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THEOREM. Let p be a prime K = Q (\/;). Let G be the Hilbert modular
group for K and G the extended one. Then

¥ (G) =1 forp = 2,3,5

X(é)=l forp =3
For p > 5 we have

1 h(—4 1

X(G)=§CK(—1)+ ( p)—i—gh(——?ap) for p = 1 mod 4
1 3 I

X(G)=§CK(—1)+Zh(——p)+8h(—12p) for p = 3 mod 8
1 1

X(G)=§CK(——1)+811(——12p) for p = 7 mod 8

A 1 9 1 1
¥ (G) = ZCK(——I) +§h(—p) +§Iz(—8p) + Eh(—12p) for p = 3 mod 8

A 1 1 1
X(G):ZCK(_1)+§h(_8p)+1_§h(_12p) for p = 7 mod 8

The formulas at the end of 1.3 imply

1 1 X’
2p(—1) = 5.7:‘4D?<""CK(2) > o 4D L (4) = 1§0.

It is easy to deduce from this estimate that y (G) = 1 if and only if
p=2,3,57,13,17 and (for p =3 mod4) y(G) =1 if and only if
p = 3,7. Because of (38) and (56) we also know the arithmetic genera
of (H x H7)/G and (H X 55")/6} (p = 3 mod 4). They are equal to 1 if
p = 3, and both different from 1 if p > 3.

§4. CURVES ON THE HILBERT MODULAR SURFACES
AND PROOFS OF RATIONALITY

We shall construct curves in the Hilbert modular surfaces. They can
be used to show that these surfaces are rational in some cases and also
for further investigations of the surfaces ([41], [42]). Such curves were

studied earlier by Gundlach [23] and Hammond [25]. We need information
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about the decomposition of numbers into prime ideals in quadratic fields.
(See [6], [30].)

4.1. Let K be a real quadratic field and oy its ring of integers. We
often write p instead of og. Let b be an ideal in o which is not divisible by
any natural number > 1. We consider the group SL, (o, b), see §3 (41).
Let I'y be the subgroup of those elements of SL, (o, b) which when acting
on $* carry the diagonal z; = z, over into itself. An element (}5) of
SL, (0, b) belongs to I'y if and only if

M GH =G4 o Gh=(54

The matrices satisfying the first condition of (1) are in SL, (Q) with
a,0€0, feb 1 yeb. Thus «, §, y are integers. The ideal b is not divisible
by any natural number > 1. Therefore [ is also an integer. A rational
integer y is contained in b if and only if y = 0 mod N (b) where N (b)
is the norm of the ideal b.

For any natural number N we let I'y (V) be the group of those elements
(4%) € SL, (Z) for which y = 0 mod N. This group was studied by Klein
and Fricke ([16], p. 349; see [70], p. 24).

We have proved the following lemma:

Lemma. Let b be an ideal in o which is not divisible by any natural
number > 1. Then I'y (N (b)) is the subgroup of those elements of I
which satisfy the first condition of (1). The group I'y equals I'q (N (b)) or
is an extension of index 2 of I'y (N (b)).

IfK=0Q (ﬁ ) where d is square free, then a matrix of I'y satisfying
the second condition of (1) is of the form ./ ;l—(ﬁg £9Y where o, 7o, 6, are
rational integers, f, is a rational number, 7y, \/ deb, and Bo \/—d eb L.

If b is not divisible by (\/d), then the fractional ideal (8,+/d) has

in its numerator a prime ideal dividing the ideal (ﬁ ) and the determinant
of our matrix would be divisible by this prime ideal, this is a contradiction.
Thus a matrix satisfying the second condition of (1) does not exist in this

case. If b is divisible by (/d), then [I'y : Ty (N ()] = 2.

In fact, b is divisible by (\/E ) if and only if N (b) is divisible by d and
the matrices satisfying the second condition of (1) are of the form



— 245 —

(V8 BV

where oy, By, Vo, 0, are rational integers and y, = 0 mod N (b)/d. Such

matrices exist, because (d, N (b)/d) = 1. If b = (\/d), then I is the
extension of index 2 of Iy (d) by the matrix

(2 %)

This group will be denoted by I'* (d), see Fricke ([16], p. 357). We
have proved: -

Proposition: Let K = Q (\/; ) be a real quadratic field (d square free).
. Let b be an ideal in vy which is not divisible by any natural number > 1. If
N (b) is not divisible by d, then the group I'y of those elements of SL, (0, b)
which carry the diagonal of $?* into itself equals I'q (N (b)). If N (b) is
divisible by d, then I'y is an extension of index 2 of I'y (N (b)). In particular,

ifb = (/d), then Ty = I'*(d).

