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Either the surface is rational, or the three curves with N 2, 3 can

be blown down. Then S0 can be blown, down and S1 and give two

exceptional curves which intersect in two points. Thus the surface is rational.

Observe that in general the rationality of Y (oK, 23 )implies the rationality

of Y (joK, 23) (Lüroth's theorem [64], Chap. Ill, §2). We could show

this directly by using our curves in Y (oK, 23).

Exercise. Let K Q (^69 Calculate the arithmetic genera of $>2/G

and §>2/G. Prove that the surface §2/C is rational

In all cases where we know that the arithmetic genus equals 1 we have

proved rationality.

5.1. Let S be a compact connected non-singular algebraic surface.

The fixed point set D of a holomorphic involution T of S (different from
the identity) consist of finitely many isolated fixed points Pu ...,Pr and

a disjoint union of connected non-singular curves Du Ds.

If there are no isolated fixed points Pj9 then S/T is non-singular and
the arithmetic genera of S and S/T are related by the formula

where D £ Dt and cx is the first Chern class of S (see [40], § 3).

Furthermore, if F is a curve on S (not necessarily irreducible) with
T (F) — F and F not contained in D and if F is the image curve on S/T,
then

(2) cx [F] \ (c1 [F] + F - F), where c1 first Chern class of S/T.

Proof. If 7i : S S/T is the natural projection, then cx n*c1 — d
where de H2 (S, Z) is the Poincaré dual of the branching divisor D. Thus

§5. The symmetric Hilbert modular group
FOR PRIMES P EE 1 mod 4

(1)

(c1+J)[f] =cx[2
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5.2. Let p be a prime 1 mod 4. We consider the field K Q (^/p
and its Hilbert modular group G. We make these restrictions throughout
§ 5 though some of our results are valid more generally.

The involution (zl9 z2) ^ (z2, zx) induces an involution T of $2/G and

of §)2/G. As mentioned before (4.5), it can be lifted to an involution T
of our non-singular model Y (p) because this was obtained by the canonical

minimal resolution of all singularities in $)2jG.
We shall study the algebraic surface Y (p)/T (the isolated fixed points

of T give rise to quotient singularities of type (2; 1, 1) of this surface),
calculate its arithmetic genus and determine for which p the surface is

rational (see [39], [40]).
Equivalently we can consider the symmetric Hilbert modular group GT

which is an extension of index 2 of G by the involution (zl9 z2) K (z2, zt)
and study §2/Gr:

The surface Y (p)/T (with the quotient singularities resolved) is a non-
singular model of the compactification of §2/Gr.

5.3. The field K has a unit of negative norm. Therefore, the groups G

and G coincide (1.7) .The class number of K is odd. The ideal class groups
C and C+ are equal and the homomorphism Sq in 3.7 (42) is an
isomorphism. Therefore for any ideal bco^we can find a matrix A e GL2 (K)
(see 1.3) such that

(3) A~1 SL2 (ok) A SL2(o*,b)

(see 3.7 (40) and 4.1 (7)). If Au A2 are matrices satisfying (3), then, for
B A1A2~1 ("2), we have 5SL2(oK)5_1 SL2 (oK).

Proposition.

If Be GLt (K) and £SL2(ok)£_1 SL2(o*), then

(4) Jdet Be K,-= • B e SL2 (o^)
^/deti?

Proof (compare MaaB [54]). Put h2 det^. We may assume that
B is an integral matrix. Since

/1 1 v 1 /I ~ ac/h2 a2/h2 \
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and a similar formula holds for B (J J) B l, we see that - B has coefficients
7 h

which are algebraic integers. Thus the ideal {a, c) of oK consists exactly of
those elements x in oK such that x/h is an algebraic integer. This implies
that (a, c)2 equals the principal ideal (deti?). In our case, the ideal class

group has odd order. Thus (a, c) is principal and det B multiplied with a

totally positive unit is a square in oK. But every totally positive unit is a

square of a unit. Therefore h e oK. For the algebraic number theory needed,

see [30], §37.
An ideal is called admissible if it is not divisible by any natural number

> 1. For any admissible ideal b c we have (4.1) a curve C (b) on

^(°/oh)> In view of (3) we have a curve (which we also call
C(b)) on our Hilbert modular surface Y(p). The curve is given in §2/G
by

(5) AC, z2 A'C, C £$>'

Because of (4) it does not depend on the choice of A. (Multiplication of
A from the left by an element of SL2 (oK) does not change the curve.)

