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equivalent condition is that, for any compact subsets K, K, of X, the set
of all ge G with g(Ky) n K, # @ is finite.

For a properly discontinuous action, the orbit space X/G is a Hausdorff
space. For any x e X, there exists a neighborhood U of x such that the
(finite) set of all ge G with gUn U # o equals the isotropy group
G, = {g\ geG,g(x) = x}. If X is a normal complex space and G acts
properly discontinuously by biholomorphic maps, then X/G is a normal
complex space.

TueoreM. (H. Cartan [8], and [66] Exp. I). If X is a bounded domain
in C", then the group W of all biholomorphic maps X — X with the topology
of compact convergence is a Lie group. For compact subsets K, K, of X,
the set of all g € W such that gK, N K, # o is a compact subset of W. A
subgroup of W is discrete if and only if it acts properly discontinuously.

If X is a bounded symmetric domain, then a discrete subgroup I' of %
operates freely if and only if it has no elements of finite order.
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March 1972) were very useful when writing this paper. I should like to
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and correspondence with H. Cohn, E. Freitag, K.-B. Gundlach, W. F.
Hammond, G. Harder, H. Helling, C. Meyer, W. Meyer, J.-P. Serre,
A. V. Sokolovski, A. J. H. M. van de Ven (see 0.2) and A. Vinogradov
were also of great help.

Last but not least, I have to thank Y. Kawada and K. Kodaira for
‘inviting me to Japan. I am grateful to them and all the other Japanese
colleagues for making my stay most enjoyable, mathematically stimulating,
and profitable by many conversations and discussions.

§ 1. 'THE HILBERT MODULAR GROUP
AND THE FULER NUMBER OF ITS ORBIT SPACE

I.1. Let H be the upper half plane of all complex numbers with positive
imaginary part. § is embedded in the complex projective line P,C. A
complex matrix (G 3) with ad — bc # 0 operates on P,C by
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az + b
cz +d

Z >

The matrices with real coefficients and ad — bc > 0 carry § over into
itself and constitute a group GLj (R). The group

M PL; (R) = GL; R)/{(54) [a# 0}

operates effectively on §. As is well known, this is the group of all biholo-
morphic maps of § to itself.

Writing z = x + iy (x,ye R,y > 0) we have on § the Riemannian
metric

(dx)* + (dy)*

y2

which is invariant under the action of PLj (R). The volume element
equals y~2dx A dy.
We introduce the Gaul3-Bonnet form

1 .dx/\dy

2 W = —
(2 Ty

If I is a discrete subgroup of PLJ (R) acting freely on § and such that
$H/I" is compact, then $H/I" is a compact Riemann surface of a certain genus
p whose Euler number e ($H/I') = 2 — 2p is given by the formula
3 e/ = |

HIT

We recall that the discrete subgroup I' acts freely if and only if I' has

no elements of finite order.

1.2. Consider the n-fold cartesian product " =9 X ... x H. Let A
be the group of all biholomorphic maps " — $H". The connectedness
component of the identity of U equals the n-fold direct product of PL; (R)
with itself. We have an exact sequence

@) 1 >PLI(R) x ... x PL; R) > A S, - 1,

where S, 1s the group of permutations of n objects corresponding here
to the permutations of the »n factors of $". The sequence (4) presents A
as a semi-direct product. On $" we use coordinates z,, z,, ..., z, with
z, = X, + iy, and y, > 0. We have a metric invariant under U:
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i (dxj)2 + (dJ’j)z

2
j=1 Vi

The corresponding GauB-Bonnet form o is obtained by multiplying
the forms belonging to the individual factors; see (2). Therefore

1 dx; A dy, dx, A dy,
. - 5 Aosrs B ———
(@2 2 Vn

(5) o = (=1)

If I' is a discrete subgroup of A acting freely on $" and such that
$"/I" is compact, then $"/I" is a compact complex manifold whose Euler
number is given by
(6) e($"/N= | o

Hn/r
e (9"/I') is always divisible by 2": for a compact complex n-dimensional

- manifold X we denote by [X] the corresponding element in the complex
cobordism group [58]. We have

(7) [9"/I]=2""e(®"/)-[(@,O)"].