N\
We also consider the group SL, (og, b) of matrices (5 ﬁ) with «, 6 € 0,

Beb !, yeb and ad — By a totally positive unit.
N
The groups SL, (0g, b) and SL, (0g, b) do not act effectively on $2.
If we divide them by their subgroups of diagonal matrices, we get the groups
G (0g, b) and G (og, b) which act effectively and generalize the Hilbert
modular groups G and G (see 1.7). As in 1.7 we have an exact sequence

) 0 G(0g,b) > G(0g, b) > UT/U2 -0

The subgroup of those elements of G (og, b) which carry the diagonal
over into itself is I';/{ 1, —1 } which acts effectively on $. The subgroup

of the elements of G (og, b) which keep the diagonal invariant is an exten-
sion ofifldex lLor2of I'y/{ 1, —1}. We can write it in the form fb/{ 1, -1}
where I'y = SL, (R) is an extension of index 1 or 2 of IF.

The embedding of the diagonal in $* induces maps 7 and = of $/I,

and .‘5/1:b in $%/G (og, b) and 552/6: (o, b) respectively. The maps = and
n need not be injective. We have a commutative diagram
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9/Ty > $%/G (og, b)
(3) Gl lp
. T ' 2
ST —> 9%/G (0k, b)

The maps = and 7 map /I, and 5/ﬁ » with degree 1 onto their images.
If K has a unit of negative norm, then the two lines of diagram (3)
can be identified. If there does not exist a unit of negative norm in K,
then p has degree 2 and o is bijective or has degree 2, depending on whether

Iy=T, or [fb:Fb]=2.

If we compactify $?/G (og, b) and 552/GA (0g, b) and resolve all quotient
and cusp singularities by their minimal resolutions, then we get non-

singular algebraic surfaces Y (og, b) and I}(DK, b). On Y (og, b) we have
an involution « induced by (8(1’ where ¢ is a generator of U*. We have

a rational map p : Y (0g, b) —» Y (0g, b) compatible with «. The map p
is regular outside the isolated fixed points of «. The maps = and n induce

maps of the compactifications $/I'y and ﬁ/fb into the non-singular algebraic
surfaces. We have a commutative diagram

— s
55/Fb > Y(DK, b)
4) o l l p
S/ - » ¥ (05, 1)

If K has a unit of negative norm, then the two lines of (4) can be identified,
the vertical maps are bijective.

We denote the irreducible curve %(.‘5/1: p) by C(b). It may have singu-

larities. 55/f o 18 its non-singular model which is mapped by n with degree 1
on C(b). |

We put D (D) = p~ ' C(b). If degree (p) = 2 and degree (o) = 1 then
D (b) is the union of two irreducible curves D, (b), D, (b). If degree (¢) = 2,
then D (b) is irreducible. The involution o carries D (b) into itself, mapping
D, (b) to D, (b) if D (b) is reducible.
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The resolution of the cusp at co of 532/@ (og, b) is described by the
primitive cycle ((bg, ..., b,—;)) of b~! (see 2.6) It determines a (narrow)
ideal class with respect to strict equivalence whose inverse we denote by
B. A quadratic irrationality w is called reduced if 0 < w’ < 1 < w. The
quadratic irrationality w is reduced if and only if its continued fraction
is purely periodic. There are exactly r reduced quadratic irrationalities
belonging to the cycle, namely the numbers

(5) we = [[bis bgs1» ... 1], (see 2.3 (8)).

After calling one of them w,, the notation for the others is fixed. Then
they correspond bijectively to Z/r Z.

