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Problem. Prove these congruences in the framework of elementary
number theory.

d| 2314 5]6 2D/ 2|3 ]4]|6]12|e®DHYO)|e(HYEC)
21 21 2| 2 16 | —| — | —| —| — 4 G=¢G
31 3| 2 1 1/3 30 1| 1 1 4 4
51 21 2 2. 17yis | — | — | — | — | — 4 G=G
6| 6| 3 1 5111 2| 1 6 6
71 4| 4 4/3 5121 2 6 6
10| 6| 4 713 | —| — | —|—=|— 8 G=0
1110 4 7/3 51 21| 4 10 8
13 21 4 13 |—|—|—=]—|— 4 G = ¢
14112 4 10/3 8| 2| 4 12 10
171 41 2 23 | — | —| — | —|— 4 G =0
19010 4 19/3 90| 2 14 12
20 4| 5 2/3 3| 2 1 6 4
2| 6| 8 233 |12] 4] 2 16 14
231 12| 8 20/3 71 4| 6 18 14
26 | 18| 4 253 | — | — | — | —| — 20 G=0G
29| 6| 6 1 S [N U N 8 G=0G
30 | 12 | 10 343 | — | — | — | —| — 24 9
31| 12| 4 403 | 11| 21| 6 22 18
33| 4| 3 2 71 1 1 6 6
34 12| 4 463 | — | — | — | — | — 24 9
35120 | 8 383 | —| — | —| —| — 28 9
37| 21 8 53 | —| —| —| —| — 8 G=6G
38118 | 8 413 16| 4| 6 28 22
39 | 16 | 10 523 | —| — | —|—|— 40 ?
41| 8| 2 83 | — | —|—|—|— 8 G=0

§ 2. THE CUSPS AND THEIR RESOLUTION
FOR THE 2-DIMENSIONAL CASE

2.1. Let K be a totally real algebraic field of degree n over Q and M
an additive subgroup of K which is a free abelian group of rank ». Such a
group M is called a complete Z-module of K. Let U,; be the group of
those units ¢ of K which are totally positive and satisfy eM = M. Any
o e K with aM = M is automatically an algebraic integer and a unit.
The group U,; is free of rank n — 1 (compare [6]).
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Two modules M,, M, are called (strictly) equivalent if there exists a
(totally positive) number A€ K with AM,; = M,. Of course, Uy, = Uy,
for equivalent modules.

According to [71] p. 45, Theorem 4, for any parabolic point x of an
irreducible discrete subgroup I" of (PL™ (R))" with $"/I" of finite volume
the element p € (PL™ (R))" with px — co can be chosen in such a way
that the group pI'.p~ ! (see 1.5 (15)) is contained in PL* (K) = (PL™ (R))"
~where K is a suitable totally real field. Then we have an exact sequence

0O-M-opl ptoV->1

where M is a complete Z-module in K and V is a subgroup of U,; of rank
n — 1. The field K, the strict equivalence class of M and the group V are
completely determined by the parabolic orbit and do not depend on the
choice of p.

It can be shown more generally ([71] p. 45, footnote 3) that there exists
a p e (PL3 (R))" such that pI'p~' < PLJ (K), provided there is at least
one parabolic orbit. Therefore, the field K is the same for all parabolic
orbits. The conjecture of Selberg (1.5 Remark) remains unsettled, because,
if we represent the elements of pI'p~! by matrices with coefficients in
Dg, we have no information on the determinants of these matrices.

A parabolic orbit will be called a cusp. We say that the cusp is of zype
(M, V). If x is a point in the parabolic orbit, we often say that the cusp
1s at x. Sometimes the cusp will be denoted by x.

For a given pair (M, V) with ¥ < U,; (where V has rank n — 1) we
define

GM,V)={(})|eeV,ueM} = M >V (semi-direct product)

For n = 2, the element p € PL} (R)" can be chosen in a such a way
that pl.p~ ' = G (M, V).

Let K be a totally real field of degree n over Q, let M be a complete
Z-module in K and V" a subgroup of U,; of finite index. Suppose ® is a
group of matrices (§ %) (with ee V, pe K, and pe M for ¢ = 1) such that
the sequence

(D O-M->6G->V->1

1s exact.

