
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 19 (1973)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HILBERT MODULAR SURFACES

Autor: Hirzebruch, Friedrich E. P.

Kapitel: §1. The Hilbert modular group and the Euler number of its orbit space

DOI: https://doi.org/10.5169/seals-46292

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-46292
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 187 —

equivalent condition is that, for any compact subsets Ku K2 of X, the set

of all ge G with g (Kf) n K2 ^ 0 is finite.

For a properly discontinuous action, the orbit space X/G is a Hausdorff

space. For any x e X, there exists a neighborhood U of x such that the

(finite) set of all geG with gü n U # 0 equals the isotropy group
Gx {g I g g G,g(x) x}. If Z is a normal complex space and G acts

properly discontinuously by biholomorphic maps, then X/G is a normal

complex space.

Theorem. (H. Cartan [8], and [66] Exp. I). If X is a bounded domain

in Cn, then the group 31 of all biholomorphic maps X -» X with the topology

of compact convergence is a Lie group. For compact subsets Kt, K2 of X,
the set of all g e 21 such that gKt n K2 # 0 is a compact subset of 21. A
subgroup of 21 is discrete if and only if it acts properly discontinuously.

If X is a bounded symmetric domain, then a discrete subgroup F of 21

operates freely if and only if it has no elements of finite order.

0.8. I wish to express my gratitude to M. Kreck and T. Yamazaki.
Their notes of my lectures in Bonn (Summer 1971) and Tokyo (February-
March 1972) were very useful when writing this paper. I should like to
thank D. Zagier for mathematical and computational help. Conversations
and correspondence with H. Cohn, E. Freitag, K.-B. Gundlach, W. F.

Hammond, G. Harder, H. Helling, C. Meyer, W. Meyer, J.-P. Serre,
A. V. Sokolovski, A. J. H. M. van de Ven (see 0.2) and A. Vinogradov
were also of great help.

Last but not least, I have to thank Y. Kawada and K. Kodaira for
inviting me to Japan. I am grateful to them and all the other Japanese
colleagues for making my stay most enjoyable, mathematically stimulating,
and profitable by many conversations and discussions.

§ 1. The Hilbert modular group
AND THE EULER NUMBER OF ITS ORBIT SPACE

1.1. Let $ be the upper half plane of all complex numbers with positive
imaginary part. $ is embedded in the complex projective fine A
complex matrix ("J) with ad - be ^ 0 operates on by
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az b
Z H»

cz + d

The matrices with real coefficients and ad — be > 0 carry § over into
itself and constitute a group GL J (R). The group

(1) PLJ(R) GLj(R)/{Q|a*0 }

operates effectively on §. As is well known, this is the group of all biholo-
morphic maps of § to itself.

Writing z x + iy (x, y e R, y > 0) we have on 9> the Riemannian
metric

(<ixf + 0iy?
y2

which is invariant under the action of PL J (R). The volume element

equals y~2 dx a dy.
We introduce the Gauß-Bonnet form

1 dx a dy
(2) 0) - — J2 7i y

If r is a discrete subgroup of PLJ (R) acting freely on $ and such that
9)/T is compact, then 9>/r is a compact Riemann surface of a certain genus

p whose Euler number e ($/T) 2 — 2p is given by the formula

(3) e (SAO j
i>/r

We recall that the discrete subgroup T acts freely if and only if r has

no elements of finite order.

1.2. Consider the /7-fold cartesian product $yn § x x $y. Let 51

be the group of all biholomorphic maps -> The connectedness

component of the identity of 51 equals the /7-fold direct product of PL^ (R)
with itself. We have an exact sequence

(4) 1 -> PLj (R) x x PLj (R) -> 51 -* -> 1,

where Sn is the group of permutations of n objects corresponding here

to the permutations of the n factors of §)n. The sequence (4) presents 51

as a semi-direct product. On 9)n we use coordinates z1? z2,zn with
zk — xu + % an<i yk > 0. We have a metric invariant under 51:
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v (dXj)2 +
^ 3j=i yj