This follows, because the Chern numbers of $”/I" are proportional
[37] to those of (P;C)". In particular, the Euler number and the arithmetic
genus (Todd genus) of (P,C)" are 2" and 1 respectively and thus 27" - e(H"/I')
1s the arithmetic genus of H"/I".

1.3. 'We shall study special subgroups of the group of biholomorphic
automorphisms of $". They are in fact discrete subgroups of (PL;f (R))".
Let K be an algebraic number field of degree n over the field Q of rational
numbers. We assume K to be totally real, i.e., there are n different embed-
dings of K into the reals. We denote them by

K—-R, x—»xY xekK

We may assume x = x). The element x is called totally positive (in
symbols, x > 0) if all x) are positive. The group

GL; (K) = {(‘;Z) |a,b,c,dekK, ad — be > 0}
acts on 9" as follows: for z = (z, ..., z,) € H" we have

a®h z, + pD
Z;=> : = .

L’Enseignement mathém., t. XIX, fasc. 3-4. 13
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The corresponding projective group
PL; (K) = GL; (K)/{(53),acK*}

acts effectively on $". Thus PL; (K) = (PL3 (R))".

Let og be the ring of algebraic integers in K, then by considering only
matrices with a,b,c,deoy and ad — bc =1 we get the subgroup
SL, (0g) of GLj (K). The group SL,(0g)/{1, —1} is the famous
Hilbert modular group. It is a discrete subgroup of (PL}ZF (R))". We
shall denote it by G (K) or simply by G, if no confusion can arise.

G = SL,(0g)/ {1, — 1} « PL} (K) = (PL} (R))”

The Hilbert modular group was studied by Blumenthal [5]. An error
of Blumenthal concerning the number of cusps was corrected by MaaB [53].

The quotient space $"/G is not compact, but it has a finite volume with
respect to the invariant metric. It is natural to use the Euler volume given
in (5). The quotient space $"/G is a complex space and not a manifold
(for n > 1). We shall return to this point later. But the volume of $"/G
is well-defined and was calculated by Siegel ([72], [74]). The {-function
of the field K enters. It is defined by

1
(k (5) = .
" aEK N (o)’
a an ideal

This sum extends over all ideals in ok, and N (a) denotes the norm of
a. The series converges if the real part of the complex number s is greater
than 1. It converges absolutely uniformly on any compact set contained
in the half plane Re (s) > 1. The function {; can be holomorphically
extended to C — {1}. It has a pole of order 1 for s = 1. Let Dy denote
the discriminant of the field K.

Then

N N

(8) D2 . 2.T(s/2)".Lx(s)

is invariant under the substitution s - 1 — s.
This is the well-known functional equation of (i (s). It can be found
in most books on algebraic number theory. See, for example, [52].

THEOREM (Siegel). The Euler volume of ©"/G relates to the zeta-function
as follows
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© o =20(-D.

H*/G
dx, N dy,
— A

The formula (19) of [72] uses the volume element 2
1

dx, A dy,
/\ —

In®
- If we multiply this value with (—=1)".(2n)7", we get | o.
n/G

Formula (9) follows from the functional equation. 3 was pointed out
by J. P. Serre [69] that such Euler volume formulas may be written more
conveniently using values of the zeta functions at negative odd integers.
2{x (—1) is a rational number, a result going back to Hecke, see Siegel
([73] Ges. Abh. 1, p. 546, [76]) and Klingen [44]. The rational number
2{x (—1) 1s in fact the rational Euler number of G in the sense of Wall
[77], as we shall see later.

and gives for the volume the value 27" Dg>/2 (¢ (2).

1.4. We shall write down explicit formulas for 2{; (—1) in some cases.
For K = Q, the group G is the ordinary modular group acting on §. A
fundamental domain is described by the famous picture (see, for example,
[68] p. 128).

