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CLASSIFICATION DES FORMES TRILINEAIRES ALTERNEES
EN DIMENSION 6

par Bernadette CAPDEVIELLE

INTRODUCTION

Soit F un espace vectoriel de dimension finie n, sur le corps des réels
ou des complexes; I'action du groupe linéaire G/ (E) sur la puissance
extérieure APE est bien connue dans le cas p = 1, p = 2 (classification des
- formes bilinéaires alternées), p = n—2, n—1, n.

En 1907, W. Reichel [5] a donné une classification des trivecteurs
Jorsque E est un espace vectoriel complexe de dimension 6 et obtenu
certaines trajectoires de GI (E) dans AE, lorsque E est un espace vectoriel
complexe de dimension 7. C’est J. A. Schouten [6], qui en 1926 a résolu
complétement le probléme dans ce cas. Une idée de sa méthode, essentielle-
ment géométrique, sera donnée un peu plus loin. En 1934-1935, G. B. Gure-
vich [7], [8], [9] a continué la classification, toujours dans le cas ou E est
un espace vectoriel complexe, en donnant les modeles lorsque n = 8. 1l
ne semble pas s’€tre intéressé aux dimensions des trajectoires. Il utilise des
invariants arithmétiques qui sont les rangs, par rapport a certains indices,
de tenseurs obtenus a partir du trivecteur considéré.

Cet article consiste en I’exposé du cas n = 6, p = 3; il ne contient pas
de résultats bien nouveaux. Cependant, d’une part, I’étude du cas réel est
originale; d’autre part, le point de vue envisagé est différent de celui des
« Anciens », et les démonstrations sont trés élémentaires.

La partie I est consacrée a des rappels, des compléments et quelques
remarques générales. Les parties II et III A donnent des démonstrations
nouvelles, simples des résultats connus concernant les modéles, les invariants
géométriques et les dimensions des trajectoires. On y a aussi montré que
certains résultats restent valables lorsque E est un espace vectoriel réel.
Dans la partie III B, le cas ol E est un espace vectoriel réel est compléte-
ment étudié. Enfin, deux tableaux récapitulent les résultats. Les notations
utilisées sont celles de [4].
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I. DEFINITIONS ET RAPPELS

%\

Dans toute la suite, £ désigne un espace vectoriel, de dimension finie,
sur le corps k = R ou C.

1. RAPPELS
1.1. — [4] (page 101) ‘

On note APE la puissance extérieure p-ieme de espace vectoriel E.
Si i : F— E est une application linéaire, on note

h? : N°F — NPE la puissance extérieure p-iéme de 4.

Si h est injective, AP est aussi injective et on identifiera dans la suite i
NPF et son image par A”. i

Si h est un automorphisme de E, AP est un automorphisme de APE et
Popération de GI (FE) dans APE est définie par:

Gl (E) x N°E — N°E 3}
(h, w) - h* (w)

Dans le cas oi E est de dimension finie #, soit {aq, ..., a,} une base de
E; alors

pour p = n les p-vecteurs décomposables
o A o Ay avec 1 =iy < .. <1i,=n forment une base de N\’E

pour p > n N\PE se réduit a 0.

1.2. — [2] (page 120) :
Si E=E; @ E,, on a un isomorphisme canonique,

NE~@®(NE, & NTIE,).

0=g<p

En particulier, si £, est un sous-espace de E de dimension 1, £, un
supplémentaire quelconque de E;, donc de dimension n -- 1, on a

NE = (E; @ NTE) @ NE,

Cela signifie que tout élément ® € N\PE s’écrit de maniére unique sous
la forme
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w=u0A0+ o,

ot acE; cE; 0e/N"'E, «c N’7'E; w,e/\’E, c/\PE.

REMARQUE. — Donc a A w = 0w = o A 0.