We can also say that the surfaces §2/SL2 (oK, b) are canonically
identified and the curves C (b) are the diagonals in the different representations

of 9)2/G as §2/SL2 (ok, b). If we change A by multiplying from the
right by a rational matrix with positive determinant, we get the same

curve, because we make just a change of the parameter C e §. This implies
that C (bx) C (b2) if there exists a matrix A0 e GL2 (Q) such that
Aq SL2 (ox, bi) A0 1

— SL2 (oj£, b2).

Lemma I. If bl5 b2 are admissible ideals in oK, then the curves
C(bi), C(b2) coincide if and only if A(b2).

Proof If A(bi) N(b2) N, then put d N/N((Jbi, b2)). We
have {d, N/d) 1, because the ideals are admissible. Thus there exists a
rational matrix of determinant d of the form

<«) y,ïo 0mod«

where a0, ßl9 y0, 30 are integers. (Such a matrix occurred in a related
context in 4.1). Then, for any A0 with these properties,

SL2 (oK, bx) A0
1

SL2 (oK, b2)
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which shows that the curves coincide. If the curves coincide, then the norms
are equal. (We leave the proof to the reader.)

A natural number N ^ 1 is called admissible (with respect to p) if it
is the norm of an admissible ideal. The prime ideal theory of quadratic
fields which we always have used tacitly yields the following lemma.

Lemma II. The natural number N ^ 1 is admissible with respect to

p if and only if N is not divisible by p2 and not by any prime q ^ p with

Definition.

In view of Lemma I we have a well-defined curve for any admissible

natural number N. This curve on the surface Y (p) will be called FN.

Lemma III. For the involution T of Y (p) and any admissible N we

have T(Fn) FN.

Proof. If N — N (b), then FN C (b) is given in §>2/G by (5) where
A is as in (3). Therefore T(FN) is the curve z1 A'C, z2 AC. But his
is C(b') which equals C (b) by lemma I.

Remark. If N ^ 0 mod p, then A((b, b')) 1 and the involution
T on Fn can be given by the matrix A0 (!v ö1) (see (6)) if we lift T to

the non-singular model §>/r0 (N) of FN. Thus §>/r%(N) is the non-singular
model of FN/T. (see 4.1). In particular, T is not the identity on FN if
N ^ 0 mod p and N > 1.

5.4. The curves F1 and Fp (considered as curves in §>2/G) are the only
curves which are fixed pointwise under T, (see [14] Part II, [62]). The

curve Fp belongs to the ideal (Jp e0) where e0 is a unit of negative norm
and can be given by p e0C, z2 — -JP e'oC or by zx e20 z2.

The involution T acts on the quotient singularities of §>2/G. The description

of this action [62] depends on the residue class of p mod 24. Therefore

we define

(7) e 1 for p 1 mod 3, s 0 for p 2 mod 3

ô l for p 1 mod 8, ô 0 for p 5 mod 8
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In 9)2/G the following holds [62] : Of the h — 4p) quotient singularities
of order 2, half of them lie on Fp and not on F±, and one of them lies on
Fx and Fp and is the only intersection point of F1 and Fp in §2/G\ There

are in addition ô quotient singularities of order 2 which are fixed under T.

"They" lie neither on Ft nor on Fp. The remaining order 2 singularities
are interchanged pairwise under T. Of the h( — 3p) quotient singularities
of order 3, exactly half of them are of type (3; 1, 2). They lie on Fp. There
is one singularity of type (3; 1, 1) which lies on F1 whereas s such
singularities lie on Fp. The remaining singularities of type (3; 1, 1) are
interchanged pairwise. For p 5, the two singularities of order 5 are
interchanged under T. The involution T acts freely outside Fu Fp and the

quotient singularities. If we pass to the non-singular model Y(p) of $>2/G,

we get the following configuration of curves. We omit the curves coming
from the quotient singularities which are pairwise interchanged and only
show the intersection behaviour outside of the resolved cusp singularities.