STS

5 -1 1 g
The volume of $/G equals the volume of the shaded domain. By Siegel’s

general formula, the volume of the shaded domain with respect to

dx A dy
>—— equals
Y




Therefore, we get for the Euler volume

1
10 = —— =2{_(-1.
(10) 5:)/cho s = 2o (Y

We consider the real quadratic fields K = Q (\/2 ) where d is a square-
free natural number > 1. We recall that the discriminant D of K is given
by

D = 4d ford= 2,3 mod 4
D d ford= 1 mod4.

The ring oy has additively the following Z-bases.

DK=Z+Z\/CZ for d = 2,3 mod 4

1+ /d
0K=Z+Z—2\/— ford= 1 mod 4

THEOREM. Let K = Q (JZZ) be as above. Then for d =1 mod 4

(11 (=) = — T =5
. —_—— o
) . 15 1<b<Vd ' 4
b odd

and for d = 2,3 mod 4
1

(12) 20(=1) = —(o,(d) + 2+ ), o;(d—b?)
30 1<b<Vd

where o (a) equals the sum of the divisors of a.

This theorem, though not exactly in this form, can be found in Siegel
[76]. Compare also Gundlach [22], Zagier [78]. The x, of Gundlach equals

4/ Lk (=1).

1.5. A reference for the following discussion is [71].

We always assume that I is a discrete subgroup of (PL* (R))" and
that S"/I" has finite volume.
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I is irreducible if it contains no element y = (y‘¥, ..., ™) such that
y() = 1 for some i and ¢ # 1 for some j. See [71], p. 40 Corollary.

An element of PL} (R) is parabolic if and only if it has exactly one
fixed point in P,;C. This point belongs to P;R = RuU co. An element
y = (P, ..,9™) of (PL} (R))" is called parabolic if and only if all y*
are parabolic. The parabolic element y has exactly one fixed point in
(P,C)". It belongs to (P,;R)". The parabolic points of I' are by definition
fixed points of the parabolic elements of I

The above notation, hopefully, will not confuse the reader. The y?
are simply the components of the element y of (PLJZr (R))". If y e PL; (K)
- (PLJZr (R))" (compare 1.3), then, for y represented by (ﬁ Z), the element
- 9 is represented by (g8§ 38;) where x — x‘? is the i-th embedding of K
in R. For any group I' = (PL;L (R))" we consider the orbits of parabolic
points under the action of I' on (P,;R)". They are called parabolic orbits.
Each such orbit consists only of parabolic points.

If I' is irreducible, then there are only finitely many parabolic orbits.
([71], p. 46 Theorem 5).

Hereafter we shall assume in addition that I’ is irreducible.

If x e (PyR)"is a parabolic point of I', we transform it to co = (o0, ..., o0)
by an element p of (PL;R)", not necessarily belonging to I', of course.
Thus px = oo.

Let I', be the isotropy group of x.

I'y ={ylyel,yx = x}.

1

Then any element of pI'.p~ ' is of the form

(13) z; 2Dz, 4 @49 > 0.

Consider the following multiplicative group
(14) A= {t|tPeR, 1D >0, [[tD =1).
Jj=1

It is isomorphic to R""! by taking logarithms. Each element of
plp~ ' (see (13)) satisfies 2V - 22 - 1 = 1, (compare [71], p. 43,
Theorem 3). Therefore we have a natural homomorphism pI' p~' - A
- whose image is a discrete subgroup A, of A of rank n — 1. The kernel
| consists of all the translations

z;= z; + u
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where u = (u'V, ..., u™) belongs to a certain discrete subgroup M, of
R" of rank n. Thus we have an exact sequence

(15) O0->M,—>pl,pt—4,—1.

Using the inner automorphisms of pI',p~ !, the group 4, acts on M,
by componentwise multiplication. However, in the general case, (15) does
not present pI',p~ ' as a semi-direct product. For n = 1, the group A,
is trivial. For n = 2 it is infinite cyclic, pI'.p~ ' is a semi-direct product,
and p can be chosen in such a way that pI'.p~* is exactly the group of all
elements of the form (13) with Ae A, and pe M,.

