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Either the surface is rational, or the three curves with N = 2,3 can
be blown down. Then S, can be blown.down and S; and S_; give two
exceptional curves which intersect in two points. Thus the surface is rational.

Observe that in general the rationality of Y (og, B )implies the ration-

ality of Y (og, B) (Liiroth’s theorem [64], Chap. III, § 2). We could show

this directly by using our curves in }A’(DK, B).

Exercise. Let K = Q (\/@ ). Calculate the arithmetic genera of $2/G
and $2/G. Prove that the surface $2/G is rational !

In all cases where we know that the arithmetic genus equals 1 we have
proved rationality.

§ 5. THE SYMMETRIC HILBERT MODULAR GROUP
FOR PRIMES p = 1 mod 4

5.1. Let S be a compact connected non-singular algebraic surface.
The fixed point set D of a holomorphic involution T of S (different from
the identity) consist of finitely many isolated fixed points Py, ..., P, and
a disjoint union of connected non-singular curves Dy, ..., D,.

If there are no isolated fixed points P;, then S/T is non-singular and
the arithmetic genera of S and S/T are related by the formula

1 1
(1 x(S/T) = E(X(S) 14 [D]>

where D = ) D; and ¢, is the first Chern class of S (see [40], § 3).
Furthermore, if F is a curve on § (not necessarily irreducible) with

T(F) = F and F not contained in D and if F is the image curve on S/T,
then

() ¢ [F] = %(c;[F] + F-D), where ¢; = first Chern class of S/T"

Proof. If m :S — S/T is the natural projection, then ¢; = n*El —d
where d € H? (S, Z) is the Poincaré dual of the branching divisor D. Thus

(c; +d)[F] = ¢, [2F].
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5.2. Let p be a prime = 1 mod 4. We consider the field K = Q (\/E
and its Hilbert modular group G. We make these restrictions throughout
§ 5 though some of our results are valid more generally.

The involution (z,, z,) = (z,, z;) induces an involution 7" of $?/G and

of $*/G. As mentioned before (4.5), it can be lifted to an involution T

of our non-singular model Y (p) because this was obtained by the canonical |

minimal resolution of all singularities in $?/G.

We shall study the algebraic surface Y (p)/T (the isolated fixed points
of T give rise to quotient singularities of type (2; 1, 1) of this surface),
calculate its arithmetic genus and determine for which p the surface is
rational (see [39], [40]).

Equivalently we can consider the symmetric Hilbert modular group G
which is an extension of index 2 of G by the involution (z,, z,) - (z,, z;)
and study $?%/G,:

The surface Y (p)/T (with the quotient singularities resolved) is a non-
singular model of the compactification of $H%/G.

5.3. The field K has a unit of negative norm. Therefore, the groups G

and G coincide (1.7) .The class number of K is odd. The ideal class groups
C and C* are equal and the homomorphism Sg in 3.7 (42) is an iso-
morphism. Therefore for any ideal b = oy we can find a matrix 4 € GL; (K)
(see 1.3) such that

(3) : A™'SL, (o) A = SL, (0g, b)

(see 3.7 (40) and 4.1 (7)). If 4,, A, are matrices satisfying (3), then, for
B — Al A2~1 = (lcl S), weE haVC BSLz (DK)B—I = SL2 (DK).

Proposition.
If BeGL; (K) and BSL, (ox) B~! = SL, (vg), then

(@) Jdet BeK, *BeSL, (vg)

/ det B

Proof (compare MaaB [54]). Put h? = det B. We may assume that
B is an integral matrix. Since

1 — ac/h* a?/h? )

11 B-—l —
SL, (o) 2 B (o 1) ( — c%/h?* 1 + ac/h?

|
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1 :
and a similar formula holds for B (} (1’) B!, we see thatz B has coefficients

which are algebraic integers. Thus the ideal (a, ¢) of g consists exactly of
those elements x in oy such that x/4 is an algebraic integer. This implies
that (@, ¢)® equals the principal ideal (det B). In our case, the ideal class
group has odd order. Thus («, ¢) is principal and det B multiplied with a
“ totally positive unit is a square in pg. But every totally positive unit is a
square of a unit. Therefore /1 € og. For the algebraic number theory needed,
see [30], § 37.