The group ® operates freely and properly discontinuously on §". We
add one additional point oo to the complex manifold $"/G. A complete
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system of open neighborhoods of co in the new space "/ = H"/G U ©
1s given by the sets

) (W(d)] B) L

where, for any positive d,
(3) W)= {z|ze9", [] Im(z)) > d}
ji=1

The local ring O (®) at oo is defined as the ring of functions holo-
morphic in some neighborhood of oo (except c0) and continuous in co.
For n > 1 the condition “continuous in o” can be dropped ([71], p. 50,
lemma 7). ,

If ® =GWM, V) we put O(®) = O (M, V). We shall only give the
structure of O (M, V) explicitly. For n = 2 this is no loss of generality.
The ring O (M, V) has the following structure:

Let M* be the complete module in K which is dual to M: An element |
x € K belongs to M* if and only if the trace tr (xa) is an integer for all
ae M. We recall that

n
tr(xa) = Y x@Pg¥»
=1

Let M** be the set of all totally positive elements of M. The local
ring O (M, V) is the ring of all Fourier series

(4) f = aq¢ + Z a, 'ezni(x(l)zl"'-""‘x(")Zn)a
xeM*t

for which the coefficients a, satisfy a,, = a, for all eeV, and which

converge on W (d) for some positive d depending on f.

Proposition. The space $H"/® with the local ring O (®) at o is a
normal complex space.

This is known for n = 1, of course. For n = 2 we have to check
H. Cartan’s condition ([67] Exposé 11, Théor¢me 1) that there is some
neighbourhood U of oo such that for any two different points p,, p, €
U— {0} there exists a holomorphic function f in U — { o0} with
f(py) # f(py). If ® occurs as group pl'yp~ ' for some cusp of a group I'
satisfying condition (F) of 1.5, Cartan’s condition is proved in the theory
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of compactification (0.3) by the use of I'-automorphic forms. The group
G (M, U,y) occurs in such a way. Namely, M is strictly equivalent to an
ideal in some order o of K (see [6]) where 0 = {xeK|x M < M }. There-
fore, we may assume that M is such an ideal. The cusp at co of the arith-
metic group (commensurable with the Hilbert modular group)

{(:g)ld,ﬁ,?,éED,ﬁEM,O(é —;ByEUI\;}

has the isotropy group G (M, Ujp).

As W. Meyer pointed out to me, the group H* (V, M) —the set of all
equivalence classes of extensions over V with kernel M and belonging to
the action of ¥ on M—is finite. (It vanishes for n < 2.) This implies the
existence of a translation pePL," (K) with pz = z + a such that

~ ~ 1 .
pGp~ !t = G(M, V) where M = : M and k is the order of the extension

' ® as element of H? (V, M). Therefore p®p~' is commensurable with
G (M, U,,), and it follows from general results on ramifications of complex
spaces [18] that $"/® is a normal complex space. (See also 0.7 for quotients
of normal complex spaces).

Remark. It would be interesting to check Cartan’s condition directly
using only the structure of the ring O (®). It seems to be unknown if
every & occurs for a cusp of a group I' of type (F). We shall call the

point co of the normal complex space $"/® a “cusp”, even if it does not
occur for a group I.

The point oo (with the local ring O (®)) is non-singular for n = 1.
Probably it 1s always singular for n = 2. This was shown by Christian [11]
to be true for the cusps of the Hilbert modular group of a totally real field
of degree n = 2. For n = 2, see [21].

Our aim is to resolve the point co of H?/G (M, V) in the sense of the
theory of resolution of singularities in a normal complex space of dimen-
sion 2 (see, for example, [35], [49]). This will be done in 2.4 and 2.5. The
resolution process shows that oo is always a singular point.

It remains an open problem to give explicit resolutions also for n > 2.

If T is a discrete irreducible subgroup of (PLj (R))" satisfying the
condition (F) of the definition in 1.5, then $”/I" can be compactified by
adding ¢ points (cusps) where # is the number of I'-inequivalent parabolic
points of I'. The resulting space is a compact normal complex space. It
is even a projective algebraic variety (0.3).
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2.2. In the next sections we shall consider the case n = 2, construct
certain normal singularities of complex surfaces and show that they are
cusps in the sense of 2.1. The construction will be very much related to
continued fractions.

Consider a function k> b, from the integers to the natural numbers
greater or equal 2. For each integer k take a copy R, of C? with coordinates
Uy, V. We define R, to be the complement of the line #, = 0 and R, to be
the complement of v, = 0. The equations

(5) Uprr = UM
Vg1 = iy
give a biholomorphic map ¢, : R, = R, 44
In the disjoint union U R, we make all the identifications (5). We get
a set Y. We may now consider each R, as a subset of Y. Each R, is mapped

by (u;, v;) bijectively onto C>. This defines an atlas of Y. A subset of Y
is open if and only if its intersection with each R; is an open subset of R;.

Lemma. The topological space Y defined by (5) satisfies the Hausdorff
separation axiom.