1.3. — Si X est un corps, H un sous-corps de K, E un espace vectoriel sur
le corps H, E I’espace vectoriel obtenu a partir de E par extension du corps
des scalaires de H a K, alors;

a) I'application  de E dans Ey définie parn (x) = 1 ® x est H-linéaire
injective (ce qui permettra d’identifier £ & un sous-ensemble de Ey) et
I’ensemble des éléments de la forme 1 ® x engendre Ek.

b) si 4 est un homomorphisme de I’espace vectoriel £ dans 1’espace
vectoriel E’ (espace vectoriel sur le corps H), il lui correspond un homo-
morphisme unique A; de Ex dans Ex tel que le diagramme suivant soit
commutatif’

E h El

nl ln”

Ey "™, Eg
Le noyau de /g, K-er Ay, est engendré par n (K-er h).
L’image de hg, Im . hy, est engendrée par n’" (Im h).
c¢) il y un isomorphisme canonique de APE sur {\PE)y.

Nous utiliserons ces remarques dans le cas ou H = R, K = C.

REMARQUE. — En particulier (E)* et (E*). sont canomniquement
isomorphes, dés que E est un espace vectoriel réel de dimension finie. Nous
les identifierons dans la suite et écrirons simplement E ..

2. LE RANG

2.1. — [4] (chapitre I)

DEFINITION. — Soient E un espace vectoriel, w € A’E un p-vecteur de
E; le support de w est le plus petit sous-espace vectoriel S, = E, tel que

w € N\PS,,; sa dimension est le rang de w; le corang de w est la codimention
de S, dans E.
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Pour déterminer le rang d’un p-vecteur, nous utiliserons, principalement,
les deux remarques suivantes, vraies si E est de dimension finie.

a) soient w et @’ deux p-vecteurs, avec p = 2;sidim (S, n S,) =p—2,
alors S,4, =S, + S,. En particulier, si S,n S, = {0} alors,
rang (0+ ') = rang  + rang ’.

b) soient w un p-vecteur et w’ un g-vecteur, non nuls, si S, N S, = {0},
alors Syp, =S, @S, et rangw A ®" = rang w + rang w'.

2.2 — Si n est la dimension de E, supposé de dimension finie, on désigne
par 27 . I’ensemble des p-vecteurs de rang r. On sait [2] (page 104) que

a) pour 3 =p =n—3 cet ensemble est non vide si et seulement st
r=0,p,p+2,p+ 3, ..,n

b) pour les valeurs de r précédentes X7 , est une sous-variété réguliére
de APE, de dimension C¥ + r (n—r).

2.3. — Le rang est invariant dans [’action canonique du groupe Gl (E) dans
NPE.

2.4. — Soit E un espace vectoriel réel de dimension finie; désignons par
E. son complexifié. A\PE peut €tre considéré comme un sous-espace réel
de APE.. Soit o un élément de APE, désignons par o le méme élément
envisagé comme élément de APE.

PROPOSITION. — S“’c = (S,)c et, w et ws ont méme rang.

3. LONGUEUR. B — LONGUEUR

Dans la suite on désigne par » la dimension de E.

3.1. — Longueur — expression minimale [4] (page 112)

Soit w un p-vecteur non nul; w peut s’écrire comme somme d’éléments
décomposables de APE (d’'une mamniére qui n’est pas unique).

Considérons D'ensemble F, des systemes libres s = {wy, ..., ;}
d’éléments décomposables de APE tcls que

k
o= o
i=1

Le nombre [/ (w) = inf k s’appelle la longueur de o.
seF
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Soit alors {®;, ..., w;} un élément de F tel que k = /{w)

(o)
Y. s’appelle une expression minimale de o.

i=19;

REMARQUES. — 1) Il est clair que la longueur d’un p-vecteur w est
invariante dans laction canonique du groupe linéaire G/ (E) dans APE.

2) Nous verrons (chapitre III, B. 2) que par passage au complexifié, la
longueur d’un élément w de APE, E espace vectoriel réel, n’est pas conservée.
En désignant par w. 'image de w par l'injection canonique de APE dans
NPE, on a

I(we) =1 (w).

3.2. — B-Longueur B-expression minimale.

