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Example. Let d be a square-free number > 1 and suppose d = 2 mod 4
or d = 3 mod 4. The (\/;Z— , 1) is an admissible Z-base of the ideal (1) in
og for K = Q (\/E ). The quadratic form is given by

— u*d + v?

—Jd 1
and has discriminant 4d. The first root equals = — —— which

< Ja

1s equivalent to \/Z . (Take always the positive square root). The admissible
cycle of natural numbers is obtained by developing ﬁ in a continued
fraction.

§ 3. NUMERICAL INVARIANTS OF SINGULARITIES
AND OF HILBERT MODULAR SURFACES

3.1. Let X be a compact oriented manifold of dimension 4k with or
without boundary. Then H?** (X, 8X; R) is a finite dimensional real vector
space over which we have a bilinear symmetric form B with

B(x,y) = (xUy)[X,0X], for x,ye H*(X,0X;R),

where [X, 0X] denotes the generator of Hy, (X, 0X; Z) defined by the
orientation. The signature of B, i.e., the number of positive entries minus
the number of negative entries in a diagonalized version, is called sign (X).
If X has no boundary and is differentiable, then according to the signature

theorem ([36], p. 86)
(D) sign (X) = L (py, -, 2i) [X],

where L, is a certain polynomial of weight k£ in the Pontrjagin classes of
X with rational coefficients (p; e H*/ (X, Z)).

Let N be a compact oriented differentiable manifold without boundary
of dimension 4k — 1 together with a given trivialization « of its stable
tangent bundle. (Such a trivialization need not exist). We shall associate
to the pair (N, o) a rational number J (N, o). Since N has a trivial stable
tangent bundle, all its Pontrjagin and Stiefel-Whitney numbers vanish.
Therefore N bounds a 4k-dimensional compact oriented differentiable
manifold X. By the parallelization a we get from the stable tangent bundle
of X an SO-bundle over X/N. We denote its Pontrjagin classes by
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p;e H¥Y (X/N, Z). Then the element Ly (py, ..., P e H¥ (X/N, Z)
= H* (X, 0X; Z) is well-defined.
The number § (N, «) is defined by the following formula

(2) O (N, ) = Li (P15 o pw) [X, 0X] — sign (X)

Thus 8 (N, «) is the deviation from the validity of the signature theorem.
It follows from the Novikov additivity of the signature ([3], p. 588) that
8 (N, o) does not depend on the choice of X. If N is of dimension 2n — 1
(n odd), then we put 6 (N,a) = 0.

Remark. The invariant & (N, «) and similar invariants were studied
also by other authors (Atiyah [1], Kreck [48], W. Meyer [57], S. Morita
[59]). In [48] the invariant & (N, ) was calculated in several cases.

3.2. We now go back to 2.1. For a cusp of type (M, V') with isotropy
group ® (see 2.1. (1)) we have a (2n—1)-dimensional manifold N which
is a T"-bundle over 7" ! (see 1.5). We can write (for a fixed positive d)

N = 0X, where X = W)/ ©®, and
W(d) = {z|ze§3", ﬁ] Im(z;) = d}.

Here X is a (non-compact) complex manifold and is canonically paral-
lelized. Namely, it inherits the standard parallelization of £” given by the
coordinates x;, ¥y, ..., X,, ¥, (with z, = x, + iy,). This parallelization is
respected by ® if we use unit vectors with respect to the invariant metric
of $". Thus the stable tangent bundle of N has a canonical parallelization
o. We orient N by the orientation induced by the orientation of X. The
rational number 6 (&, o) is now defined. We associate it to the cusp and

callit 6(®) or o (M, V) if ® = G (M, V). Observe that X cannot be used

for the calculation of 6 according to (2) because it is not compact. If one
compactifies X by adding the point co, then one would get a compact
manifold X with OA; = N after resolving the singularity at co. This mani-
fold X could be used to calculate .

We have associated a rational number 6 (®) to any “cusp” of type
(M, V') with isotropy group ® where M is a complete Z-module of a totally
real field K of degree n over Q and V a subgroup of finite index of U,y If
V= Uy, we write (M) instead of 6(M, Uyp) = §(G (M, Uyy).

L’Enseignement mathém., t. XIX, fasc. 3-4. 15
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By definition, 6 (®) = 0 if n is odd
If we multiply M by yeK, then

o(yM,V) = sign N(y)-6 (M, V)

where N(y) = y®P -y . -9™ Namely, the map
z;1 9@ 2,0

with z;" = z; if y¥) >0 and z;” = z; if ¥ < 0 induces a diffeo-
morphism of W (d)/G(M,V) onto W (| N(y)|-d)/G@HM,V) of degree
sign N (y) which is compatible with the parallelizations, and it follows
from (2) that the invariant changes sign under orientation reversal.

In particular, 6 (M, V) = 0 if there exist a unit ¢ of K with eM = M
and N(e) = — 1.

Problem. Give a number-theoretical formula for o (A, V). This
problem can be solved for n = 2:

THEOREM. Let M be a complete Z-module of a real quadratic field
and [Usp : V] = a, then

a
(3) 5(M, V) =§[""(b0+b1+..+br__1) +3r]
where ((bo, ..., b,_1)) is the primitive cycle associated to M, (see 2.5).