The corresponding Gauß-Bonnet form œ is obtained by multiplying
the forms belonging to the individual factors; see (2). Therefore

1 dx± a dy± dxn a dyn
(5) CO — 1) 5 A A 2W \ (2 nf yiy„2

If T is a discrete subgroup of 51 acting freely on $yn and such that

§7r is compact, then §7F is a compact complex manifold whose Euler

number is given by

(6) ei^/n J ».

e (§7T) is always divisible by 2" : for a compact complex 7?-dimensional

manifold X we denote by [X] the corresponding element in the complex
cobordism group [58]. We have

win2-"e(§"/o-[(p1c)n].

This follows, because the Chern numbers of $n/r are proportional
[37] to those of (P^)". In particular, the Euler number and the arithmetic

genus (Todd genus) of (PiC)n are 2n and 1 respectively and thus 2~n • e(?>n/r)
is the arithmetic genus of §>n/r.

1.3. We shall study special subgroups of the group of biholomorphic
automorphisms of §n. They are in fact discrete subgroups of (PL\ (R))w.
Let K be an algebraic number field of degree n over the field Q of rational
numbers. We assume K to be totally real, i.e., there are n different embed-

dings of K into the reals. We denote them by

7£->R, xKi(i), xeK

We may assume x x(1). The element x is called totally positive (in
symbols, x > 0) if all x(j) are positive. The group

GLt(K) {£$)[ a,b,c,deK,ad-bc>0}
acts on 9)n as follows: for z (z1?..., zn) e $yn we have

aü) Zj + bü)
J

Zj +

L'Enseignement mathém., t. XIX, fasc. 3-4. 13
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The corresponding projective group

VluUK) GLj(*)/{(S %aeK*}
acts effectively on $n. Thus PLj (K) c (PLj (R))n.

Let oK be the ring of algebraic integers in K, then by considering only
matrices with a, b, c, de oK and ad — be — 1 we get the subgroup
SL2 (pK) of GLJ (.K). The group SL2 (oK) / { 1, — 1 } is the famous
Hilbert modular group. It is a discrete subgroup of (PL J (R))". We
shall denote it by G (K) or simply by G, if no confusion can arise.

G SL2 (ok) / { 1, - 1 } c= PLj (K) cz (PL2 (R))»

The Hilbert modular group was studied by Blumenthal [5]. An error
of Blumenthal concerning the number of cusps was corrected by Maaß [53].

The quotient space §n/G is not compact, but it has a finite volume with
respect to the invariant metric. It is natural to use the Euler volume given
in (5). The quotient space §>n/G is a complex space and not a manifold
(for n > 1). We shall return to this point later. But the volume of $>n/G

is well-defined and was calculated by Siegel ([72], [74]). The C-function
of the field K enters. It is defined by

Ck (s) Z A/YnV '
acojç A (a)
a an ideal

This sum extends over all ideals in oK, and N (a) denotes the norm of
a. The series converges if the real part of the complex number s is greater
than 1. It converges absolutely uniformly on any compact set contained
in the half plane Re (5) > 1. The function ÇK can be holomorphically
extended to C — {1}. It has a pole of order 1 for s 1. Let DK denote

the discriminant of the field K.
Then

s sn

(8) D^.n~.r{sj2 y.U(s)

is invariant under the substitution s -> 1 — s.

This is the well-known functional equation of ÇK (s). It can be found
in most books on algebraic number theory. See, for example, [52].

Theorem (Siegel). The Euler volume of SfjG relates to the zeta-function

as follows
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(9) J œ2CA-)•J971/G

Jxq A dyx
The formula (19) of [72] uses the volume element ^ A •••

a—-—5—^ and gives for the volume the value 2 n~n • DK3{2 lK (2).