Soit B I’ensemble des bases b de E et soit @ un élément non nul de APE.
A chaque b = {«y, ..., a,} € B on peut associer un systéme libre unique
Sp, (04, ..., @), d’éléments décomposables de APE tels que

COi=).iOCi1 Ao A O 1.éi1<...<ip‘;/‘n

i
k
Vi,1..ket) w; = w. Une telle expression s’appelle B-expression de .
i~ 1

Soit F = {s, | be B). Le nombre L (0) = inf k s’appelle la B-longueur
spe F
de .

k
Soit (@, ..., @) un élément de F tel que k = L (w), Y w; s’appelle une
i=1
B-expression minimale de .

REMARQUES. — 1) La B-longueur d’un p-vecteur non nul est toujours
supérieure ou égale a sa longueur

[ =L

2) La B-longueur d’un élément w de APE est invariante dans I’action
canonique du groupe linéaire G/ (E) dans APE,

3) La B-longueur nr’est pas invariante par passage au complexifié
(chapitre III, B.2). Une base de E, espace vectoriel réel, étant aussi une
base de E¢, nous aurons avec des notations évidentes 1, (we) == L (w) pour
tout w e A\PE.
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4. REMARQUE GENERALE

Les classifications ultérieures seront faites en envisageant les rangs
successifs croissants.

Désignons par k le corps de base (R ou C). Nous savons que ’ensemble,
2y ., des p-vecteurs de rang r de APk", est une réunion de trajectoires de
Gl (n).

La classification des p-vecteurs de rang r dans APK" se réduit a celle
des p-vecteurs de rang r dans APk"; en effet soient w, et w, deux éléments
de rang r de APk"; alors, modulo une transformation linéaire convenable,
on peut supposer leurs supports confondus en un méme sous-espace S de
dimension r; si une transformation linéaire, & € GI (k, n), échange w, et
w,, elle laisse invariant S et sa restriction a .S échange w, et w,, envisagés
en tant qu’éléments de APS; la réciproque est évidente.

11 est clair qu’a chaque orbite de G/ (k, ) dans 27 | (variété des p-vecteurs
de rang r dans /\Pk") correspond biunivoquement une orbite de GI (k, n)
dans 2% | (variété des p-vecteurs de rang r dans APk"), de méme codimension.

La classification des p-vecteurs de rang r sera donc faite dans un espace
de dimension r.

5. REMARQUES

Dans la suite, 7 (D) désigne I'idéal de AE, engendré par D, droite de
I’espace vectoriel E de dimension finie et @, I'image du trivecteur w par
’application canonique: AE — N3E/D.

50— wp =0 wel(D).

52.—Si D, et D, sont deux droites distinctes, et weI(D;) nI(D,)
alors @ est décomposable.

5.3. — Si @, est décomposable, alors 'image réciproque du support de
@ par la projection canonique de E sur E/D est un 4-plan, H (D, w),
contenant D, que nous désignerons simplement par Hp pour w fixé. D’autre
part, a tout 3-plan P de H, ne contenant pas D, est attaché un élément o,
de A\’P tel que w — w, soit un élément de I (D).

5.4. — Si D et 4 sont deux droites telles que: we I (4), w ¢ I(D) et wp
décomposable, alors 4 est contenue dans H,.

En effet, si on désigne par A4 la projection de 4 sur E/D, il est clair
que @ est un élément de I'idéal de AE/D engendré par 4.
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5.5 — Soient D et D' deux droites distinctes de E, telles que Op et Op
soient décomposables; si H, et Hj. sont confondus, le rang de w est
strictement inférieur a 6.
En effet, il suffit de choisir dans H}, un sous-espace F de dimension 3
ne contenant ni D ni D’. D’aprés la remarque 5.3, il existe un élément w;
de A°F tel que:
w— w;el(D), w— Aw,el(D) ol Aek

donc

(1= w,el(D)+ I(D)
donc

l1-1A=0 et
w—w,el(D)nlI(D)

et par conséquent, le rang ne peut &tre plus grand que 5.

II. Etupk DE X, 5 (k = Rou C)

1. PROPOSITION

Pour tout w élément de N°E, E de dimension 5, il existe une droite A <= E,
~ telle que w soit un élément de I (A4).