Proof. The torus bundle N bounds X which is obtained by resolving
the singularity oo of XU oo where X = W(d)/G (M, V). The boundary
of W (d) is a principal homogeneous space (1.5). Therefore the normal
unit vector field of the boundary (defined using the orthogonal structure
of the tangent bundle of $? given by the invariant metric of $?) has constant
coefficients with respect to the parallelization of $2. The same holds for

the normal unit vector field of N = 9. By a classical result of H. Hopf

we can extend the normal field to a section of the tangent bundle of X
admitting finitely many singularities whose number counted with the

proper multiplicities equals the Euler number e ()f ). Because this section
is constant on the boundary with respect to the parallelization, it can be
pushed down to a section of the complex vector bundle ¢ (fibre C?) over
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X /N induced from the parallelization of the tangent bundle of X. There-
fore,

4 e(X) = ¢, (O[X, N]

where c¢; (&) e H*® (A-’ /N, Z) are the Chern classes. The equation (4)
follows from the definition of ¢, (&) by obstruction theory.
We have ([36], Theorem 4.5.1)

p1 (&) = ¢ (O* — 2¢;,(9)

and, since L; = p4/3,
1 - -
& M V) = ;p (LK, N] = sign (X)
1 - . 3
= 5(01 (&)* [X, N] — 2e (X)) — sign (X)

By the theorem at the end of 2.5, the manifold X is obtained from
X U oo by blowing up oo into a cycle of ar rational curves. X has the union

of these curves as deformation retract. Thus
(6) e(X) = by(X) — by (X) + b, (X)

=1—1+4ar = ar.

The intersection matrix of the curves is negative-definite:
(7 sign (i’ ) = — ar.

The cohomology class ¢ (¢) € H? ()~(, N; Z) corresponds by Poincaré

duality to an element z € H, (X, Z). Let us denote the rational curves of

the cycle by S; (j€ Z/arZ). Then z must be an integral linear combination
of the §; which satisfies

(8" 280 =SS +2=2 (ar = 1).

This follows from the adjunction formula and the information given
in 2.4. Since the intersection matrix of the curves of the resolution has
non-vanishing determinant, the equations (8) are satisfied by exactly one

element z. We obtain that the first Chern class c, (&) corresponds by
Poincaré duality to




(9) ‘ z = P

r—1
Since ¢, (§)*[X,N] =z-z= —a ) b;+ 2ar, formula (3) follows
0

from (5), (6), (7). g

3.3. We shall define an invariant ¢ for certain isolated normal singu-
larities of a complex space of dimension n. In my Tokyo lectures the
invariant ¢ was introduced for » = 2 and then generalized to arbitrary n
by Morita [59]. Let us first recall that the signature theorem (3.1 (1)) for
a compact complex manifold X can be written in terms of the Chern classes

(10) sign (X) = L, (cy, ..., ¢,) [X]

where L, is a certain polynomical of weight n with rational coefficients
in the Chern classes of X, (c;e H*' (X, Z)). It is identically zero if n is
odd. Let B, be the coefficient of ¢, in L,. If n is even (n = 2k), then

22k+1 22k—1 _1 B
(11) B = (1 Be 11

(2k) !
where B, is the k-th Bernoulli number ([36], 1.3 (7) and 1.5(11)). For
n odd, B, = 0.

An isolated normal singularity P of a complex space of complex
dimension 7z is called rationally parallelizable if there exists a compact
neighborhood U of P containing no further singularities such that the
Chern classes of U — { P} are torsion classes, i.e. their images in the
rational cohomology groups of U — { P} vanish. We may assume that
o0U is a (2n—1)-dimensional manifold and U the cone over 0U with P as
center. According to Hironaka [34a] the point P can be “blown-up”. We

obtain a compact complex manifold U which has a boundary as differen-
tiable manifold, namely oU = 9U. The Chern classes c; of U have vanishing
images in the rational cohomology of aif, thus can be pulled back to
classes c; e H*' (U, 8U; Q). The Chern numbers Ciy * Cjy o [U, oU]
where j; + ... + j, =n and s = 2 are rational numbers not depending
on the pull-back. Therefore, the rational number L, (cy, ..., C,) [U, U]
is well-defined if we replace in this expression ¢, [(}, 8l~]] by the Euler

number of U. The invariant ¢@ of the isolated normal singular point P
is now defined by
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(12) 0 (P) = L,(t1, ..., &) [U, 0U] — sign (U)

It can be shown (compare [59]) that ¢ (P) does not depend on the
resolution. By definition ¢ (P) = 0 for »n odd.

For a cusp singularity of type (M, V) the invariants 6 and ¢ coincide.
This follows from (4) with 2 replaced by n. The proof of (4) remains

unchanged for arbitrary n. Of course, X and X in 3.2 play the role of U

“and U here.

How to calculate ¢ for a quotient singularity? Let G be the group of
p-th roots of unity where p is a natural number. Let ¢, ..., g, be integers
which are all prime to p. Then G operates on C" by

(13) (z4y s 2> (T 2y, .., 0" 2), [P =1,
and C"/G is a normal complex space with exactly one singular point coming
from the origin of C”".

THEOREM. Let P be the quotient singularity defined by (p; qy, ..., qn)
where (p, q;) = 1 for all j, then

def(p;q4, ..., q, ,
(P; 41> | P

(14) @ (P) =
V4
where
p___l 7’C . .
(15) def (p; gy, s qn) = " ), cot W cot
ji=1 y4 p

is the cotangent sum arising from the equivariant signature theorem of Atiyah-
Bott-Singer ([2], [3]) and studied in [38], [79]. Recall that for » odd the
cotangent sum (15), the number S, and the invariant ¢ (P) all vanish.