Proof. Denote the map R; - C? by ;. Let k be an integer. According
to Bourbaki [7] p. 36, we have to show that the graph of

(6) ¢j+kol//j_1 :l//j(RjnRj+k) "”ﬁj+k(ijRj+k)

is closed in ¥, (R;) X ¥4, (R;+) = C? x C?. Without loss of generality
we may assume j = 0 and k > 0. The map v, ° ,” ' is given by

(7 U = Uo* - v™*

where
(cp e )= (%" 0) - (% 0) - (h o)
and
Pk ; 1
A
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Dw i are coprime., We define p, = 1, g, = 0 and have

Pr+1 = biDr — Pr-1 fork =z 1,
Ger1 = beDr — Pr+1 fork =1,
P> Golis1 >0k 2= Lgee1 > ¢, 20, fork 2 0.
The intersection R, N R, as subset of R, is given by uy # 0, vy # 0

for k = 2 and by u, # 0 for k = 1. The graph of - Yo~ " (see (6)) is
given by

U, = uopk . 'quk, vk . uopk-—l . vOQk—--l — 1
uO 75 Oa 7}0 # 0 . (k g 2)

But the inequalities follow from the equations. Therefore the graph is
closed in C* x C2. This finishes the proof of the lemma. The negative
exponents in the second line of (7) were essential.

The argument would break down, for example, if k = 6 and b; = 1
for 0 < i <5, because (-1 0)° = 51)-

The topological space Y obviously has a countable basis. For any
function k — b, = 2 we have constructed a complex manifold Y of com-
plex dimension 2. In Y we have a string of compact rational curves S,
non-singularly embedded (k € Z). The curve S is given by u,,; = 0 in
‘the (k+1)-th coordinate system and by v, = 0 in the k-th coordinate
‘system. S, S;+; intersect in just one point transversally, namely in the
origin of the (k+1)-th coordinate system. S;, S, (i<k) do not intersect,
if kK — i 1. The union of all the S, is a closed subset of Y.

Lemma. The self-intersection number of the curve Sy equals — b,.

Proof. The coordinate function u,,,; extends to a meromorphic
function on Y. Its divisor is an infinite integral linear combination of the
S; which because of (5) contains S,_; with multiplicity b,, the curve S,
with multiplicity 1 and the curve S, ; with multiplicity 0. The intersection
number of S, with this divisor is zero. Since it is also equal to b, + S, - S|,
the result follows.

Remark. The construction of Y is analogous to the resolution of a
quotient singularity in [35], 3.4. For technical reasons we have changed

L’Enseignement mathém., t. XIX, fasc. 3-4. 14
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the notation by shifting the indices of S, and b, by 1. This should also be
taken into account when comparing with [39], § 4.

2.3. Let us assume that the function k+— b, = 2 of 2.2 is periodic,
1.e. there exists a natural number r = 1 such that

bk+r = bk‘

Continued fractions of the form

shall be denoted by [[ay, ..., a]]; similarly, [[ao, a4, a,,...]] stands for
infinite continued fractions of this kind. For our given function k = b, = 2
we consider the numbers

(8) We = [[be besrs -], keZ.

The wy are all equal to 1 if b; = 2 for all j. Therefore, we assume
b; =z 3 for at least one j. Then all w, are quadratic irrationalities which
are greater than 1. They satisfy w,, , = w, and all belong to the same real
quadratic field K. We consider the complete Z-module

M=2Zw,+Z.1cK

Let x +— x’ be the non-trivial automorphism of K. Thus x = x‘¥) and
x" = x*» in the notation of 1.3. The module M acts freely on C? by
(z4,2,) = (z;+a,z,+a’") for ae M. For our function j— b; = 2 we have
constructed in 2.2 a complex manifold Y. We now define a biholomorphic
map

d:Y—- v S;->CM

jez
D : (ug, Vo) P> (24, 2,)
by
9) 2nizy = wglogu, + logv,
2miz, = wologu, + logv,

The logarithms are defined modulo integral multiples of 2xi, thus
(z4, z,) 1s well-defined modulo M. Observe that
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Y—‘ USJ={(Uo,vo)lu0?éO,v07éO}
. jez
Since the determinant ! ‘1”0 f"" # 0, we can solve (9) for logu, and

log v, and obviously have a biholomorphic map. The map & can be written
down with respect to the k-th coordinate system (k € Z). The result is as

follows.
Put A, = 1 and A,,, = weyy - 4. This defines A4, inductively for

| any integer k:

Ay = (Wiwy.ow) tfor k=1, A_, = wow_q..w_;4q for k =1,

0< A, <A, for keZ, A, # 1 for k # 0.

and

Formula (8) implies w, = b, —
Wi +1

(10) by A, = Aj—1 + Aty

For any integer k, the numbers 4,_,, 4, are a basis for M. From the
coordinate transformations (5) we get the expression for the map & in
the k-th coordinate system

(11) 2nizy = A,_ logu, + A, -logy,
2ni22 = A;{"l 'log uk + Al/( * log ‘Z)k
We had assumed that the b; are periodic with period r which implies
Wi+, = w, for any k. Therefore, 4, ! equals the product of any r consec-
utive w; which gives
(12) Ak+r = ArAk fOI‘ any kEZ
4,) = A4,, for any ne Z.
This implies that A,.M = M. Therefore A, is an algebraic integer and

a unit # 1.
If we apply the non-trivial automorphism of K to the equation

1
W, = b, — and use the periodicity we get
Wi +1
/_1 1
(13) Wit1 = by — )
Wi

Wllc:-i = I:[bkabk—la“']] >}




— 208 —

Therefore,
(14) O<w,<l<w, forkelZ.