1

For any positive number d, the group pI',p~ " acts freely on

(16) W = {zlzef)", []Im(z) = d}

j=1
where Im denotes the imaginary part. The orbit space W/pIl,.p~ 1! is a
(non-compact) manifold with compact boundary

N =0W/pIl.p .

Since 0 W is a principal homogeneous space for the semi-direct product
E = R" > A of all transformations

z;b Wz, +aY,ted,aeR”

we can consider N as the quotient space of the group E (homeomorphic
to R*"™1) by the discrete subgroup pI'.p~'. Thus N is an Eilenberg-
MacLane space. The (2n—1)-dimensional manifold N is a torus bundle
over the (n—1)-dimensional torus A/A4,. The fibre is the n-dimensional
torus R"/M,, and N is obtained by the action of A, on R"/M, which is
induced by the action x;> A9 x; + u¥ of pI',p™! on R* Since, in
general, u%% is not necessarily an element of M,, the action of A4, on
R"/M, need not be the one given by componentwise multiplication.

Definition ([71], p. 48). Let I' be as before a discrete irreducible sub-
group of (PL3 (R))" such that $"/I" has finite volume. Let x, (1=v<t) be
a complete set of I'-inequivalent parabolic points of I'. Choose elements

e (PL; (R))" with p,x, = o and put U, = p;* (W,) where W, is
defined as in (16) with some positive number d, instead of d. We say that
I' satisfies condition (F) if it admits (for some d,) a fundamental domain
F of the form
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F=F,uoV,u..uV, (disjoint union)

where F, is relatively compact in H" and V, is a fundamental domain of
Iy in U,

The fundamental domain F < $" is by definition in one-to-one
correspondence with $"/I" and ¥V, is in one-to-one correspondence with
U,r,.

Thve Hilbert modular group G of any totally real field K is a discrete
irreducible subgroup of (PLj (R))" with finite volume of $"/G which
satisfies condition (F). The existence of a fundamental domain with the
required properties was shown by Blumenthal [5] as corrected by Maalf3
[53]. See Siegel [75] for a detailed exposition.

Two subgroups of (PL; (R))" are called commensurable if their inter-
- section is of finite index in both of them.

Any subgroup T of (PL3 (R))" which is commensurable with the Hilbert
modular group G also satisfies (F).

We define
(17) [G:T] =[G:(GnD)]/[T:(Gn ]
Then we get for the Euler volume
(18) g,nj/rwz[G:F]',gnj/r w=[G:T] 2 (-1)

Remark. It is not known whether every discrete irreducible subgroup
I of (PL; (R))” such that $"/I' has finite volume satisfies Shimizu’s
condition (F).

Selberg has conjectured that any I' satisfying (F) and having at least
one parabolic point (= 1) is conjugate in the group 2 of all automorphism
of $" to a group commensurable with the Hilbert modular group G of
some totally real field K with [K: Q] = n.

1.6. Harder [28] has proved a general theorem on the Euler number
of not necessarily compact quotient spaces of finite volume. For the following
result a direct proof can be given by the method used in [40].

Toeorem (Harder). Let I' < (PL; (R))" be a discrete irreducible
group satisfying condition (F) of the definition in 1.5. Suppose moreover
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that I' operates freely on $". Then $"[I" is a complex manifold whose Euler
number is given by

(19) e(®"/) = | o

$n/r
If T is commensurable with the Hilbert modular group G of K, (where K is
a totally real field of degree n over Q) then

(20) e(®"/I) = [G: 17 2{x (=1).

Proof. 1t follows from 1.5 that $"/I" contains a compact manifold Y
with ¢ boundary components B, = dW,/pl.p~ ' (which are T"-bundles
over 7"~ 1). We have to choose the numbers d, sufficiently large. By the
Gaul3-Bonnet theorem of Allendoerfer-Weil-Chern [10]

e@/) =J o+ ¥ |1l

where [] is a certain (2n—1)-form. By the argument explained in [40],
one can show easily that |

lim | [] = 0. Q.E.D.

dy—>ow By

Since the Hilbert modular group G always contains a subgroup I’
of finite index which operates freely and since $"/I" can be replaced up
to homotopy by the compact manifold Y with boundary, [G : I'] - 2{x (—1)
is the Euler number of I' in the sense of the rational cohomology theory
of groups and thus 2{yx (—1) is the Euler number of G in the sense of
Wall [77].