The proof of (14) was given by Don Zagier and the author for n = 2
using the explicit resolution of the singularity ([35], 3.4). For arbitrary n
see Morita [59] whose proof uses the equivariant signature theorem and
is similar to a proof in [1] concerning a related invariant. It would be
interesting to check (14) also for » > 2 by an explicit resolution. But,
unfortunately, these are not known.

For a quotient singularity P we put

(16) 5(P) = op) = Pr = 4L a1, 4
P P
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Observe that the d-invariant in the sense of 3.1 (2) is not defined for a
quotient singularity because the boundary N of a neighborhood of such a
singularity is a lens space which in general does not admit a parallelization
of its stable tangent bundle. However, Atiyah [1] has defined ¢ (N, «)
by (2) if N is an arbitrary compact oriented differentiable (4k— 1)-dimen-
sional manifold without boundary and o an integrable connection of the
stable tangent bundle of N:

The connection « is extended to a connection « for the stable tangent
bundle of X (the extension being taken trivial in a collar of N). Then the
Pontrjagin differential forms p; of a vanish near N and in (2) the value

L, (py, ..., py) is an integral over a form with compact support in X. Again
0 (N, o) does not depend on the choice of X. If one takes in the special
case of a quotient singularity for N the lens space and for « the connection
inherited from the flat connection on the Euclidean space R* o S#*~1
(n = 2k) then 6 (N, a) equals the number 6 (P) in (16), (see [1]).

As an example, we calculate 6 (P) if P is the quotient singularity given
by (p; 1, p—1). Since p/(p—1) = [[2, ..., 2]] with p — 1 denominators 2
in the continued fraction, the resolution ([35], 3.4) looks as follows:

where S;-S; = — 2. The adjunction formula implies ¢; = 0.
Thus
6.2 [U,0U] — 2e (U
p(p) = L i ) _ siga v
— 35
= Z4p—1
3 p

2/3 —1D-(p=2
5(P) = o(P) + / =(p ) (p—2)
p 3p

Therefore

def(p; 1,p—1) _ (r—1)-(p-2)
p | 3p

(17)
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Let us recall

(18) def(p; 1,q) = — def(p; 1, —q)
def (p;1,q) = def(p;1,4') if q¢' = 1 mod p
To check the first equation (18) choose the quotient singularity (p; 1, 1).

The resolution consists of one curve S; with Sy - S; = — p. Therefore by
the adjunction formula ¢, is represented by a homology class a - S; with

aS1‘51 _-SI.SI = 2

- _ .~ —2)2
Thus a Y and ¢,*[U, 0U] = _(p ) . We get
p .
1 1 —2)? 2/3
—def(p;1,1)=—<——(p ) —4>+1+—/-
p 3 p p

- (=D (D)
D

which checks with (17) and the first equation of (18).

3.4. If I' 1s a discrete irreducible subgroup of (PL; (R))" satisfying
- the condition (F) of the definition in 1.5, then $"/I" has finitely many
quotient singularities and no other singularities. It is a rational homology
manifold, i.e. every point has a neighborhood which is a cone over a rational
homology sphere (in our case a lens space). For n = 2k the signature of
$2*¥/I" can be defined using the bilinear symmetric form over H,, ($%*/I"; R)
given by the intersection number of two elements of this homology group.

In $** we choose around each point z with |I',| > 1 a closed disk
with radius ¢ measured in the invariant metric and sufficiently small. Then

the image of these disks in $?*/I" is a finite disjoint union O D, where
v=1

Zq, ..., Zg are s points in $>* representing the s quotient singularities of
$**I', each D, can be identified with the quotient of the chosen disk
around z, by the isotropy group I,,.

Let x,,..,x, be a complete set of I'-inequivalent parabolic points.
Choose open sets U, as in the definition of 1.5 and denote their images
in $**/I by D, = U,I, . Then

(19) X=9*r— 34D, - 4D
= =1

X
v
v=1 v
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i1s a compact manifold with boundary whose signature (as defined in 3.1)
equals the signature of $3/I.

THEOREM. Let I' be a group of type (F) acting on $**. Then

20) sign (S#1) = ¥ 5() + % 3(x)

where zi, ..., z; are points of $H2* representing the quotient singularities of
9T and x,, ..., x, is a complete set of I'-inequivalent parabolic points.
For the invariants 6 (z,) see (16). Recall that the structure of each cusp
is determined by a group & = TI', (see 2.1 (1)). The number 6 (x,) is defined
as the number 6 (®) introduced in 3.2.

Proof. We first remark that sign ($2*/I') = 0 if I" operates freely and
92" is compact. This is a special case of the proportionality of $*/I"
and (P,C)**, see 1.2, and explains already why (20) does not involve a
volume contribution.