An 1deal is called admissible if it is not divisible by any natural number
> 1. For any admissible ideal b — og we have (4.1) a curve C(b) on

Y (0g, b) = f’(o,o b). In view of (3) we have a curve (which we also call
C (b)) on our Hilbert modular surface Y (p). The curve is given in $H2/G
by

(5) Z = AC) Zy = Alga Ceg

Because of (4) it does not depend on the choice of 4. (Multiplication of
A from the left by an element of SL, (0g) does not change the curve.)

We can also say that the surfaces $?/SL, (og, b) are canonically
identified and the curves C (b) are the diagonals in the different representa-
tions of $%/G as H?/SL, (v, b). If we change A by multiplying from the
right by a rational matrix with positive determinant, we get the same
curve, because we make just a change of the parameter { € §. This implies
that C(b;) = C(b,) if there exists a matrix 4, e GL; (Q) such that
Ao SL; (g, b1) 45 * = SL, (og, b,).

Lemma 1. If by, b, are admissible ideals in vy, then the curves
C(by), C(by) coincide if and only if N(b,) = N (b,).

Proof. If N(b;) = N(b,) = N, then put d = N/N ((bi,bz)). We
have (d, N/d) = 1, because the ideals are admissible. Thus there exists a
rational matrix of determinant d of the form

d B
(6) Ay = <OCO 1 >, = Omod N
0 Yo 5od Yo

‘where ay, B, y9, 8, are integers. (Such a matrix occurred in a related
context in 4.1). Then, for any A4, with these properties,

Ao SL, (0g, by) Ay t= SL; (ok, b,)
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which shows that the curves coincide. If the curves c01n01de then the norms |
are equal. (We leave the proof to the reader.)

A natural number N = 1 is called admissible (with respect to p) if it
is the norm of an admissible ideal. The prime ideal theory of quadratic
fields which we always have used tacitly yields the following lemma.

Lemma II. The natural number N = 1 is admissible with respect to
p if and only if N is not divisible by p?> and not by any prime q # p with

5

Definition.

In view of Lemma I we have a well-defined curve for any admissible
natural number N. This curve on the surface Y (p) will be called Fy.

Lemma III. For the involution T of Y (p) and any admissible N we
have T(Fy) = Fy

Proof. If N = N (b), then Fy = C (b) is given in $H?/G by (5) where
A 1s as in (3). Therefore T (Fy) is the curve z; = A’(, z, = A{. But his
is C (b") which equals C (b) by lemma I.

Remark. If N =0 mod p, then N ((b,b’)) = 1 and the involution
T on Fy can be given by the matrix 4, = (% 0"1) (see (6)) if we lift T to

the non-singular model $/I', (N) of Fy. Thus $/I',,(N) is the non-singular
model of Fy/T. (see 4.1). In particular, T is not the identity on Fy if
N £ 0mod p and N > 1.

5.4. The curves F; and F, (considered as curves in $?%/G) are the only
curves which are fixed pointwise under 7, (see [14] Part II, [62]). The

curve F, belongs to the ideal (\/ ;eo) where e, is a unit of negative norm

and can be given by z, = \/;eof, Z, = — \/;eéé or by z, = e z,.
The involution T acts on the quotient singularities of $?/G. The descrip-
tion of this action [62] depends on the residue class of p mod 24. There-