(8)

-3

-3

such a "cross" occurs
^h{ — 3p) times

this occurs
ih(-Ap) times

(ifs=l)

(if 8=1)

The curves Fu Fp are pointwise fixed under the involution T of Y(p),
therefore they are non-singular curves on (p). All curves in the diagram
are non-singular and (except Fp) rational. Fp is rational if and only if
p — 5,13,17,29,41 (see 5.7). The points Pu and if and P3, P4



— 266 —

if <5 1 are the only isolated fixed points of T on Y (p) outside the resolved

cusp singularities.
The following lemma is easy to prove and very useful for deducing from

Prestel's results [62] that the configuration on Y (p) is as indicated in (8).

Lemma. If S is a compact complex manifold of dimension 2 and T an
involution on S which carries the non-singular rational curve C over into

itself then T is the identity on C or T has exactly two fixed points P and
Q on C. In the latter case the following holds :

IfC-C is odd, then one of the points P, Q is an isolated fixed point
of T, the other one is a transversal intersection point of C with one of the

(non-singular) curves which are pointwise fixed under T. If C - C is even,
then P and Q both are isolated fixed points of T or both are such transversal
intersection points with a curve pointwise fixed under T.

The class number h of K Q fjp is odd. There are h cusp
singularities corresponding to the h ideal classes (see 3.7). The involution T on

§2/(j leaves one cusp fixed and interchanges the others pairwise. T maps,
the cusp of type (M, U2) where M is a fractional ideal representing an
ideal class to the cusp of type (M\ U2). If M is the Z-module Z • w + Z • 1

(with 0 < w' < 1 < w), then M' is strictly equivalent to Z f- Z • 1.
w'

The resolution of (M, U2) is given by the primitive cycle of the purely
periodic) continued fraction of w, the resolution of (M', U2) by the

primitive cycle of — which is the same cycle in opposite order. The involu-
w

tion on Y (p) maps the cycle of curves in the resolution of (.M, U2) onto
the cycle of curves in the resolution of (M\ U2). The fixed cusp is of type

(M, U2) where M — Zw0 + Z • 1 and where w0 \ ({ ^fp } -b sj~p)y

see 4.5 (29). It is the cusp at oo.

Theorem. The length r of the cycle of w0 - ({sj~p} + p) is

an odd number r 2t + 1. The involution T on Y (p) maps the curve Sk

to the curve S_k (see 4.5). The curve Ft intersects S0 transversally. It has

the characteristic (0| 0, 1). The curve Fp intersects S_t and St, it has the

characteristic —1\ 1, 1). We put p) — 2a + 1. The intersection
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behaviour of the cycle of curves with F1 and Fp is illustrated by the following

diagram.

(9)

w(o [[2a + 1, bx, bt, bt, bfjß

The point P0 indicates an isolated fixed point of T. The points P0, Pl9

and P2 (if s I) 9
and P3, P4 (if ô 1) are all the isolated fixed points

of T. The curves Fu Fp are the only one-dimensional components of the

fixed point set.

Proof. As in 2.5 and 3.10 we denote ordinary continued fractions by

[a0,aua2,..].Then, since a »

2a + 1 + p
(10) Wo [2a, al9 am, am, a^, 2a 1J

(See [60], § 30. Because there exists a unit of negative norm, the length
of the primitive period in (10) is odd.)

If one applies the formula which transforms the continued fraction (10)
into a continued fraction of our type (see 2.5 (19)) one has to go twice

over the period in (10). We have

(11) w0 [[2a 4-1, 2, 2, ai + 2, 2, 2, a1 + 2, 2, 2]J
äi"-1

v iT- 2
v

«7— 1

Thus the length r of the primitive cycle of w0 is odd (r 2^+1). In
fact, t a1 + + am + a — 1. Under the involution T only S0 (self-
intersection number — (2a+1)) is carried over into itself. The only
symmetric characteristics are (0| 0, 1) and — t\ 1, 1). The existence of the
isolated fixed point P0 follows from the preceding lemma. Q.E.D.

For the number w0 in (11) we wish to calculate wt+k (where k — 1, a),
see 4.2. The continued fraction [[...]] of wt+k begins with a - k two's.
Using again formula 2.5 (19) we obtain
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0 [~l,a-k +l,...]wt + k

1

- 1 +
w0 — a — k + 1

which yields

^/p-(2k-3)
^t+k /—y/p-{2k-l) 2

where

(12) Nt+k\(P~(2fe—l)2), Mt+k 21Vt+, + (27c — 1)

Fp has the characteristic —1\ 1, 1) (*+l| 1, 1) which was obtained in
the above proof by a symmetry argument.