Thus the w; and the A4, are totally positive. Let ¥ be the (infinite cyclic)
subgroup of U,; generated by 4,. Thus we have associated to our function
Jb> b; = 2 (at least one b; = 3) and the given period r (which need not
be the smallest one) a pair (M, V) and a group G (M, V) (see 2.1) which
determines a cusp singularity. We shall use the complex manifold Y
constructed in 2.2 for a resolution of this cusp singularity.

We restrict ¢ to the open subset @~ (H?/M) of Y. According to (11)
this set is given by

Ak_l'logluk‘ +Ak'10glvk| <O
Ay log|u, | + 4 -log|v, | <0

Since v, = 0 or u,,; = 0 for a point on S, and the above inequalities
do not depend on the coordinate system, it follows that

Yt =& H($2/M)u U S,

keZ

1s an open subset of Y. The group
V = {(A,)”lneZ}

acts on Y as follows:

(4,)" sends a point with coordinates u,, v, in the k-th coordinate system
to the point with the same coordinates in the (k4 nr)-th coordinate system.
Because of the periodicity b;,, = b;, this is compatible with the identi-
fications (5). Therefore the action of the infinite cyclic group V on the
complex manifold Y is well-defined. We have the exact sequence

0O-M->GM,V)->V >1

Thus V acts on $H2/M. On the other hand we have a biholomorphic
map
:Y " — U S, - HHM

keZ

Lemma. The actions of V on Yt and $*/M are compatible with &.

Proof. If a point p has coordinates u, v, in the k-th system, its image
point (z;, z,) under & is given by (11). If we let 4, act on p, its image point
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is mapped under @ (use formula (11) for the (k+r)-th coordinate system
and (12)) to (4, z,, 4, z,).

Lemma. The action of V on Y™ is free and properly discontinuous.

Proof. In view of the preceding lemma the action is free on

Y* — U S,. By 47 (assume n # 0) a point on S, is mapped to a point
keZ
on Sy, If it is fixed, it will be an intersection point S;_; N S; of two

consecutive curves, but this point is carried to ;i1 O Sjip,

To prove that V is properly discontinuous we must show that for
points p, g on Y™ there exist neighborhoods U, and U, of p and ¢ such
that gU; n U, # o only for finitely many ge V. Since V acts properly

discontinuously on $?/M and U S, is closed in Y ¥, this is clear if p and
keZ

g both do not belongto U S,. If pe U S, and g ¢ U S, we use the func-
keZ keZ keZ

tion 9.
For (z,,2,)e $* put p(z;,2,) = Imz, -Imz, and set

Uy ={ulueY ', pdu) <pd(p) +1},

and let U, be the complement of U, in Y™ .
Then U,nU, = ¢ and gU, = U, for geV.

Now suppose both points p and g lie on U S,. It is sufficient to prove
keZ

the existence of neighborhoods U; and U, of p and g such that
gU;n U, # o for only finitely many g = (4,)" with # < 0. Recall that
A, generates V. If g lies on S; and in the j-th coordinate system and p
on S, and in the k-th system, then a neighborhood U, of ¢ is given by

1
0 < |u;| <=,|v;] <e (for e sufficiently small).
g
A neighborhood U, of p is given by
1
0= |ul< = |v,| <& (for ¢ sufficiently small).

Suppose that |n| >k —j+ 1. Then a point (4,v,) in the k-th
system is mapped under (4,)" (n<0) to a point (u;,v;) in the j-th system
if and only if
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(15) u; = ul

where a, b, ¢, d are non-negative integers and ¢ > d. In fact (_g _Z) is a
matrix of type (7) depending on n, of course. If the points (u;, v;) and
(uy, v,) lie in the chosen neighborhoods of p and ¢ we obtain from (15)
the inequality

g7l <« 1

which is not true for ¢ < 1. Therefore, the image of U; under (4,)" does
not intersect U, for n <0 and |n| = k—j + 1.