fore we define

(7N e=1for p=1mod3, e =0 for p =2 mod 3
0 =1for p=1mod8, 6 =0 for p = 5Smod 8
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In $?%/G the following holds [62]: Of the A (—4p) quotient singularities
of order 2, half of them lie on F, and not on Fy, and one of them lies on
F, and F, and is the only intersection point of F; and F, in $?%/G. There
are in addition ¢ quotient singularities of order 2 which are fixed under 7.
“They” lie neither on Fy nor on F,. The remaining order 2 singularities
are interchanged pairwise under 7. Of the A (—3p) quotient singularities
of order 3, exactly half of them are of type (3; 1, 2). They lie on F,. There
is one singularity of type (3; 1, 1) which lies on F, whereas ¢ such singu-
larities lie on F,. The remaining singularities of type (3; 1, 1) are inter-
changed pairwise. For p = 5, the two singularities of order 5 are inter-
changed under 7. The involution T acts freely outside Fy, F, and the

quotient singularities. If we pass to the non-singular model Y (p) of 5—5_276?,
we get the following configuration of curves. We omit the curves coming
from the quotient singularities which are pairwise interchanged and only
- show the intersection behaviour outside of the resolved cusp singularities.

[
|
|
l

such a ‘‘cross’’ occurs
% h(— 3p) times

1,‘1 =2
this occurs
(8) L h(—4p) times

The curves Fy, F, are pointwise fixed under the involution T of Y (p),
therefore they are non-singular curves on Y (p). All curves in the diagram
are non-singular and (except F,) rational. F, is rational if and only if
p = 5,13,17,29,41 (see 5.7). The points P,, and P,ife=1,and P, P,
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if 6 = 1 are the only isolated fixed points of T on Y (p) outside the resolved
cusp singularities.

The following lemma is easy to prove and very useful for deducing from ‘
Prestel’s results [62] that the configuration on Y (p) is as indicated in (8).

Lemma. If S is a compact complex manifold of dimension 2 and T an
involution on S which carries the non-singular rational curve C over into
itself, then T is the identity on C or T has exactly two fixed points P and
Q on C. In the latter case the following holds :

If C-C is odd, then one of the points P, Q is an isolated fixed point
of T, the other one is a transversal intersection point of C with one of the -
(non-singular) curves which are pointwise fixed under T. If C- C is even,
then P and Q both are isolated fixed points of T or both are such transversal
intersection points with a curve pointwise fixed under T.

The class number % of K = Q (\/ ; ) is odd. There are A cusp singu-
larities corresponding to the % ideal classes (see 3.7). The involution 7 on |

$?%/G leaves one cusp fixed and interchanges the others pairwise. 7 maps.
the cusp of type (M, U?) where M is a fractional ideal representing an
ideal class to the cusp of type (M’, U?). If M is the Z-module Z - w + Z- 1

1
(with 0 < w’ <1 <w), then M’ is strictly equivalent to Z — + Z 1.
w

The resolution of (M, U?) is given by the primitive cycle of the purely

periodic) continued fraction of w, the resolution of (M’, U?) by the
1

primitive cycle of — which is the same cycle in opposite order. The involu-
1%

tion on Y (p) maps the cycle of curves in the resolution of (M, U?) onto

the cycle of curves in the resolution of (M’, U?). The fixed cusp is of type

(M, U?) where M = Zw, + Z -1 and where wo = % ({/p} + \/;),
see 4.5 (29). It is the cusp at oo.

1 _
THEOREM. The length r of the cycle of w, = -?:({\/; } + \/ p) is

an odd number r = 2t + 1. The involution T on Y (p) maps the curve S,
to the curve S_, (see 4.5). The curve F, intersects S, transversally. It has
the characteristic (0| 0, 1). The curve F, intersects S_, and S,, it has the

characteristic (—t|1,1). We put {\/ ;} = 2a + 1. The intersection
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behaviour of the cycle of curves with F, and F, is illustrated by the following
diagram.

...b2
-b S 2 -b
f‘_’ S¢ ’
©)

/

2a+1) =8 .S Fp

\\\b\ A
St4q

[2a+1 bl"‘ bt, bta"' 1]]

The point P, indicates an isolated fixed point of T. The points P,, Py,
and P, (if e = 1), and P5, P, (if 6 = 1) are all the isolated fixed points
of T. The curves F;, F, are the only one-dimensional components of the
fixed point set.