THEOREM. Let I’ (PL;r (R))" be a discrete irreducible group such
that "/ has finite volume. Assume that I' satisfies condition (F). The
isotropy groups I',(ze$") are finite cyclic and the set of those z with
IFZ[ > 1 projects down to a finite set in H"/I'. Thus H"/I" is a complex
space with finitely many singularities. (For n = 1, these “branching points”
are actually not singularities.)

Let a,(I') be the number of points in $"/I' which come from isotropy
groups of order r. The Euler number of the space $"[I" is well-defined, and
we have



r

(21) e®'/IN= | o+ ) aT)—.
sn/r r>2 r

The proof is an easy consequence of the Allendoerfer-Weil-Chern

formula (compare [40], [65]).
The easiest example of (21) is of course the ordinary modular group

. G = G(Q). We have a, (G) = a; (G) = 1 whereas the other a, (G) vanish.

Thus
e(9/6) = —F+1+3=1
This checks, since $/G and C are biholomorphically equivalent.

1.7. We shall apply (21) to the Hilbert modular group G and the

extended Hilbert modular G of a real quadratic field. G is defined for any
totally real field K. To define it we must say a few words about the units

- of K. They are the units of the ring oy of algebraic integers. Let U be the

group of these units. Its rank equals » — 1 by Dirichlet’s theorem [6].
Let U™ be the group of all totally positive units (see 1.3). It also has rank
n — 1 because it contains U? = {&*|ee U}.

The extended Hilbert modular group is defined as follows

G = {(“

We have an exact sequence

ad —bce U} {(6%)|acU}

1—+G—+é—>U+/Uz—+I.

obtained by associating to each element of G its determinant mod U2,

IfK=Q (\/3 ) with d as in 1.4., then U™ and U? are infinite cyclic
groups and U™/U? is of order 2 or 1. The first case happens if and only
if there is no unit in oy with negative norm. If d is a prime p, then

Ut # U?<p =3mod4
Ut =U?<p=20rp=1mod4.
Compare [30], Satz 133.

To apply (21) to the groups G and G belonging to a real quadratic
field we must know the numbers a, (G) and a, (é). They were determined

- by Gundlach [21] in some cases and in general by Prestel [61] using the
~idea that the isotropy groups G, and G, respectively (z € $?) determine

orders in imaginary extensions of K, which by an additional step relates
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the a, (G) and a, (é) to ideal class numbers of quadratic imaginary fields
over Q. To write down Prestel’s result we fix the following notation. A
quadratic field k over Q (real or imaginary) is completely given by its |
discriminant D. The class number of the field will be denoted by 4 (D)
or by 4 (k).

Prestel has very explicit results for the Hilbert modular group G of

any real quadratic field K and for the extended group G in case the class
number of K is odd. We shall indicate part of his result.

THEOREM. (Prestel). Let d be squarefree, d = 7 and (d, 6) = 1. Let
K=0Q (\/E ). Then for the Hilbert modular group G (K) we have for

d=1mod4
a,(G) = h(—4d),a;(G) = h(—3d), a,(G) = 0 forr # 2,3
and for d = 3 mod 8
a,(G) = 10-h(—d), a;(G) = h(—12d),a,.(G) = 0 forr # 2,3
and for d = 7 mod 8
a, (G) = 4h(—d), a3 (G) = h(—12d),a,(G) = 0 forr # 2,3

If d is a prime = 3 mod 4 and d # 3 we have for the extended group
é(K) the following result :

If d =3 mod 8, then

4, (G) = 3h(—d) + h (—8d), a5 (G) = h(—12d)/2,
a, (G) = 4h(—d),
a,(G) = 0 for r # 2,3, 4.