It follows also from the theorem in 4.1, because

Nt+i + Nt + Mt Nt+1 + Nt+1 + Mt+1 — 4Nt+1 + 1 p.

In view of (12) and the theorem in 4.1 we have the following proposition.

Proposition. On the Hilbert modular surface Y (p) the cusp at go gives
1 + \jP

the following configuration of curves I a -P

i(p-(2a-1)2) ];(p-(2a-3)2)

(13)

Mt+a)

F F
l(p-9) ^

a P~1)

S-(t+k) St-k+1

-(t+1)
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We have St+k St+k S_((+Jk) • - 2

and St+a• S_(,+a) — (ax+2). Ifpl)2 + 4, St+a

.Sq, the curve i7i(p-(2a-1)2> equals F1 and the diagram has to be changed

accordingly. In this case we have

w0 [2a, 2a — I ] [[ 2a + 1, 2, 2 ]]
2a-2

and

+ a
* ^f + a — $0 ' $0 — ~ (2a + 1).

We do not claim that the FN are non-singular and do not indicate

their mutual intersections nor their intersections with Fp. The intersections

indicated are transversal.

5.5. The curve F± on Y (p) is non-singular. It follows from (8) and

4.3 that it is exceptional. In general, we do not know whether FN is non-
singular. In view of 4.3 (24) the curves F29 F3, F4 are candidates for exceptional

curves. In fact, it follows from Corollaries I, II in 4.4 that they are

exceptional if Y (p) is not rational. Y (p) is rational if and only if p 5,

13, 17. Thus we have

Lemma. If p is a prime 1 mod 4 and >17, then the curves FN on
the Hilbert modular surface Y{p) are exceptional for N — 1, 2, 3, 4 provided
N is admissible (see 5.3):

We always have the curve Ft. The curves F2, F4 exist for p 1 mod 8.

The curve F3 exists for p 1 mod 3.

For the following discussion we assume p > 17. The curves Fu E, B1

in diagram (8) can be blown down successively. In view of corollary III
in 4.4, the curves F2, F3, F4 are disjoint and do not intersect any of the

curves FuE,Bt. According to the lemma in 5.4 the curves F2, F3, F4

pass through exactly one of the isolated fixed points of the involution T.

For F3 the value ct [F3] equals 1, therefore by 4.3 it meets in $2/C
exactly one quotient singularity of type (3; 1, 1), thus it must be the one
which is fixed under T. It intersects B2 (see (8)) only in P2 and transversally
because otherwise we would have ct [F3] > 1. The curve F4 has the model

§>/ro (4) which has three cusps. Therefore F4 must intersect the curves of
the resolved cusps of 9)2/G in three points. One of them is fixed under T.
Thus F4 passes through P0.

L'Enseignement mathém., t. XIX, fasc. 3-4. 18
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The curve P2 passes through P3 or P4 in diagram (8), say P3. It intersects

L transversally in P3 and does not intersect L in any other point, because

otherwise L would give in the surface with F2 blown down a curve L with

c± [L] ^ 2. The curves P2, L can be blown down successively. Therefore L
is disjoint to any exceptional curve different from F2.

We have found an exceptional curve passing through P0 only for
p 1 mod 8. But there exists such a curve F for any p > 17.

For the cusp at oo we put as before w0 =" %({sfp) + \/p)
\(2a+l + <sjp). The involution T is given in the coordinate system

(u0, v0) by

(14) Oo, v0) H> OÖ \ UÔ(2fl+1) • V0),

as follows from 2.3 (9). The isolated fixed point P0 of Phas the coordinates

(—1, 0). Thus it lies on the curve Pc Y (p) given by u0 — 1 which
can be presented in $ x § by

Wo Wo
(15) ^ C + y, ^2 C + y, (fe$).