Proof. As in 2.5 and 3.10 we denote ordinary continued fractions by

1+ p
[ao, a1, a5, ...]- Then, since a = {——-——ZL/K] ,

2a+1+.Jp
(10) Wo = 5 \/p = [2a,a4, ..., 00, Ay ..., a1, 2a — 1]
(See [60], § 30. Because there exists a unit of negative norm, the length
of the primitive period in (10) is odd.)
If one applies the formula which transforms the continued fraction (10)
into a continued fraction of our type (see 2.5 (19)) one has to go twice

over the period in (10). We have

(1) we =[[2a4+1, 2,002,008, 42,2, 00,2, 4342, .0, 2, .0, 2]]
e N e et

L
aj—1 2a—-2 ai—1

Thus the length r of the primitive cycle of w, is odd (r = 2¢+1). In
fact, t = a; + ... + a,, + a — 1. Under the involution T only S, (self-
intersection number — (2a+41)) is carried over into itself. The only
symmetric characteristics are (0] 0, 1) and (—t| 1, 1). The existence of the
isolated fixed point P, follows from the preceding lemma. Q.E.D.

For the number w, in (11) we wish to calculate w,,, (where k = 1, ..., a),
see 4.2. The continued fraction [[...]] of w,,, begins with @ — k two’s.
Using again formula 2.5 (19) we obtain
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0 — =[—-1l,a—k+1,a,,a,,...]

Witk
1

which yields

VP —(Qk=3) My +/p
Jp = (Q2k=1) 2Ny

Witk =
where
(12) th+k = th(p — (2k—1)*), M,y = 2N,1; + (2k—1)
F, has the characteristic (—¢| 1, 1) = (t+1]| 1, 1) which was obtained in

the above proof by a symmetry argument.
It follows also from the theorem in 4.1, because

Niyy +N,+ M, = Nyyy +Nyyy + Myyy = 4N, +1 = p.

In view of (12) and the theorem in 4.1 we have the following proposition.

Proposition. On the Hilbert modular surface Y (p) the cusp at oo gives

1+./p
the following configuration of curves <a = [#])

F F F F
Hp-(2a-1)%)  $(p-(2a-3)%) ... 3(p-9) © gfp-1)
] S_(t4a) —(t+a-1) \s_’ﬁ
(13)
S_(t+k) = Stokst




We have S,ip*Siix = S_q+ry S—w+ny = — 2 for 1k<La—-1
and S,1qS_giay = — @ +2).If p = Qa—1)?* + 4, then S_10) = Si+a
= So, the curve Fy(,_ 241y equals Fy and the diagram has to be changed
accordingly. In this case we have '

wo = [2a,2a—1] = [[2a+1,2,...,2]]
(S

2a—-2
and
St+a ) St-l-a = SO ) SO = - (261 + 1)'

We do not claim that the Fy are non-singular and do not indicate
their mutual intersections nor their intersections with F,. The intersections
indicated are transversal.

5.5. The curve F; on Y (p) is non-singular. It follows from (8) and
4.3 that it is exceptional. In general, we do not know whether Fy is non-
singular. In view of 4.3 (24) the curves F,, F;, F, are candidates for excep-
tional curves. In fact, it follows from Corollaries I, II in 4.4 that they are
exceptional if Y (p) is not rational. Y (p) is rational if and only if p = 5,
13, 17. Thus we have

Lemma. If p is a prime = 1 mod 4 and > 17, then the curves Fy on
the Hilbert modular surface Y(p) are exceptional for N =1, 2, 3, 4 provided
N is admissible (see 5.3):

We always have the curve Fy. The curves F,, F, exist for p = 1 mod 8.
The curve Fj exists for p = 1 mod 3.
| For the following discussion we assume p > 17. The curves Fy, E, B,

in diagram (8) can be blown down successively. In view of corollary III
in 4.4, the curves F,, F;, F, are disjoint and do not intersect any of the
“ curves Fy, E, B;. According to the lemma in 5.4 the curves F,, F;, F,
" pass through exactly one of the isolated fixed points of the involution 7.