If we multiply this value with (— 1)". (27i)~M, we get J co.
jrjrc/G

Formula (9) follows from the functional equation. It was pointed out
by J. P. Serre [69] that such Euler volume formulas may be written more
conveniently using values of the zeta functions at negative odd integers.
2Çk(—1) is a rational number, a result going back to Hecke, see Siegel

([73] Ges. Abh. I, p. 546, [76]) and Klingen [44]. The rational number
2Ck(— 1) is in fact the rational Euler number of G in the sense of Wall
[77], as we shall see later.

1.4. We shall write down explicit formulas for 2£x (— 1) in some cases.

For K Q, the group G is the ordinary modular group acting on §. A
fundamental domain is described by the famous picture (see, for example,
[68] p. 128).

The volume of 9)jG equals the volume of the shaded domain. By Siegel's
general formula, the volume of the shaded domain with respect to
dx a dy

2— equals
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00 1 TT

27T"1 y - -.n=i n2 3

Therefore, we get for the Euler volume

(10) j (o ~ 2 C — 1) •

£/<? 0

We consider the real quadratic fields K — Q (->/<7) where J is a square-
free natural number > 1. We recall that the discriminant D of K is given
by

D 4d for d 2,3 mod 4

D d for d 1 mod 4.

The ring ox has additively the following Z-bases.

oK Z + Z d for d 2,3 mod 4

1 + Jd
oK Z + Z —— for d ~ 1 mod 4

Theorem. K Q (^/<7) as above. Then for d ~ 1 mod 4

1 ^ /d-fr2\
ai) 2Ck(-D - E ^ —-15 iäb<-/d V 4 /

fc odd

a/z<7for d 2,3 mod 4

(12) 2Ç*(-1) +2- £ o-i (d-b2))
30 i

w/zere oq (a) equals the sum of the divisors of a.

This theorem, though not exactly in this form, can be found in Siegel

[76]. Compare also Gundlach [22], Zagier [78]. The zc2 of Gundlach equals

4/Ck(-!)•

1.5. A reference for the following discussion is [71].

We always assume that T is a discrete subgroup of (PL+ (R))n and

that §7T has finite volume.
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F is irreducible if it contains no element y (y(1), y(,î)) such that
y(l) 1 for some i and yU) # 1 for some j. See [71], p. 40 Corollary.

An element of PL \ (R) is parabolic if and only if it has exactly one
fixed point in P^. This point belongs to PtR — Ru oo. An element

y (y(1), ...,y(n)) of (PLj (R))n is called parabolic if and only if all y(l)

are parabolic. The parabolic element y has exactly one fixed point in

(PiC)n. It belongs to (PiR)". The parabolic points of F are by definition
fixed points of the parabolic elements of F.

The above notation, hopefully, will not confuse the reader. The y(l)
are simply the components of the element y of (PL \ (&))"• If y e PL Î(K)
c (PLj (R))" (compare 1.3), then, for y represented by ("J), the element

y(l) is represented by ("([> J(o) where x;-> x(i) is the z-th embedding of K
in R. For any group F c= (PLJ (R))" we consider the orbits of parabolic
points under the action of F on (PxR)". They are called parabolic orbits.
Each such orbit consists only of parabolic points.

If F is irreducible, then there are only finitely many parabolic orbits.
([71], p. 46 Theorem 5).

Hereafter we shall assume in addition that F is irreducible.
Ifx e (PXR)" is a parabolic point of F, we transform it to oo (oo, oo)

by an element p of (PLjR)M, not necessarily belonging to F, of course.
Thus px oo.

Let Fx be the isotropy group of x.

rx {y \y e r,yx x}.
Then any element of pTxp~1 is of the form

(13) ZjZj+ /('•". > 0.

Consider the following multiplicative group

(14) A{t|t(i)eR,t(i)> 0, [j 1 }•
i

It is isomorphic to R"_1 by taking logarithms. Each element of
PrxP~x (see (13)) satisfies 1(1) Â(2)... A(n)(compare [71], p. 43,
Theorem 3). Therefore we have a natural homomorphism pTxp~1 -+ A
whose image is a discrete subgroup A of A of rank - 1. The kernel
consists of all the translations

Zj ^ Zj + pu)



— 194 —

where p — (p(1), p{n)) belongs to a certain discrete subgroup Mx of
R" of rank n. Thus we have an exact sequence

(15) 0 Mx-+ p rxp~1 ->AX->1.