Let ¢; be the Chern classes of X and c; pull-backs to the rational coho-
mology of X/0X. Then the additivity of the signature and of the Euler
number and the validity of the signature theorem for the manifold obtained
by resolving all the singularities of the compactification of $*/I" imply

21) Ly (cy, oo €2 [X/0X] — sign X + ; ¢ (z,) + ; @(x,) =0

where ¢ is defined as in 3.3. In L,, (¢cq, ..., ¢5,) we have to interpret
¢, [X/0X] as Euler number e (X). By §1 (21)

e(X) = [o— Y a.()]r

$2k/T rz2
The coefficient of ¢,, in L,, equals B,,. Therefore by (21), (16) and
because ¢ (x,) = d(x,), (see 3.3),

(22) sign X = sign H**/I"
= Ly (C15 ovr Cop—1, @) [X/OX] + Zlé (z,) + Zlé (x,)

where o [X/0X] has to be interpreted as [w.
552k/1"
Let d; be the invariant differential form on $?* representing the

i-th Chern class in terms of the invariant metric of $?*. In fact d, is the
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) 1 dx; A dy,
i-th elementary symmetric function of the forms w; = — 7 ——J—)—Z———
j
(see 1.2). The form L, (dy, ..., d5;) is identically 0, because it is a symmetric
function in the w;* which vanish. Recall that d,; = . By (22) it remains
to show that
(23) E”..Z’JS[X/aX] — j d]l ...djs
352k/1‘
for ji + .. +j, =2k and s = 2. In the neighborhood of a parabolic
point (transformed to oo) we write
1 dx;

J

The form «; is invariant under the isotropy group of the cusp. In the
neighborhood of z, € $?* we introduce in each factor of $** geodesic
polar coordinates r;, ¢; with

1
(24) w; = — 5 sinh (r;) dr; A do;

J

where o; = — % (cosh (r;) — 1) do;

The form «; is invariant under the isotropy group I', . Take compact
manifolds X' <« X' <« X’ < X all defined as in (19) and each a compact
subset of the interior of the next larger one. We may assume that all the
o; are defined in H**/I' — X'"’. Choose a C*-function p which is 0 on
X' and 1 outside X’. Then pe; is a form on $**/I" minus singular points.
The form w; — d(pa;) has compact support in X. Thus the elementary
- symmetric functions in the w; — d (po;) represent the ¢; and the left side
of (23) becomes also an integral over $H?*/I". Recall that the d; are the
elementary symmetric function in the w;. By Stokes’ theorem the difference
of the two sides of (23) is a sum of expressions

(25) Hm | o A @y A e A@; Al A 0y
oD,

(26) lim ag 0 A @y Ao AD; A et A Wy
2y

where the limit means that the neighborhoods D, and D, become smaller
and smaller, (the number d in 1.5 (16) converges to oo, the radii of the
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discs converge to zero). The form in (25) is invariant under the isotropy
group of x, in the whole group (PL; (R))?*. Therefore, the integral equals
a constant factor times the (4k —1)-dimensional volume of 0D, .

But this volume converges to zero. In (26) for the limit process the
integral can be extended over the boundary of a cartesian product of 2k
discs of radius r divided by I',. Let W, be this cartesian product
divided by I', . Then

oA A A o

' sz J

A . A @y = (cosh(r) — 1)

which converges to zero for r — 0.

3.5. Suppose a cusp is of type (M, V), see 2.1. For n > 1 Shimizu
([71], p. 63) associates to the cusp a number w (M, V') which depends only
on the strict equivalence class M and the group V < Ujy:

- Let (f4,..., 8,) be a base of M. We define

d(M) = |det (,Bi(j))l.
Consider the function

sign N (p)

27 LM,V,s) =
7 ( & wem=toyv | N (W) |°

where N (1) = p* - u® - u™. (The summand in (27) does not change
if u is multiplied with a totally-positive unit. Therefore, it makes sense to
sum over the elements of M — {0} /V.) The function L (M, V,s) can
be extended to a holomorphic function in the whole s-plane C. Shimizu
defines

(— 12
(2n)'

(28) w(M,V) = d(M)-L(M,V,1)

We conjecture that also the invariant 6 (®) (see 3.2) depends only
on the pair (M, V). This is clear for n = 2. In 3.2 we have defined
OMM,V)=0(B)if & =GWM,V).

The two invariants 6 (M, V) and w (M, V) have similar properties.
For example, both vanish if there exists a unit ¢ of negative norm with
eM = M. Is there a relation between them? A guess would be, I hesitate
to say conjecture,

(?7) Mw(M,V) = 5(M,V)
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This would imply that w (M, V') is always rational. Even this is not
known in full generality. However, if M is an ideal in the ring of integers
of K, the number w (M, V) is rational. (As Gundlach told me this can be
deduced from his paper [24].)

The equation (?) is true for n = 2 as we shall see. This was the motivation
for Atiyah and Singer to try to relate the invariant § to L-functions of
differential geometry (Lecture of Atiyah at the Arbeitstagung, Bonn 1972).
Compare the recent results of Atiyah, Patodi and Singer.

THEOREM. Let K be a real-quadratic field, M a complete Z-module in
K and V < U,;. Then

(29) 4w(M,V) = 5(M,V).

“Proof”. Curt Meyer [55] has already studied w (M, V') in 1957. He
expressed it in elementary number-theoretical terms using Dedekind sums.
It turns out that 6 (M, V') as given in (3) equals Meyer’s expression. This
will be shown in [42]. Meyer’s formula can be found explicitly in [56] (see
formulas (6) and (11)) and in Siegel [75] (see formula (120) on p. 183).
For more information on the number theory involved we must refer to
[42].