Remark. The elements of M = Zw, + Z can be written in the form
y — xw, with x, ye Z. The number y — xw, is totally positive if and
only if

y—xwe>0 and y — xwy >0

Since w, > 1 > wy > 0, the totally positive elements of M correspond
exactly to the integral points in the (x, y)-plane which lie in the quadrant
(angle < 180°) bounded by y — xwy, = 0 (x=0) and y — xwy = 0 (x<0).
If we write 4, = p, — g, wo, then for k = 0 these are the p,, g, of 2.2.
We have

. pk . pk ’
lim — = wy, lim — = wy

k> i k—>—oo (g
More precisely, it can be shown [12] that the A, are exactly the lattice
points of the support polygon, i.e. the polygon which bounds the convex
hull of the lattice points in the above quadrant. It follows [12] that every
totally positive number of M can be written uniquely as a linear combina-
tion of one or of two consecutive numbers A4, with positive integers as
coefficients.

2.4. In section 2.3 we have constructed for a periodic function
k— b, =2 (with b; 2 3 for at least one j) a complex manifold Y™
together with a free properly discontinuous action of an infinite cyclic
group ¥V on Y ™. The orbit space Y */V is a complex manifold. The curve
S, in Y was mapped by the generator 4, of V onto the curve S, ., where
r was the period. Thus S, and S, ., become the same curve in Y /V. We
shall denote the curves in ¥ */V again by S, (k € Z) with the understanding
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that we have S, = S, ,. We havein Y */V for r = 3 a cycle So, Sy, -es Sp—1
of non-singular rational curves such that S, and S intersect transversally
in exactly one point (ke Z/rZ) and the selfintersection number S - .S
equals — b,. Otherwise there are no intersections. The configuration is
illustrated by the diagram:

3,

r = 5 in this example

- (16)

~
1\

There are two transversal intersections of S, and 5.

If r = 1, there is a special situation because the curves S, and S; of
Y* intersect transversally in one point and S, and S; become identified
under V. Thus under the map Y™ — Y /I the string of rational curves

S, is mapped onto one rational curve S, in Y */V with one ordinary
double point (which was previously also denoted by S, but must here be
distinguished).

0

(18)

Lemma. For r = 1 we have in YTV

-—510‘5’0 =b0'—2

Proof. Let ¢; and c¢; denote the first Chern classes of Y* and Y /I
respectively. Let n be the map Y ' — Y */V. Then n*c, = ¢, and

61 (Sdo) = ¢; (So)
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where we evaluated the first Chern classes on the cycles S‘O and S,. By
the adjunction formula (0.6)

¢1(So) = So*So =2
CI(SO)—SO-S;O +2 = 2.

The summand 2 on the left side of the second formula is the contribu-
tion of the double point of S, in the adjunction formula. We get

So So = Sy Se +2 = —bhy+2

which completes the proof.

By ((bos by, .., b._1)) we denote a cycle of numbers. (A cycle is given |
by an ordered set of r numbers. Two ordered sets are identified if they
can be obtained from each other by a cyclic permutation.)

For any cycle ((by, by, vy 1)) of natural numbers = 2 (at least
one b; = 3) we have constructed a complex manifold Y[V which we
shall denote now by Y (b, ...,b,_1)).

In this complex manifold of complex dimension 2 (we shall often say
“complex surface”) we have a configuration (16), (17) or (18) of rational
curves. The corresponding matrices of intersection numbers are

— by, 1 o ... O 1
0 1
forr > 3
O o o 1""‘br_21
1 o ... O 1 —b,_,
and
(;bo 2_,,1) forr =2

By the lemma we have for r = 1 the 1 x l-matrix (—by+2). It is
easy to show that these matrices are negative definite in all cases.
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If all the b, of a cycle equal 2, then the matrix is negative semi-definite
with a null-space of dimension 1. Thus to get negative definiteness we do
need the assumption b; = 3 for at least one j.

The negative definiteness implies, according to Grauert [17], that the
configurations (16), (17) or (18) can be blown down to give an isolated
normal point P in a complex space Y ((bo, ..., b,—1). We have a holo-
morphic map

0. Y((bo: sees br—l)) -Y ((boa *d uy br—l))

with
r—1
k=0
The map
r—1

7Y ((bos o bry)) = U Si Y ((bgs - brey)) — (P}

is biholomorphic. The configurations (16), (17), (18) represent the unique
minimal resolution of the point P, because they do not contain exceptional
curves of the first kind, i.e. non-singular rational curves of selfintersection
number — 1. Thus the point P is singular.

The first lemma of 2.3 shows that we have a natural map

Y ((bos - » byy)) = H3/G (M, V)

and a commutative diagram

Y (bos - by y)) = H2/G (M, V)

lo o
Y ((by, ... ,b.—1))

where ¢ is biholomorphic and ¢ (P) = oo (in the notation of 2.1). The
map o is biholomorphic also in P because one can introduce at most one
normal complex structure in $?/G (M, V') extending the complex structure
of $%/G (M, V).