Using the inner automorphisms of prxp~1, the group Ax acts on Mx
by componentwise multiplication. However, in the general case, (15) does

not present prxp~1 as a semi-direct product. For n 1, the group Ax
is trivial. For n — 2 it is infinite cyclic, prxp~1 is a semi-direct product,
and p can be chosen in such a way that pTxp~1 is exactly the group of all
elements of the form (13) with 2eAx and peMx.

For any positive number d, the group prxp~x acts freely on

(16) W { z I z e Ô Im (zfi ä d)
j= i

where Im denotes the imaginary part. The orbit space Wjprxp~1 is a

(non-compact) manifold with compact boundary

N dW I prxp~1.

Since d W is a principal homogeneous space for the semi-direct product

f R"xi of all transformations

Zj tU) Zj + au\ t e A, a gR"

we can consider N as the quotient space of the group E (homeomorphic
to R2n_1) by the discrete subgroup prxp~1. Thus N is an Eilenberg-
MacLane space. The (In— l)-dimensional manifold A7" is a torus bundle

over the (n — l)-dimensional torus A/Ax. The fibre is the ^-dimensional
torus Rn/Mx, and N is obtained by the action of Ax on Rn/Mx which is

induced by the action Xj 2U) Xj + pfà of pT^p-1 on Rn. Since, in
general, p0) is not necessarily an element of Mx, the action of Ax on
Rn/Mx need not be the one given by componentwise multiplication.

Definition ([71], p. 48). Let T be as before a discrete irreducible

subgroup of (PL J (R))n such that ?)n/r has finite volume. Let xv (l^v^U) be

a complete set of L-inequivaient parabolic points of F. Choose elements

pv e(PL-2 (R))" with pvxv oo and put Uv pv
1 (Wv) where Wv is

defined as in (16) with some positive number dv instead of d. We say that

r satisfies condition (F) if it admits (for some dy) a fundamental domain

F of the form
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F F0 u V1 u u Vt (disjoint union)

where F0 is relatively compact in 9)n and Vv is a fundamental domain of
rXv in Uv.

The fundamental domain F a is by definition in one-to-one

correspondence with §>n/r and Vv is in one-to-one correspondence with

ujrXv.
The Hilbert modular group G of any totally real field K is a discrete

irreducible subgroup of (PL\ (R))n with finite volume of $n/G which
satisfies condition (F). The existence of a fundamental domain with the

required properties was shown by Blumenthal [5] as corrected by Maaß

[53]. See Siegel [75] for a detailed exposition.
Two subgroups of (PLj (R))w are called commensurable if their

intersection is of finite index in both of them.

Any subgroup F of (PL % (R))M which is commensurable with the Hilbert
modular group G also satisfies (F).

We define

(17) [G:r] [G:(Gnr)]/[r:(Gnr)]
Then we get for the Euler volume

(18) J co [G:r]. J m [G:r]-2U-1)
s n/r $>n/r

Remark. It is not known whether every discrete irreducible subgroup
r of (PL12 (R))" such that §>"/r has finite volume satisfies Shimizu's
condition F).

Selberg has conjectured that any T satisfying (F) and having at least
one parabolic point t^1) is conjugate in the group 21 of all automorphism
of §" to a group commensurable with the Hilbert modular group G of
some totally real field K with [K:Q]n.

1.6. Harder [28] has proved a general theorem on the Euler number
ofnot necessarily compact quotient spaces of finite volume. For the following
result a direct proof can be given by the method used in [40].

Theorem (Harder). Let F <= (PL| (R))n be a discrete irreducible
group satisfying condition (F) of the definition in 1.5. Suppose moreover
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that r operates freely on $yn. Then £>n/T is a complex manifold whose Euler
number is given by

(19) e($>n/T) J co.