3.6. For a non-singular compact connected algebraic surface S the
arithmetic genus is defined:

X(S) = 1 — d1 +92>

where g; is the dimension of the space of holomorphic differential forms
of degree j on S. In classical notation g; = ¢g and g, = p,. The first Betti
number of S equals 2g,. The numbers g; are birational invariants. There-
fore we can speak of the invariants g; and of the arithmetic genus of an
arbitrary surface possibly with singularities meaning always the corres-
ponding invariant of some non-singular model. We have ([36], 0.1, 0.3)

1
(30) 2 (S) = E(Cf + ¢) [S]

= (Cz [ST + %(03—202) [S]),

NG

(1) 1 (8) = — (e(S) + sign(S)),

1
4
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where e (S) 1s .the Euler number and sign (S) the signature of S. Thus the
arithmetic genus is expressed in topological terms, a fact which does not
hold in dimensions > 2.

Let I' be a discrete irreducible group of type (F) acting on $? (see
1.5). The compactification of $?/I" is an algebraic surface. A non-singular
model S is obtained by resolving the quotient singularities and the cusp
singularities. Then S is a union (glueing along the boundaries) of a mani-
fold X like (19) and of suitable neighborhoods of the configurations of
curves into which the singularities were blown up. For every manifold in
this union we consider the expression 1 (Euler number + signature). A
quotient singularity has a linear resolution ([35], 3.4) and therefore for
the neighborhood % (e + sign) = 1, a cusp singularity has a cyclic resolu-
tion and therefore 1 (e + sign) = 0 by (6) and (7). The signature and the
Euler number behave additively and thus in the notation of (19)

1(S) = ~ (e(X) + sign(X)) + 2.

o=

Since e (H?/I') = e(X) + s, we get

1
(32) x (8) =7 (e (9%/I) + sign (H2/D)

Using the formulas for e ($%/I') (see § 1 (21)) and sign (H?/T") (see 20))
we obtain

B =

33 2 =- [ o
$2/T

1
(5(Zv) +(I szl -‘1)|sz|) + ;14_15(36\))

Al o=

+ 2
v=1
We have proved the following theorem.

THEOREM. Let I' be a discrete irreducible group of type (F) acting on

$2. Then the arithmetic genus of the compactification $*/I" can be expressed
by topological invariants of $*/I': Four times the arithmetic genus equals
the sum of the Euler number and the signature of $*/I'. The arithmetic
genus is also given by (33) in terms of the Euler volume and contributions
coming from the quotient singularities and the cusps.
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Instead of x (S) where S is a non-singular model for $2/I" we shall

write ¥ ($%/I) or simply y (I'). Shimizu ([71], Theorem 11) calculated
the dimension of the space G () of cusp forms of weight r. A cusp form
of weight r is defined on $? by a holomorphic form a (z) (dz; A dz,)"
invariant under I" which vanishes in the cusps. If r is a multiple of all
IF ., |» then the Shimizu contributions of the quotient singularities are
independent of r and are exactly the contributions which enter in (33).

0 (x,)
4

. Therefore,

By (29) Shimizu’s cusp contributions are exactly the

we can rewrite a special case of Shimizu’s result in the following way.

THEOREM. The assumptions are as in the preceding theorem. Let r = 2
be a multiple of all the orders of the isotropy groups of the elliptic fixed
points (quotient singularities). Then

(34) dim S, () = ¢*=r- [ o+ x(D)
$2/T

Hence the arithmetic genus of $?/I" appears as constant term of the
Shimizu polynomial (compare [15], [26]).

Lemma. Let I' be a discrete irreducible group of type (F) acting on

$2. The invariant g, of the algebraic surface $*/I" vanishes. The number

2, (92/T) equals the dimension of the space Sy (1) of cusp forms of weight 1.

“Proof”. For gy, see ([14] Teil I, Satz 8) and [26]. For the result
on g,, we have to show that any cusp form of weight 1 can be extended
to a holomorphic form 0 of degree 2 on the non-singular model obtained

by resolving the singularities of $*/I'. A priori, we have a holomorphic
- form 0 of degree 2 only outside the singularities. It can be extended to the
- resolution of the quotient singularities ([14], Teil I, Satz 1).

) ) du, N dy
For a cusp singularity the form —~— ¥ does not depend on the
Uy,
coordinate system (see 2.2 (5)). The form 6 is a holomorphic function

du, A dv

f (4, v) multiplied with t. This follows from 2.3 (9) and the

Uy Vi
remark in 2.5. It is a cusp form if and only if f (i, v,) is divisible by
u,v,. Therefore, 6 can be extended.
By the lemma we have
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(35) | 1) =1+g ) =1+ dim&r(1)

The group I' operates also on § x $~ where $~ is the lower half
plane of all complex numbers with negative imaginary part. Since $? and
$H x 9~ are equivalent domains, our results are applicable for the action
of I' on § x $~. The map (zy, z,) — (z, z,) induces a homeomorphism

(36) ©:HC—>(HxH7)/T

It follows that I' (as a group acting on § x $7) is also of type (F).
Because x is a homeomorphism, the Euler numbers of (Hx$H7)/I" and
$?%/I' are equal. Since x is orientation reversing, we have

(37) sign(HxH7) /I = —sign$*/T

We have denoted the arithmetic genus of $H?/I" by y (I) and shall
put y~ (I') for the arithmetic genus of (Hx $H~)/I'. By (32), (35) and (37):

(8  x(M) =z () =dimS,(1) — dim Sr (1) = $sign $°/T,

where S (1) is the space of cusp forms of weight 1 for I’ on $ X ™.