If we speak of the curve S, of ‘the resolution (where k € Z/rZ), this

has an invariant meaning. It is the curve associated to the quadratic
~irrationality wy.
The fractional ideals b~ ' e B8~ ! (where b < oy and b is not divisible
- by any natural number > 1) are exactly the Z-modules Zw + Z - 1 where
 wis a quadratic irrationality having the given primitive cycle in its continued
fraction. (If we require that 0 < w’ <1 and w’ < w, then w is uniquely
determined by b~ 1)

Since the module b™! = Zw + Z -1 is strictly equivalent to
M = Zwy, + Z -1 (see 2.3), there exists a totally positive number A in M
(uniquely determined up to multiplication by a totally positive unit) such
that
(6) b l=Zw+Z-1=

M = —b,*

o -

1

A

where we defined the ideal by e B by b, ! = M. We have
o imloy & 20

(7) SL, (0g, b) = (0 1) SL, (0g, bo) (o 1)

VA
Instead of looking at the diagonal and at the action of SL, (vg, b)

a
on $>, we can consider the action of SL, (g, by) on $2 and the curve
zy = A, z, = A'{ in $?, where { € H. Any totally positive number e M
can be written uniquely as a linear combination of two consecutive numbers

A1, A, with non-negative integers p and ¢ as coefficients (see 2.3,
Remark):

(8) A=p A1 +4q- A4
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If we multiply 4 by a totally positive unit, then p, ¢ do not change
and k only changes modulo r. See the lemma in 2.5 and 2.3 (12). The
equation 2.3 (11) shows that the curve C (b) has in the k-th coordinate
system (u, v,) of the resolved cusp the equation

(9) uk == tp, ‘Z)k = tq,

where ¢ can be restricted to some neighborhood of 0. Namely, we just
want to study locally the intersection of our curve with the curves of the
resolution. Observe, that p, g are relatively prime because A is an element
of a Z-base of M. The fractional ideals b~! e B8~ which satisfy our con-
ditions (b < pg and b not divisible by any natural number > 1) are in
one-to-one correspondence with the triples (k | P, q) where ke Z/rZ and |
D, q are relatively prime natural numbers and where (k | 0,1) is to be
identified with (k+1] 1, 0).

We call (k| p, q) the characteristic of the ideal be B. Actually, k does
not stand for an element keZ/rZ, but rather for the corresponding
quadratic irrationality w, which has an invariant meaning. If as in (6)

(10) bl =Zw+Z-1,
then (see (8))

_____pAk—l +qA4,  pwetg

(11) w =
PA-1 +qA4 pwpt+q

where (g 5y €SL, (Z) and p =z 0, ¢ = 0. Therefore, we can determine the
characteristic of b by writing w in the form (11).

In view of (7) the algebraic surface Y (0g, b) depends only on the ideal
class 8. The identification of i’(oK, b) and 3’(0,(, bo) is uniquely defined
by (7). We shall denote the surface by };(DK, B). In a similar way the
algebraic surface Y (og, B) is defined. The preceding discussions (see in

particular (9)) yields the following theorem.

THEOREM. Let K be a real quadratic field and B a narrow ideal class
of vg. For every ideal b < oy with b € B such that b is not divisible by any

natural number > 1, we have defined an irreducible curve C (b) = 7 (5/1%)

in the non-singular algebraic surface i’(DK, B). The cusp at o of 55/}“ b IS
mapped by 1 to a point on the union of the curves Sy, ..., S,_1 in Y (0g, B)

which were obtained by the resolution of the cusp at oo of 552/é (0g, D).
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If b has the characteristic (k | 0,1), then b~' = Zw, + Z -1 where w;
is the reduced quadratic irrationality belonging to k, and the curve C (b)
intersects S, transversally in P which is not a double point of U S;. The
curve S, is given in the local coordinate system (uy, v)) by v, = 0 and C (b)
by u, = 1. If b has the characteristic (k | p, q) where p > 0 and g > 0,
then P is given in the k-th coordinate system by u, = v, = 0, the curve S,
by v, =0, the curve S,_; by u, =0, and C(b) has the local equation
== 1. )

If K has a unit of negative norm, then Y (0g, B) = Y (0, B). If K does
not have such a unit, then in the non-singular algebraic surface Y (0, B)
we have a curve D (b) which in the neighborhood of the resolved cusp at o
is just the inverse image of C (b), the resolution of the cusp at oo being an
unbranched double cover of the cycle of curves Sy, ..., S,_1. (The funda-
mental group of a neighborhood of Sy v ...u S,_; is infinite cyclic and
~ we have to take the corresponding covering of degree 2.) The curve D (b)
~is irreducible or the union of two irreducible curves D, (b), D, (b).

