> 00).

Take now any ge.#, such that | g| =L and g = o (L).

We then have
g ,
[P (g,x)| = L(x)]| Y’z.(-i,x) | = L(x) Wy (1, x)

and it follows that
W (L, %) = Lx) Wy, (1,%) = O (L(x) (x > o).

Thus (4.5.7) is proved.
Note that we have in particular

(4.5.9) We(1,x) = O (1) (x — 00).

We shall now prove that relation (4.5.7) implies (3.9).
Suppose by way of contradiction that there exists no 5 > 0 such that
(3.9) holds. Then

lim sup x~ " We, (1*",x) = o, for n = 1,2, ...

X0

It is then possible to construct by induction a sequence of numbers
(x,) and a sequence (g,) of functions in .#, such that for alln = 1, 2, ...,

Xn+1 é2xn> X1 > 09

(4.5.10) Wy (111", x,) = nx, '™,
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|g,(¥) | =xM", g, (x) = o(x'") (x > ),
3 4 1/n
(451]) | T(gn)xn)léz W“P(t 7xn)
and
L
(4.5.12) [gu(t) | = 1 m for t=>x,.q.
Let
[0,0=u < x,,
e () — X, =U< X411, B = 1,2,...,
n
and
e(u
L(x) = exp (‘[*(-—) du) .
0

L is clearly a continuous and increasing SV function. We shall show that
L does not satisfy condition (4.5.7).
If x, =t < x,,,, we have

Ly B0
Lo = exp (J‘ du) = (—)'"".

Since | g, (t)| =t'/"forall te R*, we have

] gn(t) { X{xn,xnﬁ}_l](t) = tl/" X[xn xn+1](t)
oz xl/n L(t)
" L(x,)

X[ X ]()4 ]n/n' L(t) .
Xn,Xn+1 L(Xn)

On the other hand

L@ R
L(x,,)x ,,) (t— 0) .

Hence, by definition of Wy, for n = 1,2, ..., we have the inequality

| 9.(1) | Aixmxns 120D = 0(

(4513) | T(gn X[xn,xn+1]7xn) | = 1/’1 WI’ (L xn)

L(x) "~

By linearity of ¥, we have

L’Enseignement mathém., t. XIX, fasc. 3-4. 20
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( l{/ (gn X[xn,xn+1]> x) {

= I ll/(gnaxn)! - l T(gn X[O,xn)ﬂxn)l - I gj(gn X(xn+1,oo)9xn) ] “

Using (4.5.11), (4.5.12) and the definition of Wy, we find that
(4514) l T(gn X[xn,xn+1]axn) l

4
From (4.5.13), (4.5.14) and (4.5.10) it follows that

3 1
== — W‘P (tl/n: xn) - xln/n W‘P(la xn) - ; WI’ (t1/n> xn) .

1
— Wy (L, x,)=— x, """ Wy, (1", x,) — We (1, x
L(X) ‘P( n) 4x ‘I—’( n) ‘P( n)

n

é;in — We(l,x,) > 0 (n— ).

But this is impossible, by (4.5.7). This contradiction proves the necessity

of condition (3.9.)

In order to prove (3.10), observe first that, in view of the inequality

Wy (X[o,u(t) + 1 K1, eoy(D) X)
= Wy (X[o,1](t) + X(l,x)(t)a x) + x "Wy (1,x),

which is valid for all x > 1, and (4.5.9), it is sufficient to prove that for some

n >0
(4.5.15) Wy (X[o,1](t) + 1 1,00, x) =0(x"") (x—>0).
Suppose, by way of contradiction, that (4.5.15) is not true. Let

h,(t) = Xxpo,11(t) + g Xc1,00(1) -
Then we have

lim sup x*" Wy (h, %po.xppX) = 00, n = 1,2,..

X = o

It follows that we can find a sequence (x,) of numbers and a sequence

( f,) of functions in .# , such that

x; >1, x, >0 (n—>0w0),
(4.5.16) X" Wy (hy Hpo.xys X) =n, n = 1,2,...,
(4.5.17) | fol = hy tpo,xp0 fu(8) = 0(t71") (1> 00)

and
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3
(4518) [ '}I(ufna xn) I £ Z WE’ (hn X[O,xn]a xn) .

0, 0=u<x<l,
g(u) =41

where x, = 1, and let

Define

& (u)

L(x) = exp( J du).

The function L is clearly a decreasing and continuous SV function.
Moreover, we have

L(?)

(4.5.19) o)

( ) 1/n for X,.1 =1< X, n=1,2,..,

and
(4.5.20) h,()x, """ L(x,) = L(t), for 0=t=x,, n =1,2,..

The first equality follows immediately from the definition of L. As far
as (4.5.20) is concerned, for 0 =¢ < 1, both sides are equal to 1; for
1 =t = x, the inequality follows from (4.5.19) by induction: supposing
that (4.5.20) i1s true for some n = r, we shall prove that it is true for
n=r+ 1.1If1 =t=x, we have

hr+1(t)x1r/:-—*1.1 L<xr+1) — ( ) tekd L(xr-t-l)
Xpt+1

1/r(r+1 L r+1
=(xi)_1”L(xr)( ) ’L()Ei)l)(x )Tt = L(1) .