For F; the value ¢, [F,] equals 1, therefore by 4.3 it meets in $2%/G
exactly one quotient singularity of type (3; 1, 1), thus it must be the one
which is fixed under T. It intersects B, (see (8)) only in P, and transversally
because otherwise we would have ¢; [F5] > 1. The curve F, has the model

9/T'y (4) which has three cusps. Therefore F, must intersect the curves of

the resolved cusps of $2/G in three points. One of them is fixed under 7.
Thus F, passes through P,.

L’Enseignement mathém., t. XIX, fasc. 3-4, 18
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The curve F, passes through P; or P, in diagram (8), say P5. It intersects
L transversally in P; and does not intersect L in any other point, because

otherwise L would give in the surface with F, blown down a curve L with

Cq [I:] = 2. The curves F,, L can be blown down successively. Therefore L
is disjoint to any exceptional curve different from F,.

We have found an exceptional curve passing through P, only for
p = 1 mod 8. But there exists such a curve F for any p > 17.

For the cusp at oo we put as before wo =4 ({/p} + \/;)
=1Q2a+1 + \/ p). The involution T is given in the coordinate system
(49, Vo) by

(14) (g, Vo) = (ub'l, “5(2a+1) " Vo),

as follows from 2.3 (9). The isolated fixed point P, of T has the coordinates
(—1,0). Thus it lies on the curve F = Y (p) given by u, = — 1 which
can be presented in $H x H by

(15) z1=6+%, 22=C+%> CeD).

Let I' be the subgroup of those matrices (} " of

1 —wp/2 1 wo/2
( > SL, (o) ( )
0 1 0 1

which, when acting on $? carry the diagonal into itself. The curve 5/?
is a non-singular model of F. The group I is characterized by 4.1 (1), but
the second condition is impossible. Thus I' is the subgroup of SL, (Q)
of matrices (%) for which

(oc + ywe/2 — awo/2 + B — ywyi/4 + 5w0/2>
Y 0 — ywo/2

is integral. Since w,, 1 is a Z-base of pg, we get that «, 6 are integers and y
is an even integer. We have

(16) — awo/2 + B — ywo?[4 + dw,[2 =
(— /2 —y2a+1)/4 + 8[2) wo + B +7((2a+1)> — p)/16
If p = 1 mod 8, then f is an integer and adé — fy = 1 implies o« = 0

mod 2 and y = 0 mod 4, because the coefficient of w, in (16) must be
integral. Thus I' = I’ (4) in this case.
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It p=5mod8, then I'y(4) = I'. We put y =2y* and f = p%/2.
Then y*, f* are integers which are congruent modulo 2. We have
o+ 0 = y* mod 2.

The matrix (; _01/2), whose third power is (7 fl)), satisfies these con-
ditions. I' is a normal extension of index 3 of I'y (4). The three cusp of

$/T'y (4) are identified. S:’)—/F is a rational curve. Put I = r/{1, —1j.
We have a, (f) = 2 (ar(f‘) = 0 otherwise) and o (f} = 1.

Therefore ¢, (l: ) = 1 (see the definition in 4.3), and the curve F is
exceptional. It passes through the isolated fixed point P, of 7. For p = 1
mod 8, the curve F equals F, because two different exceptional curves do

not intersect. We have T'(F) = F.
We can now state the following proposition.

Proposition. If we blow down the curves Fy, E, B, F, and F,, L (for
0 =1),and F;5 (for e = 1) on the surface Y (p) for p > 17, then we obtain
a non-singular algebraic surface Y° (p). The involution T is also defined on
Y° (p). It does not have any isolated fixed point. The curve F , has a non-
singular image F 2 in Y° (p) which is the complete fixed point set of T.