Remark. For different b, be B the curves C (b)), C (%) may coincide.
The curve C(b) = = (Sj/f ,) may intersect U §; in other points than P

which correspond to other cusps of g/ﬁb.

4.2. Inview of the preceding proposition and the theorem it is important
to have a simple method to calculate N(b) if b™! = Zw + Z - 1. Let D
be the discriminant of K (see 1.4), then w can be written uniquely in the
form

M+ D

(12) w N

(see 2.6)
where N > 0 and M? — D = 0 mod 4N. Then we have
(13) N®) =N
To prove (13), one checks
NBT07Y = (1)

If we start with a reduced quadratic irrationality w, of the form (12),
then the formula
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1
W = bk -

Wit ‘

where b, € Z and w, ., > 1, determines inductively for k£ = 0 the b, and
the w,. We put

_ M +D

14
( ) Wi 2Nk 1

This i1s the process of calculating the continued fraction for wy. If b
is the ideal of characteristic (k | P, q), see (11), then

(15)  N(®) = p>N,_; + pgM, + ¢*N,, where M; —4N,_yN, = D, |

as follows from (11), (13) and (14).
We shall tabulate the values of b,, M, N, for some w,, namely for
those quadratic irrationalities which are needed later to show that the

Hilbert modular surfaces $H?/G are rational for d = 2, 3, 5,6, 7, 13, 15, 17,

. . 3+.3 .
21, 33 (compare the table in 3.9). We also include w, = B which

is needed for ($ x $H7)/G in the case d = 3 (see 3.12).
If r is the length of the cycle of the quadratic irrationality, we tabulate
b, M, N, only for 0 < k < r—1, because they are periodic with period r.

_ — 544/ 21
wo = 2+4/2 wo =3 +4/7 wo = ;/
D =238 ‘ D = 28 D = 21
k 0 1 k 0 1 k 0
by 4 2 by 6 3 by, 5
M, 4 4 M, 6 6 M, 5
N, 1 2 N, 1 2 Ny 1
_ 54+4/13 7+4/33
wo = 2+4/3 wo = ;/ wo = ;/
D =12 D =13 D = 33
k 0 k 0 1 2 k 0 1 2 3
by, 4 by 5 2 2 by, 7 2 3 2
M, 4 M, 5 5 7 My, 7 7 9 9
N, 1 Ny 1 3 3 Ny 1 4 3 4




34+4/5 — _3+44/3
Wo = ;/ Wo = 4 +'\/ 15 Wo = "'—3“"
k 0 k 0 k 0 1
bk 3 bk 8 bk 2 3
My 3 M, 8 M, 6 6
Ny 1 Ny, 1 Ny 3 2

_ 54+4/17

wog =3 +4/6 wo = ;/
D =24 D =17
k 0 1 k 0 1 2 3 4
by, 6 2 by 5 3 2 2 3
M, 6 6 M, 5 5 7 9 7
N, 1 3 N, 1 2 4 4 2

| 4.3. We consider the situation of the theorem in 4.1. Let F be one of
the irreducible curves C (b), D (b), D, (b) or D, (b). The curve F has

5/—1: as non-singular model where I' acts effectively on $ and equals
r o/{1, —1} or I' /{1, —1}. The curve F lies in a non-singular algebraic
surface Y, namely f’(nK, B) or Y (og, B). We shall calculate the value

of the first Chern class ¢; of Y on F which is up to sign the intersection
number of a canonical divisor K of Y with F:

(16) ¢;,[F] = — K-F.

The surface Y is a disjoint union of a complex surface (4-dimensional
manifold) X with boundary as in 3.4 (19) and open neighborhoods
N,(1=v=s+1) of the configurations of curves into which the s quotient
singularities and the ¢ cusp singularities were blown up (minimal resolu-
tions). The first Chern class of X can be represented as in 3.4 by « dif-
ferential form y, with compact support in the interior of X and it follows
as in 3.4 (25), (26) that

(17 [ = [(@+0)

1

where o; = -5 y;~%dx; A dy;. Since F comes from the diagonal
n
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z; = z, of 7, we obtain that |y, equals twice the Euler volume of $/I.

F
Thus by 1.4 (10)
- 1
(18) [y =20 = —-[G:I7],
F §/T 3

where G = SL,(Z)/{1, —1}.