$>nir

If E is commensurable with the Hilbert modular group G of K, (where K is

a totally real field of degree n over QJ then

(20) e(S70 [G-.r]-2U(-\).

Proof It follows from 1.5 that §n\T contains a compact manifold Y
with t boundary components Bv dWJpTxp~1 (which are rw-bundles

over Tn~1). We have to choose the numbers dv sufficiently large. By the

Gauß-Bonnet theorem of Allendoerfer-Weil-Chern [10]

ewmj ©+ é j n
Y v=l Bv

where is a certain (2n — l)-form. By the argument explained in [40],

one can show easily that

lim j Y[ 0. Q.E.D.
dv-+ co Bv

Since the Hilbert modular group G always contains a subgroup T
of finite index which operates freely and since §>n/T can be replaced up
to homotopy by the compact manifold Y with boundary, [G : T] • 2ÇK (— 1)

is the Euler number of T in the sense of the rational cohomology theory
of groups and thus 2ÇK(—l) is the Euler number of G in the sense of
Wall [77].

Theorem. Let T c (PLJ (R))n be a discrete irreducible group such

that 9)njT has finite volume. Assume that T satisfies condition (F). The

isotropy groups Tz (ze§n) are finite cyclic and the set of those z with
I Tz I > 1 projects down to a finite set in 9)njT. Thus $>n/r is a complex

space with finitely many singularities. (For n 1, these "branching points"
are actually not singularities.)

Let ar (T) be the number of points in ?>n/r which come from isotropy

groups of order r. The Euler number of the space 9)njT is well-defined, and

we have
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(21) e(ï>nIO= J co+ £ flr(D —.%n/r r^2 Y

The proof is an easy consequence of the Allendoerfer-Weil-Chern
formula (compare [40], [65]).

The easiest example of (21) is of course the ordinary modular group
G G(Q). We have a2 (G) a3 (G) 1 whereas the other ar (G) vanish.

Thus

efô/G) -i+i +1.

This checks, since $/G and C are biholomorphically equivalent.

1.7. We shall apply (21) to the Hilbert modular group G and the

extended Hilbert modular G of a real quadratic field. G is defined for any
totally real field I To define it we must say a few words about the units
of K. They are the units of the ring oK of algebraic integers. Let U be the

group of these units. Its rank equals n — 1 by Dirichlet's theorem [6].
Let U+ be the group of all totally positive units (see 1.3). It also has rank
n — 1 because it contains U2 {s2 | se U).

The extended Hilbert modular group is defined as follows

G{("d) I a,b,c, deoK, ad - bee U+} / {(£ °) | a

We have an exact sequence

1 G ^ G -> U+ I U2 -> 1.

obtained by associating to each element of G its determinant mod U2.

If K —Q {-Jd) with d as in 1.4., then U+ and U2 are infinite cyclic
groups and U+/U2isof order 2 or 1. The first case happens if and only
if there is no unit in oK with negative norm. If is a prime p, then

U+ ^ U2 op 3 mod 4

U+ U2 op2 or p1 mod 4.

Compare [30], Satz 133.

To apply (21) to the groups Gand belonging to a real quadratic
field we must know the numbers ar (G) and a,. (G). They were determined
by Gundlach [21] in some cases and in general by Prestel [61] using the
idea that the isotropy groups Gz and Gz respectively (ze§2) determine
orders in imaginary extensions of K, which by an additional step relates
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the ar (G) and ar (G) to ideal class numbers of quadratic imaginary fields

over Q. To write down Prestel's result we fix the following notation. A
quadratic field k over Q (real or imaginary) is completely given by its
discriminant D. The class number of the field will be denoted by h (D)
or by h(k).

Prestel has very explicit results for the Hilbert modular group G of

any real quadratic field K and for the extended group G in case the class

number of K is odd. We shall indicate part of his result.