Remark. The quotient singularities of $2/I" are of the form (r; 1, q).
Any such singularity corresponds under x to a singularity (r; 1, —g). A
cusp singularity of type (M, V') goes over into one of type (yM, V') where
N (y) = — 1. Therefore (37) agrees with (20): all contributions coming
from the singularities change their sign.

3.7. Let G be the Hilbert modular group for a totally real field
K of degree n over Q. The parabolic points are exactly the points of
P.K where P,K is regarded as a subset of (P;R)" by the embedding
x> (xD, x2 . x™), The group G acts on P,K. The orbits are in one-
to-one correspondence with the wide ideal classes of oy (two ideals a, b
are equivalent if there exists an element y € K (y#0) such that ya = b).

m :
If — e P,K (with m, n € ng) represents an orbit, then a = (m, n) represents
n

the corresponding ideal class. Thus the number of parabolic orbits (cusps)
equals the class number h of K. As in ([75], p. 244) we choose a matrix

(39) A=y, mv—nu=1luvea .
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A simple calculation shows that
- (40) A1 SL, (0g) 4 = SL; (0, a”),
- where, for any ideal b = pg, we set (compare [31])

41)  SL,(0gb) = {(35)| a6 —by = l,acog 6€0g, Beb™ ', yeb]

m .
Instead of studying the cusp of G at —, we can consider the cusp of
n
SL, (0g, a®)/{1, —1} at co. Its isotropy group is

{(G ) |eeUwea™2} /{1, -1} =
82“’)|an wea"?)} = G(a"? U?, see2.l.

m .
Thus the cusp of G at — with m, ne og and (m,n) = a is given by
n

the pair (a”™2, U?).
The extended Hilbert modular group G (see 1.7) has the same number
of cusps (we have (P,K)/G = (P,K)/G). They are given by (a~2, U™).
Let C be the ordinary ideal class group (i.e., the group of wide ideal
classes of og) and C™ the group of narrow ideal classes of oy (with respect
to strict equivalence: a, b are strictly equivalent if there exists a totally
positive y € K with ya = b). Then a+ a~? induces a homomorphism

(42) Sq:C — C*.

Both G and G have h cusps (h = | C| = h(K)). The corresponding
modules are the squares in C*, each module occurs k£ times where k is
the order of the kernel of S¢ and is a power of 2.

3.8. We consider the Hilbert modular group G and the extended
group G for K = Q (\/E ) with d as in 1.4. The cusp singularities of 52/(§

and 552/é are in one-to-one correspondence with the elements of C. They
admit cyclic resolutions. To resolve the cusp belonging to a € C we take

the primitive cycle ((by, by, ..., b, 1)) associated to Sg (a)e C* (see 2.5).
- This is already the cycle of the resolution if we consider the group G. For
G the cycle of the resolution is ((bo, by, ..., b,—1))° wWhere ¢ = |U* : U? |,

1
The cusp at o0 = 6€P1K has the module oy. For d = 2 or 3 mod 4

the corresponding primitive cycle is the cycle of the continued fraction
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- 1+ ./d
for \/d (see 2.6). For d = 1 mod 4 it is the cycle of —2\1_ We list

these primitive cycles for those d in the table of 1.7 for which K does not
have a unit of negative norm. Also the values of § (ogx) (see 3.2 (3)) and
of the class numbers 4 (K) are tabulated. If X has a unit of negative norm,
then 0 (og) = 0.

d cycle of Dy S(0g) | A(K)

3 (@) - 3 1

6 (2, 6)) - 2 1

7 (3, 6) -1 1

11 (2,2, 8) -1 1

14 (@, 8) ~ 2 1

15 (@) -3 2

19 (2,3,2,2,3,2,10)) — 1 1

21 (5) -3 1

22 ((4,2,2,2,4,10)) -2 1

23 ((5, 10)) -3 1

30 (2, 12)) -3 2
31 ((3,2,2,7,2,2,3,12) -3 1
33 (2,3,2,7) -2 1

34 (6, 12) ~ 4 2 z}'
35 ((12)) ~ 3 2 i
38 (2,2,2,2,2, 14)) -2 1

39 (2,2, 2,14)) -3 2
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3.9. In the next sections we study the signatures of $?/G and $?/G.
Because of (32) this gives also the arithmetic genera y (G) and x (G).

THEOREM. If K = Q (\/ d ) has a unit ¢ of negative norm, then

1
(43) sign $*/G = 0, x(G) = Ze(ﬁz/G)-

Proof. The actions of G on $H* and § x $~ are equivalent under
(z4, z,) > (624, 8'2,), (we choose & positive). The formula (43) follows
from (37) and (32).

The following lemma is a corollary of the theorem in 3.4.

Lemma. If K does not have a unit of negative norm, then

(44) sign $2/G = 215 (z,) + 2 Zcé (Sq (),
@) g 76 = Y 6G) + ¥ 8 (S1(a)

Where the points z, and z, represent the quotient singularities of $*/G and
$H2%/G respectively.