We have denoted the open neighborhoods of the resolved quotient
singularities and cusps singularities by N, (1 £v<s+¢) where s is the number
of quotient singularities and 7 the number of cusp singularities in the surface

$2/G (0, B) or $2/G (0g, B) which has ¥ as non-singular model. The
first Chern class of N, can be represented by a differential form y, " with .
compact support in N, in such a way that p; + > 7, represents the first
Chern class of Y. By Poincaré duality in N, each 7, corresponds to a
linear combination with rational coefficients of the curves into which the
singularity was blown up. This linear combination will be called the Chern
divisor of the singularity and denoted by ¢, ™. It follows that

s+t
(19) ¢ [Fl=2fo+ Y ¢ F
H/T v=1
We denote the curves of the minimal resolution of a singularity by S;.
For a quotient singularity the Chern divisor equals ) a;S; where the
rational numbers g; are determined by the linear equations

J

This follows by the adjunction formula, since all the S; are rational
and non-singular. In some cases we have calculated the numbers a; at the
end of 3.3. For any quotient singularity of type (p;1,¢) the matrix
(S;-S;) equals )

o
&
1\

Y
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where p/q = [[by, ..., b,]], (see [35], 3.4).
The inverse of this matrix has only non-positive entries. Since 2 + S - ]
= 2—5b;<0, we have q; =2 0.
For a cusp singularity the Chern divisor equals ) S;, (see 3.2 (9)).
Therefore, in (19) all the terms c{” - F are non- negatlve

Every cusp of $/I', the non-singular model of F, maps under $/I' - Y
to a point on some curve in the Chern divisor of a cusp singularity. This
- intersection point gives at least the contribution 1 in (19).

Let a, (I') be defined as in 1.6. If an element y of I' has order r, then

(since I' = G (0g, b) or I' < G (og, b)) we have a quotient singularity of
type (r; 1,1) whose Chern divisor intersects F in a point coming by
$ — H/I' - F from a point z of § whose isotropy group is generated by
7. The Chern divisor contains in this case just one curve S and equals
r—2

S, (see the end of 3.3).

r

If we denote by o (I') the number of cusps of 55/—F we get by (19) the
estimate

(20) i [Flz2fow + z 2a,(F)+J(F)

H/T r=2

The Euler number of the non-singular model 53/_1" of F is given by the
classical formula

ar(F)+0(F),

(21) e($/0) = [o + Z

HIr rz2

which follows from 1.6 (21), because o (I') points are attached to $/I’ by
the compactification. By (20) and (21)

(22) ¢, [F1 = 2e($/) = Y. a,(T) — o (I)

r=2

The right side of (20) is defined for any discrete subgroup of type (F) which
is equivalent in this case to $/I" having a finite volume.

Definition :
HIr - rz2

2e (H/T) — zzar(F)— o (I).

a L)+ o (D)

I

L’Enseignement mathém., t. XIX, fasc. 3-4. 17
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If I' is the Klein-Fricke group I'y (N) divided by {1, —1} we shall
write ¢y (N) for ¢, (I') and also a,(N) for a,(I') and 6, (N) for o (I).
The numbers a, (N) vanish for r > 3. There are well-known formulas for
[SL,(Z) : I'y (N)], for a,(N) and o, (N), (see, for example, [70], p. 24).

The Euler number e ($/I', (N)) will be written as 2 — 2g, (N). By (21)
there is a formula for g, (N) which implies (as Helling has shown recently

[32])
(23) g8o(N) =0<N=1,2,3,4,5,6,7,8,9,10,12,13, 16, 18, 25
g (N)=1<N=11,14,15,17,19, 20, 21, 24, 27, 32, 36, 49
Compare [13] where the values of g, (N), a,(N) and o, (N) are tabulated -

for N = 1000. Therefore, we can write down easily a list of ¢; () for the
rational and elliptic curves $/I'y (N) (see (23)):

go(N) =0 _
N "123456789101213161825
cy (N) 111111010} 0]0|0]|—=2|—-2|-2|-2|-4}-4
|
(24
g (N) =1
N ‘11 14 | 15 | 17 { 19 | 20 | 21 | 24 | 27 32136 49
cy (N)

~2|—4|-4|—-4|-4|-6|—-6|—-8|—6 —8’—12 -10

4.4. We want to prove that the Hilbert modular surfaces are rational
in some cases. An algebraic surface is rational if and only if it is birationally
equivalent to the complex projective plane, or equivalently if the field of
meromorphic functions on the surface is a purely transcendental extension
of the field of complex numbers of degree 2.

