
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CLASSIFICATION DES FORMES TRILINÉAIRES ALTERNÉES EN
DIMENSION 6

Autor: Capdevielle, Bernadette

DOI: https://doi.org/10.5169/seals-45374

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-45374
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


CLASSIFICATION DES FORMES TRILINÉAIRES ALTERNÉES

EN DIMENSION 6

par Bernadette Capdevielle

Introduction

Soit E un espace vectoriel de dimension finie n, sur le corps des réels

ou des complexes ; l'action du groupe linéaire Gl (E) sur la puissance

extérieure I\PE est bien connue dans le cas p — 1, p 2 (classification des

formes bilinéaires alternées), p — n — 2, n — 1, n.

En 1907, W. Reichel [5] a donné une classification des trivecteurs

lorsque E est un espace vectoriel complexe de dimension 6 et obtenu
certaines trajectoires de Gl(E) dans A3E, lorsque E est un espace vectoriel

complexe de dimension 7. C'est J. A. Schouten [6], qui en 1926 a résolu

complètement le problème dans ce cas. Une idée de sa méthode, essentiellement

géométrique, sera donnée un peu plus loin. En 1934-1935, G. B. Gure-
vich [7], [8], [9] a continué la classification, toujours dans le cas où E est

un espace vectoriel complexe, en donnant les modèles lorsque n 8. Il
ne semble pas s'être intéressé aux dimensions des trajectoires. Il utilise des

invariants arithmétiques qui sont les rangs, par rapport à certains indices,
de tenseurs obtenus à partir du trivecteur considéré.

Cet article consiste en l'exposé du cas n — 6, p 3 ; il ne contient pas
de résultats bien nouveaux. Cependant, d'une part, l'étude du cas réel est

originale; d'autre part, le point de vue envisagé est différent de celui des

« Anciens », et les démonstrations sont très élémentaires.

La partie I est consacrée à des rappels, des compléments et quelques

remarques générales. Les parties II et III A donnent des démonstrations
nouvelles, simples des résultats connus concernant les modèles, les invariants
géométriques et les dimensions des trajectoires. On y a aussi montré que
certains résultats restent valables lorsque E est un espace vectoriel réel.
Dans la partie III B, le cas où E est un espace vectoriel réel est complètement

étudié. Enfin, deux tableaux récapitulent les résultats. Les notations
utilisées sont celles de [4].



I. Définitions et rappels

Dans toute la suite, E désigne un espace vectoriel, de dimension finie,
sur le corps k R ou C.

1. Rappels

1.1. —[4] (page 101)

On note APE la puissance extérieure p-ième de l'espace vectoriel E.
Si h : F -» E est une application linéaire, on note

hp : APF -» APE la puissance extérieure p-ième de h.

Si h est injective, hp est aussi injective et on identifiera dans la suite
APF et son image par hp.

Si h est un automorphisme de E, hp est un automorphisme de APE et

l'opération de Gl (E) dans APE est définie par:

Gl(E) x APE APE

(h, coi) -» hp (co)

Dans le cas où E est de dimension finie n, soit {a1?..., otn} une base de

E; alors

pourp lesp-vecteurs décomposables

a a aix avec 1 ^ i1 < < ip ^ n forment une base de APE

pour p > n APE se réduit à 0.

1.2. — [2] (page 120)

Si E Et © E2, on a un isomorphisme canonique,

APE - ® (A*Et 0 Ap"qE2).

En particulier, si Et est un sous-espace de E de dimension 1, un
supplémentaire quelconque de El9 donc de dimension n — 1, on a

ApE & (E, ® Ap'xE2) © ApE2

Cela signifie que tout élément co e APE s'écrit de manière unique sous

la forme
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CO OC A 0 + co2

où oceE± c E\ 9 e Ap lE2 <= Ap XE\ œ2eApE2 <=APE.

Remarque. — Donc ocAco O<=>co aA0.

1.3. — Si K est un corps, H un sous-corps de K, E un espace vectoriel sur
le corps H, EK l'espace vectoriel obtenu à partir de E par extension du corps
des scalaires de H à K, alors;

a) l'application t] de E dans EK définie par rj (x) 1 ® x est H-linéaire

injective (ce qui permettra d'identifier E à un sous-ensemble de EK) et

l'ensemble des éléments de la forme 1 ® % engendre EK.

b) si h est un homomorphisme de l'espace vectoriel E dans l'espace
vectoriel E' (espace vectoriel sur le corps H), il lui correspond un
homomorphisme unique hK de EK dans EK tel que le diagramme suivant soit
commutatif :

Le noyau de hK, K-çr hKi est engendré par rj (K-er /?).