Let r be the subgroup of those matrices (" of
/I -wo/2\ /l wo/2\I )SLiW(0

^which, when acting on $2 carry the diagonal into itself. The curve §/P
is a non-singular model of P. The group P is characterized by 4.1 (1), but
the second condition is impossible. Thus P is the subgroup of SL2 (Q)
of matrices Ç ßö) for which

/a + yw0/2 - aw0/2 + ß - yw02/4 + <5w0/2\

V 7 ö-yw0/2 J

is integral. Since w0, 1 is a Z-base of ox? we get that a, <5 are integers and y
is an even integer. We have

(16) - aw0/2 + ß - yw02/4 + Sw0/2

— a/2 — y (2a + l)/4 + <5/2) w0 + ß + y ((2a + l)2 — p)/16

If p 1 mod 8, then ß is an integer and aô — ßy 1 implies a ö

mod 2 and y 0 mod 4, because the coefficient of w0 in (16) must be

integral. Thus P P0 (4) in this case.
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If p es 5 mod 8, then T0 (4) c T. We put y 2y* and ß ß*/2.
Then y*, ß* are integers which are congruent modulo 2. We have

a + 5 y* mod 2.

The matrix (3, ~o/z), whose third power is (~J _$), satisfies these

conditions. T is a normal extension of index 3 of jT0 (4). The three cusp of

£/r0 (4) are identified. §/T is a rational curve. Put F T/{ 1, — 1}.
We have a3 (f) 2 (ar(T) 0 otherwise) and a (T) 1.

Therefore cx (T) 1 (see the definition in 4.3), and the curve F is

exceptional. It passes through the isolated fixed point P0 of T. For p 1

mod 8, the curve F equals F4 because two different exceptional curves do

not intersect. We have T (F) F.

We can now state the following proposition.

Proposition. If we blow down the curves Fu E, Bu F, and F2, L (for
(5 1), and F3 (for 8=1 on the surface Y (p) for p > 17, then we obtain
a non-singular algebraic surface Y° (p). The involution T is also defined on
Y° (p). It does not have any isolated fixed point. The curve Fp has a non-
singular image F°p in Y° (p) which is the complete fixed point set of T.

5.6. If c1 is again the first Chern class of Y (/?), then

(17) c,lF „1- ^-tl+l+2
This follows from 4.3 (19), because [SL2 (Z) : r0 {pj\ p + 1 and

[r* (p) : r0 (/>)] 2. We further use (8) and (9).
Let us now assume that Y (p) is not rational which is the case for

p > 17. In Y (p) we have blown down 3 + 1 + curves and
obtained the surface Y° (p) on which T has the fixed point set F°p. Let
c° be the first Chern class of Y° (p). Then

(18) c? [F°] - + i + 2 + 2 + l+2<5 + g.
6 3

This follows from 4.4 (25a) using that F, F3 intersect Fp transversally
in exactly one point (see the lemma in 5.4). By 5.1 (1) the number c\ [_F°]
must be divisible by 4. We have

p — 29~

24 '(19) Cl IK]
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1A \since -l- + 2<S + ßl<l. The surface 7U (p)jT is a non singular model

for the compactification of $>2/GT (see 5.2). The arithmetic genus of
Y° (p)/T will be denoted by Xt (P)• In 3.12 we have given a formula for
the arithmetic genus of Y (p) which we shall call here x (P)• Then

1 h(-4p) 1

(20) x(p) =tCk(-1)+-V^ + -h(-3p),
2 8 6

where K — Q [~p). By 5.1 (1) and (19) the arithmetic genera %(/?) and

XT (/?) are related by the formula [40]

(21) XT(P)

(compare [14], Part II, Satz 2).
This formula is also valid for p 5, 13, 17. In these cases the surface

Y (p) and therefore also Y° (p)/T are rational and (21) reduces to
1 0(1 + 1)- It was shown in [40] that

p3/2 p + 1

Xt(p) > (compare 3.12),ATyFJ 1440 48

and explicit calculations gave the result that Xt(p) 1 f°r exactly
24 primes, namely for all primes (=1 mod 4) smaller than the prime 193

and for p 197, 229, 269, 293, 317.

We wish to show in the next sections that the surfaces Y° (p)/T are rational

for these primes. Since the rationality is already known for p 5, 13, 17 it
remains to consider 21 primes. Since the first Betti number of Y (p) vanishes

(3.6), the same holds for Y° (p)/T. Thus the rationality criteria of 4.4

(Corollaries I, II, III) can be applied.