DEMONSTRATION. — Soit D une droite quelconque. Si w ¢ I (D), @, est
~un élément décomposable non nul de A3E/D; soit alors D’ une droite
supplémentaire de H,, dans E. La dimension de H, n Hy,. est 3. Désignons
~ par F ce sous-espace; d’aprés la démonstration de la remarque 5.5., il

. existe un trivecteur w; de support F tel que w — w, soit un élément de

I (D) n I(D’) et par conséquent nul ou décomposable. Le premier cas est
~ trivial; dans le second 4 = S, _,, N Sy, €st une droite et w un €élément
~de I(4).

Si w est de rang 5, d’aprés la remarque 5.2., la droite 4 est unique.

COROLLAIRE. — 1) Soit @ un élément de X 5, il existe une base
{ag, ..., a,} de E telle que

W= 0y NGy AOz+ 0y Ay A Us (1)

2) X3 .5 est une trajectoire de G/ (F) de dimension 5 (n—3).
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2. REMARQUES

2.1. — D’expression (1) est pour w, a la fois une expression minimale et
une B-expression minimale: !/ (w) = L (w) = 2.

2.2. — Soit o un élément quelconque de X2 s> et 4 la droite unique, telle

que w est élément de I(4), alors quel que soit le sous-espace E;, avec
So=A@E,; onawed® NE,.

2.3. — Si E est hermitien (ou euclidien), compte tenu des propriétés des
bivecteurs, la base, dans laquelle w s’écrit sous forme canonique, peut-
€tre choisie orthonormée.

III. ETUDE DE X} 4

A. — CAS COMPLEXE

Nous envisageons d’abord le cas ou F est un espace vectoriel de dimen-
sion 6 sur le corps des complexes. ‘

1. RECHERCHE DE MODELES

1.1. — PROPOSITION 1. — Tout élément de X3 ¢ peut s’écrire sous l’'une des
deux formes

(1) oy Ady Adg+ 0y A s A Qg
(2) 061/\062/\063-{—0(1/\OC4AO£5+OCZ/\OC4/\OCG

{ay, 00y, a3, 004, o5, g} €tant une base de E. Pour le démontrer, nous
utiliserons deux lemmes.

1.2. — LemME 1. — Soient y, et y, deux élément de A’E, de rang 4, de
méme support F < E. Alors, il existe u € C tel que y, — uy; soit décompo-
sable. En effet, A*F est une droite domplexe contenant y; A y; i.j =
1,2 :9; ~ 7, est non nul; posons y, A y, =ay; Ay, a€C,a#0

Py A Py =byy A Py b e C (b pouvant €tre nul)

pour tout pe C (y,—puye) A (Y2—uy1) = 71 A yy (@=2ub+p?) donc il
existe ue C tel que (y,—pyy) A (y,—uy,) =0 ce qu signifie que
y, — puy,; est décomposable.
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REMARQUE. — Si E est un espace vectoriel sur le corps des réels, dans
les hypothéses du lemme 1, deux cas pourront se présenter:

1) il existe ue R tel que y; — uy, soit décomposable.

2) quel que soit pe R, y, — uy, est de rang 4 et de support F.

1.3. — LEMME 2. — Quel que soit w 622’6, il existe un élément o # 0 de
E, tel gue a A o soit un élément décomposable de N*E.

DEMONSTRATION. — Soit @ un élément de X} ¢ et soit B un élément
non nul quelconque de E. D’aprés I 1.2., en choissisant pour E; le sous-
espace engendré par f8, on peut écrite w = f A vy +w avecE; @ E, = E,
w, eNE, =« N°E y,e N*E, =« \’E. w; est au maximum de rang 5.
Le seul cas a envisager est donc celui oll w, est de rang 5 et y, de rang 4.
Donc w; = oy Ay, oU y,e/N’E,. Si ay €S, la conclusion est immé-
diate. Si oy ¢.5,, en choisissant S,; = S,, (II), et en utilisant le lemme 1,
on voit facilement que f 4+ uo, convient.