We have established the existence of the normal complex space
$?/G (M, V) directly without using the Proposition given in 2.1. We need
only define ¢ to be biholomorphic. Also we have given the resolution of

the singular point co which was added to $2%/G (M, V). We summarize
our results:
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TueOREM. Let ((bo, by, ..., b,_1)) be a cycle of natural numbers = 2
(at least one b; = 3). Put

wo = [[bo, .. by_1.bg, oes byy, ]| = [[bo,..., r—1]]

(infinite periodic continued fraction). Then K = Q (w,) is a real quadratic
field and M = Zwy + Z..1 a complete Z-module of K. The cycle
((bo, --» b,—1)) determines a totally positive unit A, of K with A.M = M.
The unit A, generates an infinite cyclic subgroup V of Uy, the group of all
totally positive units ¢ of K with eM = M. The unique singular point oo

of /G (M, V), where G(M,V) is the natural semi-direct product of M

and V, admits a cyclic resolution by rational curves S, (configuration (16),
(17) or (18) ) with selfintersection numbers S, S, = — b, (for r =1 we

have SO So = — by + 2). This resolution is given by the complex surface
Y ((bgs -es by 1)) which we canonically associated to a cycle.

Remark 1. Laufer [50] has shown that two normal singular points
(in complex dimension 2) which admit a resolution with a given cyclic
configuration of rational curves of type (16), (17) or (18) and given self-
intersection numbers are isomorphic. Hence the singularity P of
Y ((bgs s by 1)) which we have constructed is up to isomorphism the
unique singularity with the given cyclic configuration of rational curves
and the given selfintersection numbers. (These singularities are called
cyclic singularities.) Reversal of the cycle gives an isomorphic singularity.

Remark 2. The construction of Y in 2.2 applies also to the case where
all b, equal 2. Then we have u; - v; = u;, - v, (compare (5)) and hence obtain
a holomorphic function f: ¥ — C. As in 2.3, we have a properly discon-
tinuous action of an infinite cyclic group ¥ on Y* = {p|pe?,|f(p)| <&},
for ¢ positive and sufficiently small, whose generator maps the curve S, to
S+, The period r = 1 can be choosen arbitrarily.

The function f is invariant under V; thus we get a holomorphic map

f:Y |V o{z]|z| <e}

All fibres of f are non-singular elliptic curves except f ~* (0) which is
a configuration of rational curves of type (16), (17), (18) where now all
b, equal 2. The fibring we have constructed is of type ;/, in the sense of
Kodaira [45], Part II. We have seen:
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Cycles ((2, ..., 2)) give an infinite continued fraction of value 1 and
correspond to an elliptic fibring. Cycles ((boy -ovs br—1))s (b = 2, at least
one b; = 3), give an infinite continued fraction whose value is a quadratic
irrationality. These cycles determine singular points.

2.5. The theorem in 2.4 actually provides a resolution of the singular

point of $*/G(M,V) (see 2.1 with n = 2) for any complete Z-module
M of a real quadratic field K and an infinite cychc subgroup ¥V of U,; of
any given index a = [Ujy : V]. We need a lemma.

Lemma. Consider the Z-module M defined by a periodic function
ks b, =2 (with b; = 3 for at least one j). Let r 2 1 be the smallest
period. Then A, (see 2.3) is a generator of U s

Proof. We shall denote ordinary continued fractions

+1 1

a PR

0 1+_
a, + .

by [ay, a;, a,, ...]. The relation between the two types of continued fractions
is as follows:

(19) [ag,as,z] = [[ao +1,2,...,2,2z + 1]]

N e, et

aj—1

where z is an indeterminante and @; a natural number > 1. Using (19)
the lemma can be derived from similar results for ordinary continued
fractions (compare [6], Kap. II, § 7). A proof is also given in [12]. Another
proof was communicated to the author by J. Rohlfs.

Two complete Z-modules M,, M, of the same real quadratic field K
are strictly equivalent (2.1) if there exists a totally positive number o € K
with oM, = M,. We have UM1 = UM2

The actions of G(M,,V) and G(M,,V) on H? are equlvalent under
the automorphism (zy, z,) = (xzy, az,) of $*. Any module M, is strictly
equivalent to a module of the form M, = Zw, + Z - 1 where w, € K and
0 < wo < 1 < wy. (This is easy to prove, as was shown to me by H. Cohn.)
Then the continued fraction wo = [[by, by, ...]] is purely periodic, i.e.
periodicity starts with b,. This can be proved in the same way as an analogous
result for ordinary continued fractions ([60], § 22). Let r be the smallest
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period. We can resolve the singularity of $?%/G (M,, U j}2) by the method
of 2.3 and 2.4, since by the preceding lemma Uy, = {(4,)" | neZl}. The
resolution is described by the primitive cycle ((bo, ..., b, - 1)) where primitive
means that the cycle cannot be written as an “unramified covering” of
degree > 1. The cycle ((2, 3, 5,2, 3,5)) = ((2, 3, 5))? is not primitive, for
example.