Let S be a non-singular algebraic surface and K a canonical divisor of
S. The “complete linear system” lmKl of all non-negative divisors D
which are linearly equivalent to mK is a complex projective space whose
dimension is denoted by P, — 1. The numbers P, (m=1) are the pluri-
genera of the surface S (see, for example, [64] and [36], p. 151).

We have P; = g, (see 3.6). The equality P, = O means, that | mK |
is empty. The numbers P,, (m=1) are birational invariants. They vanish
for rational surfaces.
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Castelnuovo’s criterion ([46], Part IV):

A non-singular connected algebraic surface S is rational if and only if
gl = P2 =. 0.

Remark. Clearly, P, = 0 implies g, = 0. There are algebraic surfaces
with g, = g, = 0 which are not rational (Enriques’ surfaces with
g, = g, = 0and P, = 1, see [64]). The condition g, = g, = 01is equivalent
to g, = 0 and yx (S) = 1 (see 3.6). For Hilbert modular surfaces g, = 0
(see the lemma in 3.6). Up to now all Hilbert modular surfaces and similar
surfaces (see § 5) with ¥ (S) = 1 have turned out to be rational. The number

P, of a non-singular model of $%/I" equals the dimension of the vector
space of those cusp forms of weight m which can be extended holomorphically
to the non-singular model. Therefore P,, < dim S (m). The calculation
of P,, seems to be a very difficult problem.

We shall base everything on Castelnuovo’s criterion, not worrying
whether in a systematic exposition of the theory of algebraic surfaces
some results would have to be presented before this criterion. The following
theorem 1s an immediate consequence of Castelnuovo’s criterion.

THEOREM. Let S be a non-singular comnected algebraic surface with
g1 = 0. Let ¢y be the first Chern class of S and K a canonical divisor of
S. If D is an irreducible curve in S with ¢,[D] = — K-D >0 and
D-D =0, then S is rational.

Proof. We show that P,, = 0 for m = 1.
If Ae|mK]|, then

A=aD+ R, where a>0,R-D = 0.
Therefore,
mK:-D =aD-D + R-D =0

which is a contradiction. Thus mK is empty.

CoROLLARY 1. Let S be a non-singular connected algebraic surface
with g, = 0. Let ¢, be the first Chern class of S and K a canonical divisor
of S. If D is an irreducible curve on S with ¢, [D] = 2, then S is rational.
If D is an irreducible curve on S with ¢, [D] = 1 which has at least one
singular point or which is not a rational curve, then S is rational.
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Proof.. By the adjunction formula (0.6)
¢ |[D]—-DD = ~K-D—-D-D

equals the Euler number e (l~)) of the non-singular model D of D minus
contributions coming from the singular points of D which are positive
and even for each singular point. Thus

¢;[D] =D'D < e(D) < 2
and |

¢,[D] =D D

lIA

0,

if D has a singular point or is not rational. Therefore, the assumptions
in the corollary imply D- D = 0.

COROLLARY II. Let S be a non-singular connected algebraic surface with
g, = 0. Let ¢, be the first Chern class of S. Suppose that S is not a rational
surface. If D is an irreducible curve on S with ¢y [D] = — K- D = 1, then
D is rational and does not have a singular point. Furthermore, D - D = — 1.

A non-singular rational curve E on a non-singular surface S which
satisfies £+ E = — 1 (or equivalently ¢, [E] = 1) is called an exceptional
curve (of the first kind). It can be blown down to a point:

In a natural way, S/E is again an algebraic surface ([64], p. 32). The
surfaces S and S/E are birationally equivalent. |

If ¢, is the first Chern class of S and ¢, the first Chern class of S/E,
then for any irreducible curve D in S and the image curve D in S/E we
have

(25 a) & [Dl=c¢,[D]+ D-E

This is true because ¢; = n*c; — e, where © : S — S/E is the natural
map and e e H? (S, Z) the cohomology class corresponding to E under
Poincaré duality.