REMARQUE. — Il est possible de démontrer le lemme 2 par 'argument
géométrique suivant. Soit w e A’E, supposons que, pour toute droite
D < E, I'image w;, de w dans A’E/D est de rang 5; il correspond & w;, (II)
une droite dans E/D, qui définit un plan P contenant D dans E. Soit 4
I'orthogonale de D dans P; lapplication D -» 4 définirait un automor-
phisme de ’espace projectif Ps (C) sans point fixe, d’ou contradiction.

1.4. — Démonstration de la proposition

Choisissons donc pour o un élément de E tel que o A w soit décom-
posable

w=0aAy +w; ave S, + S8, =Lk,

w1

Si yy est de rang 2 S, @ S, = E,.
Il existe donc une base de E «; = a, «,, ..., 04 telle que

W = 04 AUy AUz + 0y AOs A Og (D

Siyy est de rang 4 S,; n S, est de dimension 2. Soit a,, o, une base
de S,, N S,,. Deux cas peuvent se présenter:

a) ay Aoy Ay, = 0. Donc [3].

V1 = Oy A Oy + 03 A 05 OU O, ty, X3, s €St une base de Sy

L’Enseignement mathém., .t XVIII, fasc. 3-4. 16
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Soit «,, g, s une base de S,,.
5 ’
Alors, o = (a+ag) A oy Aoy + o A dy A os et nous retrouvons
Pexpression (1).

b) o, A ay Ay = 0. Donc [3].

Vi = 0y A O3+ 0y A X5 AVEC Oy, U3, 0y, &5 base de S,,.
Par conséquent il existe une base {o = oy, a,, ..., a0} de E telle que:

W = 0y A0y AUyt 0ty Aoy AOs+ ay AUy A g (2)

1.5. — REMARQUES. — a) J. A. SCHOUTEN commence la démonstration de
la Prop 1 d’'une maniére tout a fait analogue a la précédente. En effet,
apres avoir remarqué que pour tout trivecteur w de rang plus grand que 3,
il existe toujours une forme u telle que wlu soit de longueur supérieure
a 1, 1l envisage un tel u pour w de rang 6 donné, alors wlLu est de longueur 2
et dans une base telle que e (par ex.) soit dual de u, w s’éctit v = ®" + @”
avec ' = ez A v, ou v est un bivecteur de longueur 2, o’ un trivecteur.
Les supports de v et @’ sont contenus dans un espace E5, de dimension 5,
transverse a eq. Si o' est décomposable, la démonstration se poursuit
comme ci-dessus dans le cas ot y est de rang 4. Si "’ est de rang 5, la
discussion est beaucoup plus longue et plus compliquée. Elle fait intervenir
les positions respectives du support de v et de la direction invariante associée
a w”’, dans le support de w”, ainsi que celles des supports des 2 trivecteurs
décomposables dont la somme est " et des supports des 2 bivecteurs
décomposables dont la somme est v. Les invariants géométriques dont
nous parlons dans la remarque suivante sont obtenus en utilisant les en-
veloppes des hyperplans déterminés par les formes u telles que wLu soit
décomposable.

b) Invariants géométriques. — w étant un trivecteur de rang 6, consi-
dérons 2 droites D et D’ telles que (/5) @) et wp  soient décomposables.
Alors 2 cas peuvent se présenter.

D < Hy., w est donc un élément de I(D) + I(D") et, D' < Hy,
D’ & Hp. Soit F = Hyn Hp,, 2 =dim F =< 3.

Choisissons dans Hp un sous-espace P de dimension 3 contenant F
et dans H,. un sous-espace P’ de dimension 3 contenant F. Il existe
et ] tels que:

o— o el(D); o—wel(D); S, N So; = F

w, — w; est donc un élément décomposable de I(D) + I(D’) et par
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conséquent w; = ;. Donc F est de dimension 3 et w; — w; est un élément
de I(D)nI(D). o sécrit donc w = w; + w, D < Sw,, D' = S,,,
b Sy N S,, = {0}. Clest & dire que w est de type (1).

CONSEQUENCES. — o Si @ est de type (2)
a)=061AOCZ/\OC3+061/\OC4/\065—I—062/\O(4/\ 056.

I est clair que si D est contenue dans S,; x,aqy alors oy, est décomposable.