Theorem. (Prestel). Let d be squarefree, d^.1 and (d, 6) 1. Let

K — Q {-sfd). Then for the Hilbert modular group G (.K) we have for

d 1 mod 4

a2 (G) h(-4d), a3 (G) h — 3d), ar (G) 0 for r * 2, 3

and for d 3 mod 8

a2 (G) 10 -h — d), a3 (G) h (-12d), ar (G) 0 for r Ï 2, 3

and for d 7 mod 8

a2 (G) 4h — d), a3 (G) h (-12J), (G) 0 for r # 2, 3

If d is a prime 3 mod 4 d ^ 3 we have for the extended group

G(K) the following result :

If d 3 mod 8, then

a2 (G) 3h(-d)+ h (—M), a3(G) h(-\2d)\2,
aA (G) 4h( — d),

ar (G) 0 for r # 2, 3, 4.

Ifd^l mod 8, then

a2 (G) A (-</)+ h(-Sd), a3(G) h(-\2d)\2,
a<4. (G) 2/z — J),

(G) 0 for r ^ 2, 3,4.

Prestel gives the numbers <zr (G) and (G) also for J 2, 3, 5. For
J 3 we have
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a2{G) 3, a3(G) 1, a4(G) 1, a12(G) 1,

all other ar(G) 0.

We apply (12), (20) and (21) for K Q (^/s as an example

We shall copy Prestel's table [61] of the ar (G) and the ar (G) (if
known) for K Q (^/^) up to d 41. In [61] the table contains an error
which was corrected in [62].

We also tabulate the values of 2ÇK( — 1), e(^2/G), and of e(?>2/G)

if known. In the columns before 2£K — 1) we find the values of the ar (G);

the values of the ar (G) are written behind 2ÇK (—1). If there is no entry,
then the value is zero.

If the ar (G) and e (§>2/G) are not given in the table, this means that

either there exists a unit of negative norm and thus G G or that the values

are not known. This is indicated in the last column.

By Prestel ar (G) 0 for r > 3 and K Q (yfd) with d > 5, and

we have for d > 5

Since the Euler number is an integer, we obtain by (11) and (12):

For d > 5, d 1 mod 4, d square-free,

2C,(-D=^(4 + 2,l(2

[G:C] =1,

e(H2/G)

(22)
a2 (G) 2

eWIG) ICA-^ +^ + ^iG).-

b odd

For d > 5, d 2, 3 mod 4, d square-free

cr1 (d) + 2 ^ (jx (d — b2) 0 mod 5
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Problem. Prove these congruences in the framework of elementary
number theory.

d 2 3 4 5 6 2UM) 2 3 4 6 12 emc) emô)

2 2 2 2 1/6 4 G G
3 3 2 1 1/3 3 1 1 1 4 4

5 2 2 2 1/15 4 G G
6 6 3 1 5 1 2 1 6 6
7 4 4 4/3 5 2 2 6 6

10 6 4 7/3 8 II
11 10 4 7/3 5 2 4 10 8

13 2 4 1/3 4 «SII
14 12 4 10/3 8 2 4 12 10
15 8 6 4 12

17 4 2 2/3 4 G G
19 10 4 19/3 9 2 4 14 12

21 4 5 2/3 3 2 1 6 4
22 6 8 23/3 12 4 •2 16 14

23 12 8 20/3 7 4 6 18 14

26 18 4 25/3 20 G G

29 6 6 1 8 G G
30 12 10 34/3 24
31 12 4 40/3 11 2 6 22 18

33 4 3 2 7 1 1 6 6

34 12 4 46/3 24
35 20 8 38/3 28

37 2 8 5/3 — — — — — 8 G G
38 18 8 41/3 16 4 6 28 22
39 16 10 52/3 40

41 8 2 8/3 8 G G

§ 2. The cusps and their resolution
FOR THE 2-DIMENSIONAL CASE

2.1. Let K be a totally real algebraic field of degree n over Q and M
an additive subgroup of K which is a free abelian group of rank n. Such a

group M is called a complete Z-module of K. Let be the group of
those units s of K which are totally positive and satisfy sM M. Any
a eK with aM M is automatically an algebraic integer and a unit.

The group is free of rank n — 1 (compare [6]).
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