If x, < t = x,, 1, we have by (4.5.19)

hr+1(t)x1r/ﬁ1 L(x,41) = (

) U L) = L(D).

xr+1

Thus (4.5.20) is proved.
From (4.5.17) and (4.5.18) follows that
L(t)

L(x,)

xlr/zn !fn(t) I = xlr/ln hn(t) X[O,xn](t) ==
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for all t = 0 and
L(?)
L(x,)

since f, (t) = O for ¢t = x,. Hence by definition of Wy, (4.5.18) and (4.5.16),
we find that

XD = o ) (t—0)

1 i 3 i
7 Wy (L, x,) =x"/ I‘P(fn,xn)léleﬁ W (i 210, 5,15 Xn)

3
éé—‘naoo (n—0).

But this is impossible by (4.5.7). This contradiction proves the necessity of
condition (3.10).

4.6. Proof of Theorem 6. (Sufficiency). We have to show that for every
SV function L e A4 ,

(4.6.1) lim L&Y
X~ o0 L(x)
First we have |
Y (L,x) _ L(t) B B
(4.6.2) W—-II_]T(E(—X—) l,x) + |P(,x) —1].

Let0 <a <1 < f < o0. Then we have

I '4 <£@ ~1,x) ‘
L(x)
‘ L) L(?)
= l T<(I-4_()-C_) - 1))( [O,ax)(t)9x> -+ T<(KX)- - 1) X[ax’/}x](t)ﬂx> [
| L
(4.6.3) + I 9/((% ~1) X(I,x’oo)(t),x>

= Y00 | + | Yraxpxrl 1 ¥ pro |-
As in the proof of Theorem 5, we can show that

L()

] =
f(;) 1 [ X000y (1) =

P, (ax)
L(x)

+ (ox)" ) ( Xpo,11(8) + 7T X(l,oo)(t))

for x > 1/a and 1€ R™. Since the left-hand side of this inequality is zero
for t = x, we have, by definition of W,
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l lP[O,acx) I

+ 1>Oﬂnon~P (X[o,u(t) + 177 Xet,0)(D)s ;x) .

_ P, (ax)  L(ox)
- ((ocx)" L(ax)  L(x)

By (4.5.1) and hypothesis (3.10), it follows that

(4.6.4) lim sup | Yo | =o"M.
Likewise, for x > 1/x and t e R, we have

Q, (bx)
L(x)

+ (ﬁx)‘") .

— —1 1) =
5% ‘X(ﬁx,oo)() <

Since ¢ "L (t) —» 0 (t—0), it follows, by definition of Wy, that

N < 0,(fx)  L(pv)
e (Bx) TIL(BY) T L(x)
By (4.5.2) and hypothesis (3.9) we find that

+ 1>ﬁ‘”x"” W (1, %) .

(4.6.5) lim sup | ¥ pramyl=MB™".

X = o0

As for the second term of (4.6.3), we have

I—Ii(t—) —I’W.y(l,x).

Vsl = su
I [ax,p ]I p L(X)

ax =t=fx

From the Representation Theorem for SV functions follows immediately
that

L(1) :  L(x) : 0 )
su — - = — — X— 00).
axétiﬂx L(x) azi=p | L(x)
Hence
(4.6.6) xlim | Yiwxpx;l = 0.

From (4.6.3), (4.6.4), (4.6.5) and (4.6.6) it follows that

‘P(L—(Q - 1,x)

lim sup
L(x)

X =

=(@"+p""M,

and (4.6.1) is proved by choosing o arbitrarily small and f arbitrarily large.




— 306 —

(Necessity). The necessity of (3.12) is obvious. As for (3.8) and (3.9), in
view of the proof of Theorem 5, it will be sufficient to show that our hypoth-
esis (3.11) implies (4.5.7).

Let f'e.#, be such that lim f(x) = ¢. If L is any SV function in .#, let

[(x) = 2] f]| +/x)L) .
The function / is clearly a SV function in .#, and we have
Y(fL,x) = Y(,x) = 2| f]| ¥(L,x).
If we define the operator ¥, by

1
!PL(f:x) :’L(—X)— T(Lf,X),

then ¥, is a regular operator and

1
'PL(fax) = TS Y’(jL,x)

L(x)
¥ (1, x) ¥ (L, x)
= CI+10) =57 =2

By (3.11) we have ¥ (/, x)// (x) = 1 and ¥ (L, x)/L (x) - 1 (x—>0) and so

lI’L(f,x)—>2Hf” +c ——2’|f|| =c¢ (x—0).

Hence, by Theorem 3, the operator ¥, preserves convergence and conse-
quently

We (1,x) = O0(1) (x—0).
But

1
WWL(LX) = m Wy (L, x)

and the necessity of (4.5.7) is proved.
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