- Réciproquement, soit D telle que @, soit décomposable. Désignons par

- D; (i = 1,2, 4) la droite de E engendrée par «;. Alors, D < Hy,, D = Hyp,

~donc D = Hy " Hp, et D < S, puopay )

Donc Sy pagnay €St le sous-espace des droites D de E, telles que wp
soit décomposable.

p Si w est de type (1)
W = 0y ANCy N0zt 0y A Os A Ug

I est clair que pour toute droite D de Sy auynag (TESP- Saynaspag)s Wp
est décomposable.

Réciproquement, soit D telle que wj, soit décomposable. Utilisons les
notations précédentes.

* Si D est contenue dans deux Hj, pour i = 1,2, 3, (resp. = 4, 5, 6)
alors D est contenue dans Sy aupzs (T€SD. Sagpaspas)

** Si non, soit par exemple
D & Hp,, D & H,, Posons H, n Hp = Py; Hp, 0 H, = P,.

Alors, la dimension de Py n P, est au moins 2 et P, n P, est contenu
dans H, n Hp, et

o= 0] + w0, So; = P, wy € I(D,) n I(D)
0 — 0] = w, — w, ®; — o) est une décomposable dont le support

i . /7
- contient Py N P,. Donc w; = o), 0, = w; et P, = P, = Hp 0 Hp,

D < S, nugAasz

Les droites D de E telles que w;, soit décomposable sont donc soit les
droites de S, p,, Aag SOt les droites de S,, p . pqg. Cecl entraine en particulier

‘que la décomposition de w sous la forme o = w, + w, avec So, N Sw, =
{0} est unique.
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c) Si E est un espace vectoriel sur le corps des réels, les éléments w de
32 pour lesquels il existe aeE, « # 0, avec o A o décomposable,
s’écriront aussi sous la forme (1) ou sous la forme (2).

2. TRAJECTOIRES

2.1. — Remarques préliminaires

En chaque point de A’E, I’espace tangent & A’E sera identifié & A3E.

Désignons par X, le cone des éléments décomposables de A’E, si o
est un €lément de X, on note T, I’espace tangent a X au point w.

Soit @ = oy A ay A oy un élément de X {ay, s, ..., ag} étant une

base de E. Une représentation paramétrique d’un voisinage de o dans X
6

est A [(oy+a;) A (ey+ay) A (a3+as)] ol a; = Za(x et A, alek.

Donc l’espace tangent, 7,, en w a X est lensemble des vecteurs
6 6 6

plog Aoy Aos) + ) &) o Aty Aoty + > gy Aoy Aoy + 2 gl oy Aoy na.
J=4 i=4 i=4
T, est donc engendré par les éléments a; A o; A o 0 {7, j, k} n {1,2, 3}

contient au moins 2 éléments.

2.2. — PROPOSITION 2. — L’ensemble Ty, des trivecteurs de rang 6 et de
longueur deux est une trajectoire ouverte de Gl (E) dans N\’E.

Il est clair que cet ensemble constitue une trajectoire de G/(FE) qui est
une sous-variété de A\’E, en tant que trajectmre d’un groupe de Lie. Il reste
a déterminer sa dimension.

Les w s’écrivant sous la forme (1) sont caractérisés par

W= w;+ 0,

w;€X ie{l,2}

Wy A @y, #0

Soit Uc X x X U= {(0, w,)| o; A 0, # 0}

f:2 x X - \°FE définie par f(w,, w,) = w; A @, est continue. Donc
U est ouvert.

Soit 4 : U — N’E définie par h (0, w,) = o, + w, h est différentiable
et h' :T,, & T,, > NE est telle que h' (ny,1,) = 1y + 1,

Soit {oy, &y, ..., &g} une base de E telle que
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Wy = 03 A0y Aoz, @y = 04 A s A Xg

Ty, O Ty = {0} donc Ker h' = {0} et h" est un difféomorphisme local.
i 1’image de U par /1 est donc un ouvert.

| 3 __ PROPOSITION 3. — L ’ensemble, T,, des trivecteurs de rang 6 qui
[ s écrivent sous la forme (2) est une trajectoire de codimension 1.