If D is non-singular and D - E = 1, then D is also non-singular and
by (25a) and the adjunction formula

(25 b) D-D=D-D—1
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CorOLLARY III. Let S be a non-singular algebraic surface with g4 = 0
which is not rational. If E,, E, are two different exceptional curves of the
first kind, then E,, E, do not intersect.

Proof. We have ¢, [E;] = 1. If we blow down E,, then in S/E, (first
Chern class ¢;)

¢y(Ey) =1 +E;E,
Therefore, by Corollary I, E; - E, = 0 and thus £, n E, = @.

4.5. Let G be the Hilbert modular group for K = Q (\/c? ), d square

free. If we resolve all singularities in $?/G (minimal resolutions) we get
a non-singular algebraic surface Y (d) which in 4.1 was denoted by
Y (0g, B) where B is here the ideal class of principal ideals(1) = g with
A>0, A>0. If 1 1is not divisible by a natural number > 1, we can
consider the curve

(26) zy = A, z, = 20 ((€9)

which according to (7) gives one of the (one or two) irreducible components
of the curve D ((/1)) in Y (d). If we replace 4 by A’ we get the same curve.
Namely, our curve can also be written as

1 1
27) 21=z<—m>, 22=J.<-—MIC),CG$,

1
because {—» — m 1S an automorphism of $§.

1
If we apply the element z;» — — of G to (27) we get
Zj

(28) zy = A0, z, = A, (e

We consider the involution (z,, z,) = (z,, z;) on $? which induces

an involution 7" on ‘$?/G and hence on Y (d), because the minimal resolu-
tions are canonical. (26) and (28) show that our curve is carried over to
itself by 7.

The cusp at oo of $?/G admits a resolution:

We have to take the primitive cycle or twice the primitive cycle of the
reduced quadratic irrationality w, such that Zw, + Z -1 = Dg:
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29 wo = [/d] +1+./d for d = 2,3 mod 4
w0=%({\/g}+\/§) for d = 1 mod 4

where {\/ E} denotes the smallest odd number greater than \/ d. We

have (wy 1Y = w,, (see 4.2) and therefore (2.3 (13)) for the continued

fraction of wy:
(30) W_,k = Wk, bk == b_k, Mk - M—-kﬂ Nk = N__k, (W;l)l == W—k+1

If r is the length of the cycle, then for wy, b,, M,, N, the index k can
be taken mod r. However, for the curves .S, we have to consider £ modulo
r or modulo 2r.

We note

2([/d]1+1), No =1, Ny = ([/d] + 1)* -
for d = 2,3 mod 4

I

(31) by = M,

- 1 _
(32) bo = M, ={\/D}, No =1, Ny =Z({\/d}2“
ford =1mod4

For any characteristic (k [ p,q) we have one or two curves (26) in
the Hilbert modular surface Y (d). Compare the theorem in 4.1. Let D
be such a curve. Suppose

(33) N =N() = p°Ny_y + pg M, + ¢> N, #20 mod d,

then the non-singular model of D is /I, (N). Suppose also N > 1.
Then the curve D intersects the Chern divisor U §; of the resolution at
least twice, the intersection points correspond to the cusp at oo and at 0
of $/I'y (N) which are different cusps for N > 1. By applying the theorem
in 4.1 to the curves (26) and (28) which both represent D we see by (11)
that the two intersection points are of characteristic (k ] p,q) and
(—k+1 I g, p). The involution 7" maps S, to S_; and interchanges the
two intersection points. If the characteristic is (k | 0, 1), then the
symmetric one is (—k+1|1,0) = (—k|0,1). If (33) is satisfied, then

¢; [D] 2 ¢y (N), see (24),

because the non-singular model of D is /Iy (N).
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Since the intersection number of u? —»? = 0 and uv = 0 equals
p + g, the intersection number of D and the Chern divisor Y S; is
> p + g in each of the two intersection points and therefore

(34) ¢;[D] z ¢t (N) +2(p+g-1

Because of 4.4 (Corollary I) we have the following theorem.

THEOREM. Let K = Q (\/E ), d square free, and G the Hilbert modular
group. Consider the continued fraction for w, (see (29)) and the corres-
ponding numbers M,, N, (see 4.2). We look at the following representations
of natural numbers N:

(3%) N = p*Ni_y + paM; + ¢°N,
(for some k and for relative prime natural numbers p, gq).
If N is represented as in (35), if N =% 0modd and N > 1, then
ci(N) +2(p+q—1) <2

or the Hilbert modular suface $H*/G is rational.