The contribution of the quotient singularities in (44) can be calculated
using [61], (see 1.7). In [61] not only the orders of the quotient singularities
of $?/G are given, but also their types (r;q;,q,), see (13). Since
def(2;1,1) = 0 (see (17)), we only have to consider the quotient singu-
larities of order r = 3. For d = 0 (3) the singularities of order 3 occur
in pairs, one of type (3; 1, 1) together with one of type (3; 1, —1). There-
fore, their contributions cancel out.
~ If d is divisible by 3, but d # 3, we have

(46) a3 (G) = 5h(Q(/ — d/3)) ford = 3 mod 9
a; (G) = 3h(Q(/ — d/3)) ford = 6mod9

4
In the first case 3 of the singularities are of type (3; 1, 1), the others

of type (3; 1, —1), in the second case all are of type (3; 1, 1). Therefore,
in both cases their contribution in (44) equals (see (17)):

L’Enseignement mathém,. t. XIX, fasc. 3-4, 16
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- 1 _
3h(Q(/ —d)3)) 'gdef(3; 1,1) = — %h (Q(/ - d/3)

For d = 3 there are two singularities of type (3; 1, 1) and one of type
(6; 19 _1):
d = 3 =sign $?/G 22+1O 21 0
= = S1 = — . — _ — i
. 9" 9 T3

We have proved:

THEOREM. [If K = Q (\/ ZZ_) does not have a unit of negative norm, then
(47)  sign$*/G =2 ) 6(Sq(a)) for d £ 0 mod 3
acC

sign H2/G = 0 ford =3

2
sign H2%/G = — §h(Q (/ —d/3)) + 2 Zcé (Sq (@)
for d = O mod 3, d > 3.

The group C™ of narrow ideal classes contains the ideal class 0
represented by the principal ideals (y) with N (y) < 0. If 6 is a square, then

(48) 2 zc 5(Sq (a)) = Zc 5(Sq (@) + Zcé(Sq (@) 0) =0

0 is a square if and only if d is a sum of two squares [25] which happens
if and only if d does not contain a prime = 3 mod 4.
In the contrary case, Y, 6 (Sq(a)) <0, see [27].

acC

THEOREM. Let G be the Hilbert modular group for K = Q(\/-c;).
Then sign $*/G = 0 if and only if d = 3 or d does not contain a prime
= 3 mod 4. In all other cases, sign H*/G < 0.

If the class number of K equals 1, then ) 6 (Sg(a)) = 6 (0g). If the

aeC

class number equals 2 and 0 is not a square in C*, then C* is a product
of two cyclic groups of order 2 and }’ & (Sq (a)) = 26 (vg). Using the

aecC
tables in 1.7 and 3.8 we have now enough information to calculate the

arithmetic genera y (G) for d < 41. The class numbers / (Q (,/ —d/3)) which
we need for d = 3, 6, 15, 21, 30, 33,39 are 1, 1. 2, 1, 2, 1, 2.
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d e ($2/G) | sign 92/G | x (G) d e (92/G) | sign (9%/G) | x (G)
2 4 0 1 22 16 —4 3
3 4 0 1 23 18 —6 3
5 4 0 1 26 20 0 5
6 6 —~2 1 29 8 0 2
7 6 =2 1 30 24 —-12 3
10 8 0 2 31 2 —6 4
11 10 = 2 33 6 —~2 1
13 4 0 1 34 24 0 6
14 12 =n ] 2 35 28 — 12 4
15 12 ~8 1 37 8 0 2
17 4 0 1 38 28 —4 6
19 14 —2 3 39 40 —~12 7
21 6 =2 1. 41 8 0 2

Estimates as in [40] and [42] show that y (G) = 1 only for finitely
many d. Are those in the table the only ones? If d is a prime p, then
¥(G) =1 if and only if p = 2,3,5,7, 13,17 (see 3.12).

The values for sign $?/G are also of interest because (see (38))

(49) dim &5 (1) — dim G4 (1) = — %Signsﬁz/G

Thus dim S; (1) = dim S; (1), where the inequality is true if and
only if d is greater than 3 and divisible by a prime p = 3 mod 4.

3.10. In view of the preceding theorems it is interesting to calculate
Y, 0 (Sq(a)). This was done in [27] for any d using the relation to L-series

aecC

as explained in 3.5. If dis a prime = 3 mod 4 the result is especially simple.

THEOREM. Let p be a prime =3 mod4 and p > 3. Then, for
K=Q(/p), we have

(50) ZC 6(Sq(a)) = —h(—p)
Proof. The formulas (27), (28) and (29) imply ([71], p. 69)

S
(51) zc 5(Sq (a)) = — J 4p L, p).
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Here y is the unique character with values in {1, —1} which is 1
defined for all ideals in pg, depends only on the narrow ideal class and |
satisfies yx ((«)) = sign N (o) for principal ideals ().

The function

% (@)
Lsp = Y o
agr;deal l N(C() |s
in oK
can be written as a product
(52) L(Sa X) = L-—4(S)L~—p(s)a

where L_, and L_, are the L-functions of Q (\/ j71) and Q (\/ _————E)
over Q. The product decomposition (52) belongs to a decomposition of
the discrimant 4p of K, namely 4p = (—4)(—p), and y is the genus
character corresponding to it ([75], p. 79-80). Evaluating (52) for s = 1
implies by a classical formula ([6], V' §4, p. 369)

2 . 2 _,
L(L,7) = S 47 2h(=4). 5 p™ 2 h(—p),

and this gives (50).
The formula (50) establishes an amusing connection between continued
fractions and class numbers. Ordinary continued fractions

1
ag + — 1
f#y f—
a, + .

will be denoted by [ay, a4, a,, ...]. Let p be a prime = 3 mod 4. Then
([60], § §24-26)