5.6. If ¢, is again the first Chern class of Y (p), then

+ 1 g
¥ + -+ 2

(17) i [Fp] = — ; 3

This follows from 4.3 (19), because [SL,(Z):I4(p)] =p + 1 and
[I*(p) : Ty (p)] = 2. We further use (8) and (9).

Let us now assume that Y (p) is not rational which is the case for
p>17. In Y(p) we have blown down 3 + 1 + 25 + & curves and
obtained the surface Y° (p) on which T has the fixed point set F 2. Let
¢} be the first Chern class of Y° (p). Then

p+1 ¢
(18) c?[F2]=——g—+§+2+2+1+2(5+8.
This follows from 4.4 (25a) using that F, F,, F, intersect F » transversally

in exactly one point (see the lemma in 5.4). By 5.1 (1) the number ! [F g]
must be divisible by 4. We have

1 & —29
(19) Zc(l) [Fp] = *[2”2—4—:'»
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1 /¢
since Z<§ + 20 + 8) < 1. The surface Y° (p)/T is a non singular model

for the compactification of $2/Gy (see 5.2). The arithmetic genus of
Y° (p)/T will be denoted by y,(p). In 3.12 we have given a formula for
the arithmetic genus of Y (p) which we shall call here y (p). Then

h(—4p) 1

1
(20) 1(p) = Sl (=1) +

where K = Q (\/; ). By 5.1 (1) and (19) the arithmetic genera y (p) and
xr (p) are related by the formula [40]

1 | p — 29
1) 12 (@) =§<x(p)—[ - D

(compare [14], Part II, Satz 2).

This formula is also valid for p = 5, 13, 17. In these cases the surface
Y (p) and therefore also Y©° (p)/T are rational and (21) reduces to
1 = 3({+1). It was shown in [40] that

P pyi
1440 48

xr (p) > (compare 3.12),

and explicit calculations gave the result that y,(p) = 1 for exactly
24 primes, namely for all primes (=1 mod 4) smaller than the prime 193
and for p = 197, 229, 269, 293, 317.

We wish to show in the next sections that the surfaces Y ° (p)/T are rational
for these primes. Since the rationality is already known for p = 5,13, 17 it
remains to consider 21 primes. Since the first Betti number of Y (p) vanishes
(3.6), the same holds for Y (p)/T. Thus the rationality criteria of 4.4
(Corollaries I, II, III) can be applied.

5.7. The curve Fy in Y (p) (for an admissible natural number N > 4)
projects down to a curve Fy in Y°(p) and to a curve Fy = Fy/T in

Y° (p)/T. If N is not divisible by p, then Fy has $/I'* (N) as non-singular
model (see the remark in 5.3). We have a commutative diagram:

H [ TIo(N) = Fy < Yo (p)
! l !
H|Ty(N)>Fy<Yo(p)/T
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There is an involution 7 on $/I', (N) compatible with 7" and having

9/T, (N) as orbit space. Recall that F g is the fixed point set of 7 on Y° (p).
Thus the intersection number Fy : F g is greater or equal to the number

fix (1) of fixed points of 7 on m:
(22) 9 F% = fix(r) = 2¢ (H/Tx (N)) — e (H/To (N))
Let ¢* be the first Chern class of Y° (p)/T. By 5.1 (2) we get
i [Fy] = 2(c[Fx] + Fy Fy)

Since ¢§ [Fa] = ¢; [Fy] = ¢; (N), see 4.3 and 4.4 (25a), the following
estimate is obtained: '

(23) ci[FN] 2 3ei(N) +e(H /| Ty (N)) — e(H/To(N))

The right side of (23) only depends on N. We shall denote it by ¢} (N)
and have

(24) T [Fx] Z T (V).
There are explicit formulas for the Euler numbers or equivalently the

genera of the curves /I, (N), see [16], p. 357, and [13]. Helling [32] has

shown that there are exactly 37 values N = 2 for which $/I",, () is rational.
(In [16], p. 367, Fricke omits the value N = 59). We shall give a list of
- the ¢ (N) for the 34 values = 5.