N_;+ My, + N, equals 7 for d = 2,21, it equals 8 for d = 17, it
equals 9 for d = 7,13 (see 4.2 or recall that N_; = N; and use (31),
(32)). For d = 3, we have 13 = 4N, + 2M, + N,. For d = 5, we have
11 = 4N; + 2M,+ N,. For these d we get ¢, (N) + 2(p+q—1) =2
(see (24)). Thus the Hilbert modular surface is rational in these cases.

For d = 6, 15,33 a more refined argument is needed. Actually, the
theorem throws away some information, because we have only used two

cusps of H/I'y (N), (N>1). If N is not a prime, then $/I',(N) has more
cusps. This is relevant for d = 15: There are two cusps of the Hilbert
modular surface which are of equal type (3.9). We have 10 = N_, + M,

+ Ny. The curve $/I', (10) has 4 cusps. One can prove that the intersection
of D with the Chern cycles of the two cusps of the Hilbert modular surface
looks as follows (in this case the curve D (b) of theorem 4.1 is irreducible)

. < *=X
D, N =10

Therefore

¢; [D] =2 ¢, (10) + 4 = 2.
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For d = 6 we have a diagram

-6
D

(37) -2 -2

-6

Again the curve D = D (b) of the theorem in 4.1 is irreducible.

For the curve D we have ¢; [D] = ¢; (N) = 1. Thus the surface Y (6)
1s rational or D is an exceptional curve of the first kind. If D is exceptional,
then we blow it down. The images of S; and S_,; become exceptional
curves which intersect each other. Thus Y (6) is rational by Corollary III
in 4.4. We could have also used N = 10. The corresponding curve goes
through the 4 corners of diagram (37).

For d = 33, the same argument works using N = 4.

We have proved

THEOREM. Let K = Q (ﬁ ), d square free, and G the Hilbert modular
group, then $?/G is rational for d = 2,3,5,6,7,13, 15,17, 21, 33.

For d = 3 we consider also ($ x $7)/G. The non-singular model is
Y (og, B) where B is now the ideal class of all ideals (4) with 11" < 0.
The resolution of the cusp at infinity is

N=73

We have one curve with N = 2 (non-singular model $/I'y (2)) and
two curves with N = 3 (non-singular model $/I'* (3)).

If ' = I*3)/{1, =1}, then e(H*/I') = 2, a, (I') = ag(I') = 1, all
other a,(I') = 0, o (I') = 1. Thus

 (T*(3) =4—-2-1=1
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Either the surface is rational, or the three curves with N = 2,3 can
be blown down. Then S, can be blown.down and S; and S_; give two
exceptional curves which intersect in two points. Thus the surface is rational.

Observe that in general the rationality of Y (og, B )implies the ration-

ality of Y (og, B) (Liiroth’s theorem [64], Chap. III, § 2). We could show

this directly by using our curves in }A’(DK, B).

Exercise. Let K = Q (\/@ ). Calculate the arithmetic genera of $2/G
and $2/G. Prove that the surface $2/G is rational !

In all cases where we know that the arithmetic genus equals 1 we have
proved rationality.

§ 5. THE SYMMETRIC HILBERT MODULAR GROUP
FOR PRIMES p = 1 mod 4

5.1. Let S be a compact connected non-singular algebraic surface.
The fixed point set D of a holomorphic involution T of S (different from
the identity) consist of finitely many isolated fixed points Py, ..., P, and
a disjoint union of connected non-singular curves Dy, ..., D,.

If there are no isolated fixed points P;, then S/T is non-singular and
the arithmetic genera of S and S/T are related by the formula

1 1
(1 x(S/T) = E(X(S) 14 [D]>

where D = ) D; and ¢, is the first Chern class of S (see [40], § 3).
Furthermore, if F is a curve on § (not necessarily irreducible) with

T(F) = F and F not contained in D and if F is the image curve on S/T,
then

() ¢ [F] = %(c;[F] + F-D), where ¢; = first Chern class of S/T"

Proof. If m :S — S/T is the natural projection, then ¢; = n*El —d
where d € H? (S, Z) is the Poincaré dual of the branching divisor D. Thus

(c; +d)[F] = ¢, [2F].
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