5.7. The curve FN in Y (p) (for an admissible natural number N > 4)

projects down to a curve F% in 7° (p) and to a curve F* F^/T in

Y° (p)/T.. If N is not divisible by p, then F* has §/F* (AO as non-singular
model (see the remark in 5.3). We have a commutative diagram:H/r0 (N)-»•F% <= Y0(p)

J, 4 -i

H/ r* (N)F%c
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There is an involution t on Jp/T0 (77) compatible with T and having

(77) as orbit space. Recall that F°p is the fixed point set of T on Y° (p).

Thus the intersection number • F°p is greater or equal to the number

fix (t) of fixed points of t on 9)jr0 (77):

(22) Fx' F°p^ fix (t) 2c (§/T* (77)) - c ($/T0 (77))

Let c* be the first Chern class of F° (/O/T. By 5.1 (2) we get

4M -«] +^-4)
Since 4 [F$] ^ c± [F^] ^ cx (N), see 4.3 and 4.4 (25a), the following

estimate is obtained:

(23) 4 [Fn] ^ i c, (N) + c (if/r„ (iV)) - i c (Hir0(N))
The right side of (23) only depends on 77. We shall denote it by c* (77)

and have

(24) c* [F*] S 4 W
There are explicit formulas for the Euler numbers or equivalently the

genera of the curves ö/F* (N), see [16], p. 357, and [13]. Helling [32] has

shown that there are exactly 37 values 77 ^ 2 for which §>/F% (77) is rational.
(In [16], p. 367, Fricke omits the value N 59). We shall give a list of
the c% (77) for the 34 values ^ 5.

By the definition of ct (77) we get:

If $)/r% (77) is rational, then (for 77 ^ 5)

(25) c* (IV) 3 - g0 (N)- i (a+ n3 + <r0 (N)).

Using [13] we obtain the following list:

e (S/r, (AO) 2

N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

c\ (N) 1 1 1 1 1 0 1 0 0 0 0 0 0 -1 0 -1 -1

N 23 24 25 26 27 29 31 32 35 36 39 41 47 49 50 59 71

ci m 0 -2 -1 -2 -1 -1 -1 -2 -2 -4 -3 -2 -2 -3 -6 -3 -4
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5.8. The curves FN will be used for rationality proofs. Consider the

diagram (13) for p > 17. We have £ (p — (la — 3)2) ^ 5. It follows from
4.2 (15) that the exceptional curves Fl7 F, F2, F3 do not intersect St+k and

S_(t+k) for 1 ^ k S a — 1. These exceptional curves also do not meet
Sl+a and S_(l + a) if -j- (p — (la—\)2) ^ 5. In this case, the configuration
(13) is not changed by passing to Y° (p). If we apply the involution T we

get the following configuration on Y° (p)jT.

(27)

If i (p— (la— l)2) < 5, the diagram has to be changed. But the sub-

diagram of (27) obtained by not showing T| (p_(2a_ 1)2) and Sf+a exists

on the surface Y° (p)jT for any p > 17.

We do not know whether the curves FÏip_(2k~ip) are non-singular
and do not claim anything about their mutual intersection behaviour.
The S(+k are the image of S(+k and S_(t+k). They are non-singular. The

equation S(%1 • S*+1 — 1 or equivalently cf [S7+i] 1 follows from
5.1 (2). The curves Sf+k (\^kiLa—\) can be blown down successively.
Then ir*p_(2fc_1)2)/4 gives in the resulting surface a curve for which the

value of the first Chern class of the new surface on this curve is greater
or equal to cf (p — (Ik— l)2)/4) + a — k.

Proposition. Let p be a prime 1 mod 4 (and p > \1). The non-

singular model Y° (p)!T for the symmetric Hilbert modular group is rational

\fp -1"
if there exists a natural number k with 1 ^ k a — 1

that

such

cf ((p — (Ik — l)2)/4) + a -k ^ 1
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This is a consequence of corollary I in 4.4. For the above proposition

one does not need any assumption about the genus of FN where

N J (p — (2/c-l)2). However, we shall try to get through using the N
listed in 5.7 for which the curves FN are rational.

The tables in 5.7 give immediately

for p 89, 137,293.
For p 173 we have

c* (?-~81^j + a - 5ct(23)+7-5=2
For the remaining 7 primes 113, 149, 157, 181, 229, 269, 317 we shall

try to use the following lemma.

Lemma. We keep the notations of the preceding proposition. Suppose

there exist two natural numbers kuk2 with 1 ^ k± < k2 S a — 1 such

that

Then Y° (p)/T is rational.