(53) \/—52 [a03a19a2:“'a23]9 aiéla

where a, = [\/ p ] and a,, = 2a,. The bar over ay, a,, ..., a,, indicates

here the primitive period. The continued fraction development for \/E
which we needed for the resolution is of the form
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— 1
\/p e aO + 1 o b_ 1 =~ [[ao + 1,b0, "'Dbr—‘l]]i

where the bar indicates again the primitive period. The primitive cycle
((bos .., b,y—4)) looks as follows:

(2,002, az +2, 2,..,2, 6y +2,..,2,..,2, a5, + 2))
al—r \—ag—l agg_1—1

This is shown by an easy calculation (see 2.5 (19)). For K = Q (ﬁ )
the signature deviation invariant & (og) is defined (see 3.2 (3)). We have

(54) ~3%) = ¥ -9 = T (~Da,
- By (50) and (53) we get:

Proposition. Let p be a prime = 3 mod 4 and p > 3. Suppose that
the class number of K = Q(\/; ) equals 1. Then

(55) ZJIV(—l)j a; = 3h(—p)

where (ay, ay, ..., Ay5), With a,, = 2 [\/;], is the primitive period for the
ordinary contained fraction development (53) of \/17 :

Example. p = 163, h(K) = 1

< 163 =1[12,1,3,3,2,1,1,7,1,11,1,7,1, 1,2, 3,3, 1, 24]

3h(—163) = 3-1 =
143-3+42—141-T7+1—114+1=7+1—142-3+3—1+24

For further information on these and more general number theoretical
facts see [42].

‘ 3.11. The theorem in 3.10 enables us to give very explicit formulas
- for the signatures of $?%/G and $?/G in terms of class numbers of imaginary

- quadratic fields if K = Q (\/1_;) and p a prime = 3 mod 4. (For the other
 primes the signatures vanish).
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THEOREM. Let p be a prime = 3 mod 4 and G the Hilbert modular \
group (G the extended one) for K = Q (\/ p). Then

sign $%/G = 0 forp =3
(56) sign $%/G = — 2h(—p) forp > 3
sign $2/G = 0 for p = 3 mod 8

sigh $%/G = — 2h(—p) forp = 7 mod 8

Proof. The first two equations follow from (47) and (50). For p > 3
the quotient singularities of order 3 in 552/é occur again in pairs (3; 1, 1),
(3; 1, —1) and cancel out in (45). For p > 3 and p = 3 mod 8, there are
h (—p) singularities of type (4;1,1) and 3k (—p) singularities of type
(4;1, —1). For p =7 mod 8 there are 2h(—p) singularities of type
4,1,1), see [61].

The sum of their contributions in (45) equals (see (17))

def(4; 1, —1

o (—p) L ; )~ h(—p) for p = 3 mod 8
def(4;1,1

Zh(—p)—i—(T—)= — h(—p) for p = 7 mod 8

By (45), sign $*/G = + h(—p) — h(—p).

It remains to consider the case p = 3. We have 3 quotient singularities
of order 2, there are 3 others of type (4;1, —1), (3;1, 1), (12;1, 5). By
Dedekind-Rademacher reciprocity ([38], (36)) and because def (5; 1, 12) = 0
(see (18))

def(12:1,5) 144+1+25 1

12 180 18
Therefore (see (17) and 3.8):

1
18

p = 3 =sign $%/G =

Ol

=0

W

+

N =

3.12. For any prime p we know the Euler numbers and the signatures

of $2/G and 532/(;7. Using 1.6 (21), 3.6 (32) and the theorem of 3.11 we
can write down explicit formulas for the arithmetic genera y (G) and

1 (G).
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THEOREM. Let p be a prime K = Q (\/;). Let G be the Hilbert modular
group for K and G the extended one. Then

¥ (G) =1 forp = 2,3,5

X(é)=l forp =3
For p > 5 we have

1 h(—4 1

X(G)=§CK(—1)+ ( p)—i—gh(——?ap) for p = 1 mod 4
1 3 I

X(G)=§CK(—1)+Zh(——p)+8h(—12p) for p = 3 mod 8
1 1

X(G)=§CK(——1)+811(——12p) for p = 7 mod 8

A 1 9 1 1
¥ (G) = ZCK(——I) +§h(—p) +§Iz(—8p) + Eh(—12p) for p = 3 mod 8

A 1 1 1
X(G):ZCK(_1)+§h(_8p)+1_§h(_12p) for p = 7 mod 8

The formulas at the end of 1.3 imply

1 1 X’
2p(—1) = 5.7:‘4D?<""CK(2) > o 4D L (4) = 1§0.

It is easy to deduce from this estimate that y (G) = 1 if and only if
p=2,3,57,13,17 and (for p =3 mod4) y(G) =1 if and only if
p = 3,7. Because of (38) and (56) we also know the arithmetic genera
of (H x H7)/G and (H X 55")/6} (p = 3 mod 4). They are equal to 1 if
p = 3, and both different from 1 if p > 3.

§4. CURVES ON THE HILBERT MODULAR SURFACES
AND PROOFS OF RATIONALITY

We shall construct curves in the Hilbert modular surfaces. They can
be used to show that these surfaces are rational in some cases and also
for further investigations of the surfaces ([41], [42]). Such curves were

studied earlier by Gundlach [23] and Hammond [25]. We need information
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