For any primitive cycle ((b,, ..., b,_,)) we obtain a module Zw, + Z - 1
with wy = [[bo, by, ...]]- In the cycle we must allow cyclic permutations.
This changes the module to a module Zw, + Z - 1 (see 2.3). But Zw, + Z - 1
= ZA,_ | + ZA, and A,_,/A, = w,, where A, is totally positive (see 2.3).
Therefore, the strict equivalence class of the module only depends on the -
cycle. If one reverses the order. (orientation) of the cycle, the associated
equivalence class of modules is replaced by the conjugate one (see (13)).

If we start from a strict equivalence class of modules, it determines,
as explained above, an isomorphism class of singularities (represented by
the singularity of $?%/G (M, Uyy,)).

But isomorphic singularities must give the same unoriented cycle in
their canonical minimal resolutions. “Unoriented” means that we cannot
distinguish between ((bo, ..., b,—1)) and ((b,_1, ..., by)). But, in fact, if we
represent the class of modules as above by M, = Zw, + Z - 1, then the
cycle of wy is uniquely determined including the orientation. If this were
not the case, it would follow that M, and M, are strictly equivalent. Then
the singularity and its resolution admit an involution showing that the
cycles ((b, ..., b,—1)) and ((b,_y, ..., by)) are equal. (Details are left to
the reader. The relation between strict equivalence classes of modules and
primitive cycles can be derived, of course, also without using the resolution,
compare 2.6.)

We have established a bijective map between primitive admissible cycles
(all b, = 2 and at least one b; = 3) and the strict equivalence classes of
complete Z-modules (where the real quadratic field K varies).

The preceding discussion yields the following theorem.

THEOREM. Let K be a real quadratic field and M a complete Z-module
in K. Let ((bo, by, ..., b,_,)) be the primitive cycle belonging to M. Let V
be the subgroup of Uy of index a. Then the resolution of the singular point

of H*/G(M,V) is given by the cycle ((by, by, ..., b,—1))".
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Remark. The structure of the local ring O (M, V') at the point oo of

$2/G (M, V) was described in 2.1. For any admissible cycle (b, ..., b,-1)),

not necessarily primitive, the functions fe O (M, V) can be written as

power series’ in u,, v, wWhere ug, v, is the coordinate system of 2.3 (11)

with 4, =1 and A_; = wy = [[bo, ..., b,—4]]- We could use also any
other coordinate system 4, v,.

Let (ug,v0)" = up™ -v," for n = (ny,n,) and

Tn = <—q'"1pr'1) <n1>, see 2.2 (7),
—q4y D» 7 ny

then O (M, V) is the ring of all power series’
f =ay+ Zan(uo,‘vo)"

' where the summation extends over all pairs n = (n,, n,) of positive integers
with wy < ny/n, £ w,, the coefficients satisfy a;, = a,, and the power
series converges for

wolog [uo | + log |, | < 0, wglog [ uo | + log 7| < 0
, 1
(Wologluol + log | v, l)'(Wologluol + log | v, l) >2,

~ (the positive constant ¢ depending on f).

Observe that T (as fractional linear transformation) maps the intervall
[wo, wo] bijectively onto itself (Twy = wg, Twy = w,). We have Tx < x
for we < x < w, and therefore

lim T*x = wy (for wg < x < wp) and lim T*x = w, (for wy < x < wy)

k— o0 ) k—— o

Example. Consider the Fibonacci numbers
v, — 8,5, —3,2,—-1,1,0,1,1,2,3,5,8,13

where Fo =0, F; =1 and F,,, = F, + F,_, (keZ). The numbers
Gy = Fyrvq (ke Z) are all positive and satisfy Gy, = 3G, — G,_,.
The function
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represents an element of O (M, U;;) where

M= Zw,+Z and w, = [[3]] = +(3+./5).

2.6. 'The primitive cycle associated to a module M can be found also
without using a base wy, 1 of M with 0 < wy < 1 < w,: Real numbers
x, y are called strictly equivalent if there exists an element (¢ ]) € SL, (Z)
such that

ax + b
cx +d

Any irrational number x has a unique infinite continued fraction
development

x = [[ag,ay,a5,...]]

where a; € Z and a; = 2 for i 2 1 and where ¢; = 3 for infinitely many
indices i. Two irrational numbers are strictly equivalent if and only if
their continued fractions [[ay, g, ...]] and [[ag, a5, ...]] coincide from
certain points on, 1.€. @;;; = a, . ; for some j and k and for all i = 0. This
is analogous to a classical result on ordinary continued fractions ([60],
Satz 2.24).