] By the definition of ¢, (N) we get:

If 9/T', (N) is rational, then (for N = 5)
(25) ci(N) =3 —go(N) = 3(a,(N) + a5 (N) + o, (N)).
Using [13] we obtain the following list:

e (HITy (N)) =2

N 50678191011 |12|13]14]15|16|17|18]19]20]21

ci(N) 1|11 1j1j0j1]0|l0]lO0|O0|O]|O]|—=1|0]|—1]|—-1

(26)

;(N) | 0| =2|=1{—2|—1|—1]|—1]|-2|-2|—4|-3|=2|—2|-3| 6| 3| 4
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5.8. The curves Fy will be used for rationality proofs. Consider the
diagram (13) for p > 17. We have % (p— (2a—3)?) = 5. It follows from
4.2 (15) that the exceptional curves F,, F, F,, F; do not intersect S, , and
S_+r for 1 =k < a — 1. These exceptional curves also do not meet
Siva and S_ 4, if L (p— (2(1—1)2) = 5. In this case, the configuration
(13) is not changed by passing to Y°(p). If we apply the involution T we
get the following configuration on Y°(p)/T.

(27)
* o S
1 5. r1 PRERRE 85 F*
7(p=(2a-1)%)  Z(p-(22-3)°) 7(p-9) 1(p-1)
- *
S{+a cédom Jt+2 St+1
\\><:2//N?:+a-1 \‘ -2 1
—(a1+1)
F*
P

If £ (p— Qa— 1)2) < 5, the diagram has to be changed. But the sub-
diagram of (27) obtained by not showing F¥ ,_(.-1)2, and S/, exists
on the surface Y° (p)/T for any p > 17.

We do not know whether the curves F_f(p_(Zk_l)g) are non-singular
and do not claim anything about their mutual intersection behaviour.
The S}, are the image of S,;, and S_.,,. They are non-singular. The
equation S-S5, = — 1 or equivalently ¢} [S7,] = 1 follows from
5.1 (2). The curves S, (1<k<a—1) can be blown down successively.
Then F?},_(z,\._l)g)/4 gives 1n the resulting surface a curve for which the
value of the first Chern class of the new surface on this curve is greater

or equal to ¢ (p— Qk—1)?)/4) + a — k.

Proposition. Let p be a prime =1 mod 4 (and p > 17). The non-
singular model Y° (p)/T for the symmetric Hilbert modular group is rational

— 1
if there exists a natural number k with 1 =k <a—-1 = [[7—] such

that

g ((p—(2lc——1)2)/4) +a—k =2
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This is a consequence of corollary I in 4.4. For the above proposi-
tion one does not need any assumption about the genus of Fy where
N=12%(p —(2k—1)2). However, we shall try to get through using the N
listed in 5.7 for which the curves Fy are rational.

The tables in 5.7 give immediately

—1
cf<p4 )—l—a—ng

for p = 29, 37,41, 53, 61,73,97, 101, 109, 197.
We find

for p = 89,137,293.
For p = 173 we have

. — 81 .
c}“(p 1 >+a—5 =ci 2 +7-5=2

For the remaining 7 primes 113, 149, 157, 181, 229, 269, 317 we shall
try to use the following lemma.

Lemma. We keep the notations of the preceding proposition. Suppose
there exist two natural numbers ki, k, with 1 <k, <k, < a — 1 such
that

i 3
Then Y° (p)/T is rational.