Il est clair que cet ensemble est une trajectoire de GI(E). Nous avons
¢ 2 déterminer sa dimension. \
Les o qui s’écrivent sous la forme (2) sont caractérisés par:

W= W+ 0, 1+ W3
1 w;eX ie{l,2,3}
t dim S, N Smj =1
| Sp; O Swj & S, pour i#j#EkFIi conditions (a)
iLj,ke{l, 2,3}

Soit VeXxXx2X, V= {(0, 035 ©3) | Sop» Sey Swg vérifient (a)}.
. V est une sous-variété réguliére de codimension 3, en effet, considérons
f; ie{l,2,3}

fiiZxXIxX->NE~k

Si(wy, @, 03) = ®; A o, OU i, j, k est une permutation paire de 1, 2, 3.

| V est lensemble des (w,;, w,, w3) ou f;=f,=f;=0 et ou
- dfy, df,, df; sont linéairement indépendantes.
Soit 1:X x ¥ x ¥ — N*(E) définie par

h(a)h W3, C03) = ; + W, + 03

la restriction [ de h a V est de rang 19.

En effet, en un point de V, il existe un seul vecteur de base de A*(E) qui
ne se laisse pas écrire dans T, + T, + T,,, C’est avec les notations pré-
| cédentes a3 A a5 A ag. D’autre part, Ker A’ est transverse a l’espace
tangent &  en un point de V. f est donc aussi de rang 19 et f(V') est une
sous-variété de codimension 1.

REMARQUE.——'SOlt w = 061 AN OCZ A (X3 + 061 AN 064 A 055 + OCZ A 064 A (X6.
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Si nous faisons dans E le changement de base

Y B
ay = 2B + 4, “2=ﬁ2+—23‘ 0‘5:-2,
2 2z
71
“6=73 oy = 2f3 + y3, a3 = B3 + V3,
1l vient
®= =B APy APy =2V AP AYs+ (BiFy) ABrtya) ABs+ys)

Nous avons deux expressions minimales de w. Dans la premiére les supports
des w; ont deux a deux une droite en commun, dans la seconde, ils sont
deux a deux en position de somme directe. Ce résultat met en défaut la
conjecture de J. Martinet [4] (page 113).

3. — Si E est de dimension n, il est clair que la proposition 1 reste vraie
en remplagant 22,5 par X s. Les propositions 2 et 3 deviennent:

PROPOSITION 2. — L ’ensemble des trivecteurs de rang 6 et de longueur 2
est une trajectoire ouverte dans 23,6.

PROPOSITION 3. — L ’ensemble des trivecteurs de rang 6 et de longueur 3
est une trajectoire de codimension un dans 23,6, c’est-a-dire de dimension
19 + 6 (n—6).

B. — CaAs REEL

Dans la suite E désigne un espace vectoriel réel de dimension n = 6.

1. — Désignons par E le complexifié de E

32 ¢ lensemble des éléments de rang 6 de A°E

wc € NE; 'image canonique de w e A’E

(trés souvent on identifiera w et we).

Ef a0y
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E est identifié au sous-ensemble des éléments | ® o de E- ou o € E.

Une base de E étant aussi une base de E, il est clair, en considérant les
formes canoniques obtenues pour les différents éléments de A*E, que toutes
les trajectoires de GI(E¢) dans A’E¢ rencontrent A°E.

PROPOSITION 1. — Tout trivecteur de rang 6 s’écrit sous [ ’une des formes
(1) oy Ay Aoty + 0y A s A O
(l)b (Xl /‘\OCZ/\O€3+061/\O£4AOCS+OCZAOC4/\GC6—OC3/\O(5/\066

(2) oy Aoy Aoy 0y Aoy Ads 0, A Oy A U

(o, 00y, 03, 00y, 45, 006} étant une base de E.

DEMONSTRATION. — Soit @ un élément de X3 4. Utilisons la remarque 1
et les démonstrations des lemmes 1 et 2 de 4. Le seul cas 4 examiner est
celui ol nous ne savons pas s’il existe « # 0 (x e E) tel que o A @ soit

décomposable. Alors @ = o A y; + a; A y, o0 € E o # 0 quelconque
A est la droite engendrée par «;

E, la droite engendrée par «; E=FE, @ LE,; E,=4,® S,
S, =S,=F; y, et y,e\*F de rang 4.