A quadratic irrationality w admits a continued fraction which is periodic
from a certain point on. It is purely periodicif and only if 0 < w' < 1 < w
as mentioned before. The periodicity of the continued fraction of w deter-
mines a primitive cycle ((bo, ..., b,—;)) which is admissible (all b; = 2, at
least one b; = 3). Thus two quadratic irrationalities are strictly equivalent
if and only if their cycles agree, and we have a bijection between strict
equivalence classes of quadratic irrationalities and admissible primitive cycles.
The admissible primitive cycles are in one-to-one correspondence with the
strict equivalence classes of complete Z-modules in real quadratic fields K
where K varies (see 2.5).

A complete Z-module M of a real quadratic field K will be oriented
by using the admissible bases (B,, 8,) of M with B,f, — B, > 0. By
restricting the norm function (N (x) = xx’ for x € K) to M we obtain an
indefinite quadratic form f on M with rational values. The exists a unique
positive rational number m such that m - f is integral and with respect to
an admissible base of M can be written as

au® + buv + cv?
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where a, b, ce Z and (a, b, c) = 1. The pairs (u,v) are in Z@® Z = M.
The discriminant D,, = b* — 4ac is positive and not a square number.

In this way, we get a bijection between strict equivalence classes of
- complete Z-modules of real quadratic fields and the isomorphism classes
under SL, (Z) of integral indefinite primitive binary quadratic forms of
non-square discriminant.

Remark. The discriminant D of such a quadratic form can be written
uniquely as

D =Dg-f? [fz1,

where Dy is the discriminant of the real quadratic field K = Q (\/B ).
Then the corresponding strict equivalence class of modules can be repre-
sented by an ideal in the order (subring of oy) which as an additive group
has index f'in png, and this is the smallest f such that the equivalence class
of M can be represented in this way.

The strict equivalence class of the “first root”

~ b+ /b* — dac
2a

, where \/bz —4ac >0

depends only on the equivalence class of the quadratic form.

We obtain a bijection between SL, (Z)-equivalence classes of integral
indefinite primitive binary quadratic forms of non-square discriminant and
strict equivalence classes of quadratic irrationalities.

All the bijections are compatible with each other as can be checked
easily. Let us collect the bijections:

strict equivalence classes of complete Z-modules in real quadratic
fields

>
admissible primitive cycles of natural numbers >
strict equivalence classes of quadratic irrationalities Y
SL, (Z)-equivalence classes of integral indefinite primitive binary
quadratic forms of non-square discriminant —

isomorphism classes of cyclic singularities with a primitive cycle
and as additional structure a prefered orientation of the cycle
(compare 2.4, Remark 1).
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Example. Let d be a square-free number > 1 and suppose d = 2 mod 4
or d = 3 mod 4. The (\/;Z— , 1) is an admissible Z-base of the ideal (1) in
og for K = Q (\/E ). The quadratic form is given by

— u*d + v?

—Jd 1
and has discriminant 4d. The first root equals = — —— which

< Ja

1s equivalent to \/Z . (Take always the positive square root). The admissible
cycle of natural numbers is obtained by developing ﬁ in a continued
fraction.

§ 3. NUMERICAL INVARIANTS OF SINGULARITIES
AND OF HILBERT MODULAR SURFACES

3.1. Let X be a compact oriented manifold of dimension 4k with or
without boundary. Then H?** (X, 8X; R) is a finite dimensional real vector
space over which we have a bilinear symmetric form B with

B(x,y) = (xUy)[X,0X], for x,ye H*(X,0X;R),

where [X, 0X] denotes the generator of Hy, (X, 0X; Z) defined by the
orientation. The signature of B, i.e., the number of positive entries minus
the number of negative entries in a diagonalized version, is called sign (X).
If X has no boundary and is differentiable, then according to the signature

theorem ([36], p. 86)
(D) sign (X) = L (py, -, 2i) [X],

where L, is a certain polynomial of weight k£ in the Pontrjagin classes of
X with rational coefficients (p; e H*/ (X, Z)).

Let N be a compact oriented differentiable manifold without boundary
of dimension 4k — 1 together with a given trivialization « of its stable
tangent bundle. (Such a trivialization need not exist). We shall associate
to the pair (N, o) a rational number J (N, o). Since N has a trivial stable
tangent bundle, all its Pontrjagin and Stiefel-Whitney numbers vanish.
Therefore N bounds a 4k-dimensional compact oriented differentiable
manifold X. By the parallelization a we get from the stable tangent bundle
of X an SO-bundle over X/N. We denote its Pontrjagin classes by
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