Proof. Blowing down Sf+1, S*+a^1 in Y° (p)/T gives a surface in
which the images of F%. (p — (2/^—1)2)/4, i 1, 2) are exceptional
curves or the surface is rational (4.4, Corollary II). If we have the two
exceptional curves, then they intersect and the surface is rational by
Corollary III in 4.4.

The assumptions of the lemma are true for p 113 and kt 2,
k2 4, for p 149 and k1 4, k2 5, for p 157 and kt 4 and
k2 5, for p 181 and kt — 5, k2 6, for p 229 and k1 6, k2 7,
for p 317 and kt 5, k2 8.

for p 29, 37, 41, 53, 61,73, 97,101,109,197.
We find

for i 1,2
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For p 269 we have a 8. The curve Sf+8 has self-intersection
269 — 152

number — 3. It intersects F*l9 since 11 Either the surface is

rational or is exceptional. If F*\ is exceptional, then we blow down

Fii, S*+u Sf+s- The curve F%7 (k 5) gives in the resulting surface Y

a curve D with c1 [D] ^ 2 where cx is the first Chern class of Y.

We have proved the desired result.

Theorem. Let p be a prime a mod 4. Let GT be the symmetric

Hilbert modular group for K Q (*J~p). Then the surface §>2/GT is rational,
(or equivalently the field of meromorphic automorphic functions with respect
to Gt is a purely transcendental extension of C), if and only if p < 193

or p 197,229,269,293,317.

5.9. Example. If the prime p 1 mod 4 is of the form

p (2a- l)2 + 4,

2a -f-1 -f- */ p
then Wq [[2a + 1, 2,..., 2]]

and we have in diagram (13) that St+a S_(t+a) S0. Since

(p — (2a—3)2)/4 2a — 1, the smallest admissible N > 1 which can be

written in the form x2 Nh + xy Mk + y2 Nk^1 (with integers x, y > 0) equals
2a — 1 (see 4.2 and 5.4 (12)). Any divisor d of 2a — 1 is admissible. If d
is a prime dividing 2a — 1 and 1 < d <2a — 1, then the curve Fd has

two cusps and does not pass through the cusp at go of §>2/G. Thus there

must be other cusps of §2/6!. We have proved

Proposition. If p — (2a—l)2 + 4 (p prime) and if 2a — 1 is not a

prime, then h(p) > 1. (See [29], [51]).

The first example is p 229 152 + 4. We have h{p) 3. The

number 229 is the only one of our 24 primes in the preceding theorem

with class number greater than one. (If (2a—1) ±2 mod 7, then 7

is admissible for p. Thus, also in this case h(p) > 1 provided 2a — 1 > 7.

Example: p 1373 372 + 4, h{p) 3.)

The cycles for the 2 cusps not at oo of Y (229) look as follows
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We also have drawn some curves. The curve Fi5 has $/r0(15) as

non-singular model. This has 4 cusps corresponding to the fact that F15

also passes through the cusp at oo of Y (/?), namely through the curves

S1 and S-x of this cusp. One can show that F9 passes through S0 of the

cusp at oo in two points (§/T0 (9) has 4 cusps).

If N is admissible and is a product of k different primes (A p), then

§/T0 (AO has 2k cusps. The 2k intersections of FN with the resolved cusps
in Y(p) correspond to 2k admissible ideals h with N (Jb) N (see 5.3).

In general, it is possible to give a complete description of the
intersection of Fn with the resolved cusps of Y(p). The corresponding theory
can be developed for any Hilbert modular surface.

Added in proof:

A. Selberg has informed me that he has proved the following result.

If r is a discrete irreducible subgroup of (PL2 (R))" such that §7T has

finite volume, but is not compact, then r is conjugate in (PLJ (R))n to a

group commensurable with the Hilbert modular group of some totally real
field K with [K: Q] n.

Thus Selberg's conjecture mentioned in the remark at the end of 1.5 is

true. Actually, Selberg's results are more general. The proof has not been

published yet. There is a sketch (still involving additional assumptions
which could be eliminated later) in the Proceedings of the 15th Scandinavian



— 278 —

congress, Oslo 1968, Lecture Notes in Mathematics, Springer Verlag,
vol. 118, in particular pp. 106-113.
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