" —2]i—12
*<p 2k )>+a—ki=l fori = 1,2

Proof. Blowing down S}, ,, ..., S¥ ,_; in Y° (p)/T gives a surface in
which the images of Fy, (N; = (p —(2k;—1)?)/4, i = 1, 2) are exceptional
curves or the surface is rational (4.4, Corollary II). If we have the two
exceptional curves, then they intersect and the surface is rational by
Corollary III in 4.4,

The assumptions of the lemma are true for p = 113 and k; = 2,
k, =4, for p =149 and k; = 4, k, = 5, for p = 157 and k, = 4 and
ky,=5,forp=181land ky = 5,k, = 6,forp =229 and k; = 6, k, = 7,
for p = 317 and k, = 5, k, = 8.
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For p =269 we have a = 8. The curve S}, has self-intersection

_ . . 269 — 15% ,

number — 3. It intersects F7;, since 11 = ————— Fither the surfaceis
rational or F7 is exceptional. If F{ is exceptional, then we blow down
Fi, 81, ..., SF ¢ The curve Fj5 (k = 5) gives in the resulting surface ¥

a curve D with ¢, [D] = 2 where ¢, is the first Chern class of Y.
We have proved the desired result.

THEOREM. Let p be a prime = amod4. Let Gy be the symmetric

Hilbert modular group for K = Q (\/]; ). Then the surface $*|G is rational,
(or equivalently the field of meromorphic automorphic functions with respect

to Gp is a purely transcendental extension of C), if and only if p < 193
or p = 197,229,269, 293, 317.

5.9. Example. 1If the prime p = 1 mod 4 is of the form
p = (Qa—17 +4,

_2a+1+\/_;

then Wo 5

= [[2a+1,2,...,2]]

2472 ,
and we have in diagram (13) that S,., = S_ 4, = So. Since
(p —(2a—3)*)/4 = 2a — 1, the smallest admissible N > 1 which can be
written in the form x* N, + xy M, + y* N,_, (with integers x, y > 0) equals
2a — 1 (see 4.2 and 5.4 (12)). Any divisor d of 2a — 1 is admissible. If d
is a prime dividing 2a — 1 and 1 < d < 2a — 1, then the curve F; has

two cusps and does not pass through the cusp at co of $?/G. Thus there

must be other cusps of $?*/G. We have proved

Proposition. If p = 2a—1)*> + 4 (p prime) and if 2a — 1 is not a
prime, then h(p) > 1. (See [29], [51]).

The first example is p = 229 = 15% + 4. We have i (p) = 3. The
number 229 is the only one of our 24 primes in the preceding theorem
with class number greater than one. (If (2a—1) = 4+ 2 mod 7, then 7
is admissible for p. Thus, also in this case 4 (p) > 1 provided 2a — 1 > 7.
Example: p = 1373 = 37> + 4, h(p) = 3.)

The cycles for the 2 cusps not at co of Y (229) look as follows



(28)

We also have drawn some curves. The curve F;s has /I3 (15) as
non-singular model. This has 4 cusps corresponding to the fact that Fy;
also passes through the cusp at oo of Y (p), namely through the curves
S, and S_; of this cusp. One can show that F, passes through S, of the

cusp at oo in two points (H/I'y (9) has 4 cusps).
If N is admissible and is a product of k different primes (s p), then

/Ty (N) has 2% cusps. The 2* intersections of Fy with the resolved cusps
in Y (p) correspond to 2* admissible ideals b with N (b) = N (see 5.3).

In general, it is possible to give a complete description of the inter-
section of Fy with the resolved cusps of Y (p). The corresponding theory
can be developed for any Hilbert modular surface.

ADDED IN PROOF:

A. Selberg has informed me that he has proved the following result.

If I' is a discrete irreducible subgroup of (PL2+ (R))" such that $"/I" has
finite volume, but is not compact, then I' is conjugate in (PL;r (R))” to a
group commensurable with the Hilbert modular group of some totally real
field K with [K: Q] = n.

Thus Selberg’s conjecture mentioned in the remark at the end of 1.5 is
true. Actually, Selberg’s results are more general. The proof has not been
published yet. There is a sketch (still involving additional assumptions
which could be eliminated later) in the Proceedings of the 15th Scandinavian
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congress, Oslo 1968, Lecture Notes in Mathematics, Springer Verlag,
vol. 118; in particular pp. 106-113.
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