If d =7 mod 8, then

0, (G) = h(—d) + h (=8d), a3 (G) = h(—12d) /2,
a, (G) = 2h(—d),
a,(é) = 0 for r # 2, 3, 4.

Prestel gives the numbers a, (G) and a, (é) also for d = 2,3, 5. For
d = 3 we have
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a, (é) = 3, a3 (é) =1, a4 (é) =1, a;,(G) = 1,

all other ar(é) = 0.
We apply (12), (20) and (21) for K = Q (\/ 3) as an example

W

| 10
2k (=1 = 554 +20,0) = 35 = 3

A 1
G:G| =-,
[G:6] =+

LA 11 2 3 1
e(EI/CD ==8 +‘3'§ +‘§ +‘Z +‘I§

Il

We shall copy Prestel’s table [61] of the a,(G) and the a, (é‘) Gf
known) for K = Q (\/ZZ )up to d = 41. In [61] the table contains an error
which was corrected in [62].

We also tabulate the values of 2{x (—1), e (H?*/G), and of e ($%G)
if known. In the columns before 2{; (—1) we find the values of the a, (G);
the values of the a, (é) are written behind 2{; (—1). If there is no entry,
then the value is zero.

If the a, (é) and e (552/@) are not given in the table, this means that

either there exists a unit of negative norm and thus G = G or that the values
are not known. This is indicated in the last column.

By Prestel a,(G) =0 for r > 3 and K = Q(\/g) with d > 5, and
we have for d > 5

a, (G) 2

(22) e(9"/G) = 2{x (—1) + +a3(G). 3

Since the Euler number is an integer, we obtain by (11) and (12):
For d > 5, d =1 mod 4, d square-free,

d —b?
Y 01< )EOmodS

1§b<¢3 4
b odd

For d > 5, d = 2,3 mod 4, d square-free

1§b<¢z
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Problem. Prove these congruences in the framework of elementary
number theory.

d| 2314 5]6 2D/ 2|3 ]4]|6]12|e®DHYO)|e(HYEC)
21 21 2| 2 16 | —| — | —| —| — 4 G=¢G
31 3| 2 1 1/3 30 1| 1 1 4 4
51 21 2 2. 17yis | — | — | — | — | — 4 G=G
6| 6| 3 1 5111 2| 1 6 6
71 4| 4 4/3 5121 2 6 6
10| 6| 4 713 | —| — | —|—=|— 8 G=0
1110 4 7/3 51 21| 4 10 8
13 21 4 13 |—|—|—=]—|— 4 G = ¢
14112 4 10/3 8| 2| 4 12 10
171 41 2 23 | — | —| — | —|— 4 G =0
19010 4 19/3 90| 2 14 12
20 4| 5 2/3 3| 2 1 6 4
2| 6| 8 233 |12] 4] 2 16 14
231 12| 8 20/3 71 4| 6 18 14
26 | 18| 4 253 | — | — | — | —| — 20 G=0G
29| 6| 6 1 S [N U N 8 G=0G
30 | 12 | 10 343 | — | — | — | —| — 24 9
31| 12| 4 403 | 11| 21| 6 22 18
33| 4| 3 2 71 1 1 6 6
34 12| 4 463 | — | — | — | — | — 24 9
35120 | 8 383 | —| — | —| —| — 28 9
37| 21 8 53 | —| —| —| —| — 8 G=6G
38118 | 8 413 16| 4| 6 28 22
39 | 16 | 10 523 | —| — | —|—|— 40 ?
41| 8| 2 83 | — | —|—|—|— 8 G=0

§ 2. THE CUSPS AND THEIR RESOLUTION
FOR THE 2-DIMENSIONAL CASE

2.1. Let K be a totally real algebraic field of degree n over Q and M
an additive subgroup of K which is a free abelian group of rank ». Such a
group M is called a complete Z-module of K. Let U,; be the group of
those units ¢ of K which are totally positive and satisfy eM = M. Any
o e K with aM = M is automatically an algebraic integer and a unit.
The group U,; is free of rank n — 1 (compare [6]).
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