Chacun de ces sous-espaces en engendre un dans E.
Nous reprenons la démonstration du lemme 1 avec a, b€ R.

Alors, Téquation @ — 2ub + p*> = 0, a deux racines complexes con-
jugées

x=D>b+ic , X c # 0.

Y2 — Xyg et y, — Xy, sont deux éléments décomposables de A*F,. Posons
Y2 — Xy = By A B3, By = Uy + dos, B3 = o5 + i, ou
o + boy

az, 063, CA4, ds EE et 066 —
C

Nous obtenons I’expression

W = 0y N0y A0yt 0y AUy ANOs+ 0y Aty AOlg— 0z A 0s A O

et {0y, ap, o3, 04, x5, 00g} est une base de E car Vo — by, (=0, A oy +
%4 A os) est de rang 4.
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Remarquons que:

o = Y (ay—iog) A (ay+ias) A (as+iny) + ,
3 (g +iog) A (ay—ios) A (003 —ioty)

donc w ne peut étre mis sous la forme (1), compte tenu de la remarque
(B 1.5.2).

2. On en déduit la proposition suivante:

PROPOSITION 2. — L ’ensemble 22,6 est constitué de trois orbites.

1) Deux orbites ouvertes correspondant aux modéeles (1), et (1),.

2) Une orbite de codimension 1 correspondant au modéle (2).

REMARQUES. — 1) Tout w élément de 2236 tel que o est de longueur 3,
est aussi de longueur 3.

2) Soit @ de B-longueur 4. Dans A*E on peut aussi I’écrire

W= —(ts—0,) Aoy Aoy + (sF+0a,) Aoy Adg +
(g +og) A as A (az—0y)

w est donc de longueur 3 et les supports des trivecteurs décomposables qui
interviennent dans 1’expression donnée sont deux & deux en position de
somme directe.

3) La précédente remarque montre que la longueur et la B-longueur ne
sont conservées par complexification.

4) Pour n > 6 il est clair que la proposition 1 est conservée. Les conclu-
sions de la proposition 2 sont remplacées par les suivantes:

1. Deux orbites ouvertes dans X, ¢ correspondant aux modeéles (1), et
(D

2. Une orbite de codimension 1 dans fo’,@ c’est a dire de dimension
19 + 6 (n—6).
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3. RECAPITULATION

3.1. — On peut remplacer la conjecture de J. Martinet [4] (page 113) par

la suivante:
k k
Soient @ = ) w; et w = Y, o’; deux B-expressions minimales de w;
i=1 j=1
les collections F et F’ de sous-espaces F; et F’';, support respectif de w;
et w’; sont égales dans £, c’est-a-dire qu’il existe un automorphisme g de

E tel que, pour tout i il existe j avec g (F;) = F';.

3.2. — Les tableaux suivants résument les résultats relatifs aux trajectoires
de Gl4(k) dans A’Eg, espace vectoriel de dimension 20 sur k;

k=C
Rty RS Modele o e
0 0 0
’ : m 10
5 2 W 15
6
2 ﬁ W 20

1) Les sommets des triangles représentent des vecteurs de E linéairement indépendant.

) 2) Chaque triangle représente un trivecteur décomposable de support le sous-espace engendré par les
' trois sommets. '

| 4 t3') Cl;aque figure représente le trivecteur somme des trivecteurs décomposables représentés par chacun
, des triangles,




k=R
Rang Longueur B-Longueur Modéle de?;’g?}:::gire

3 1 1 % 10
> 2 2 M 15
6 2 /N

AN
3 4 / R 20

) ""~

4 l’l/////lllllla.:\-

*) Dans ce cas les coefficients attribués aux trivecteurs décomposables ne sont pas indifférents.

I est évident que le rang, la longueur, la B-longueur sont des invariants
trés grossiers. Ils ne suffiront plus a distinguer les trajectoires lorsque

n > 6.
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