L'image de hK, Im hK, est engendrée par r\' {Im h).

c) il y un isomorphisme canonique de APEK sur (APE)K.
Nous utiliserons ces remarques dans le cas où H R, K — C.

Remarque. — En particulier (Ec)* et (E*)c sont canoniquement
isomorphes, dès que E est un espace vectoriel réel de dimension finie. Nous
les identifierons dans la suite et écrirons simplement Eç.

2. Le rang

2.1. — [4] (chapitre I)

Définition. — Soient E un espace vectoriel, œ e APE un ^-vecteur de
E; le support de co est le plus petit sous-espace vectoriel ci E, tel que
co e ApSœ; sa dimension est le rang de co; le corang de co est la codimention
de Sa dans E.

E * E'
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Pour déterminer le rang d'un p-vecteur, nous utiliserons, principalement,
les deux remarques suivantes, vraies si E est de dimension finie.

a) soient co et co' deux /^-vecteurs, avec p ^ 2; si dim (Sm n S^) ^p — 2,

alors S(0+(û> Sc0 + S^. En particulier, si n {0} alors,

rang (co + co') rang co + rang co'.

b) soient co un ^-vecteur et co' un #-vecteur, non nuls, si n Sœ> {0},
alors ScoAo), S«, © et rang co a cd' rang œ + rang œ'.

2.2 — Si n est la dimension de E, supposé de dimension finie, on désigne

par r l'ensemble des p-vecteurs de rangr. On sait [2] (page 104) que

a) pour 3 ^n — 3 cet ensemble est non vide si et seulement si

r 0,p9p + 2,p + 3, ...,77

b) pour les valeurs de r précédentes est une sous-variété régulière
de APE, de dimension Cpr + r(n — r).

2.3. —Le rang est invariant dans l'action canonique du groupe Gl (E) dans

ApE.

2.4. — Soit E un espace vectoriel réel de dimension finie; désignons par
Ec son complexifié. f\pE peut être considéré comme un sous-espace réel

de APEC. Soit co un élément de APE, désignons par coc le même élément

envisagé comme élément de APEC.

Proposition. — S^ (S(0)c et, co et coc ont même rang.

3. Longueur. B — Longueur

Dans la suite on désigne par n la dimension de E.

3.1. —Longueur — expression minimale [4] (page 112)

Soit co un /?-vecteur non nul; co peut s'écrire comme somme d'éléments

décomposables de APE (d'une manière qui n'est pas unique).
Considérons l'ensemble F, des systèmes libres s {col5..., cok}

d'éléments décomposables de APE tels que
k

® E œi
i— 1

Le nombre / (co) inf k s'appelle la longueur de co.

se F
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Soit alors {œl5 œk} un élément de F tel que k l (co)

Hco)

£ s'appelle une expression minimale de co.

i=l <°i

Remarques. — 1) Il est clair que la longueur d'un ^-vecteur co est

invariante dans l'action canonique du groupe linéaire Gl(E) dans APE.

2) Nous verrons (chapitre III, B. 2) que par passage au complexifié, la
longueur d'un élément oo de APE, E espace vectoriel réel, n'est pas conservée.

En désignant par coc l'image de co par l'injection canonique de APE dans

APEC, on a

l(coc)^l(co).

3.2. — B-Longueur B-expression minimale.

Soit B l'ensemble des bases b de E et soit co un élément non nul de APE.

A chaque b {a1? a„} e B on peut associer un système libre unique
sb, (cou cok), d'éléments décomposables de APE tels que

coi — a a afl 1 i1 < < ip ^n
k

V7, 1 k et Yj œi — M- Une telle expression s'appelle B-expression de co.
i- 1

Soit F {sb \ b e B}. Le nombre L (co) inf k s'appelle la B-longueur
sbe F

de co.

k

Soit (col} cok) un élément de E tel que k L (co), s'appelle une
i- 1

B-expression minimale de œ.

Remarques. — 1) La B-longueur d'un ^-vecteur non nul est toujours
supérieure ou égale à sa longueur

l^L
2) La B-longueur d'un élément co de A est invariante dans l'action

canonique du groupe linéaire Gl E)dansA

3) La B-longueur n'est pas invariante par passage au complexifié
(chapitre III, B. 2). Une base de E, espace vectoriel réel, étant aussi une
base de Ec,nous aurons avec des notations évidentes L(œr) ^L(oS) pour
tout œ e APE.
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4. Remarque générale

Les classifications ultérieures seront faites en envisageant les rangs
successifs croissants.

Désignons par k le corps de base (R ou C). Nous savons que l'ensemble,

Ip}f, des /»-vecteurs de rang r de Apkn, est une réunion de trajectoires de

Gl(n).
La classification des ^-vecteurs de rang r dans Apkn se réduit à celle

des /7-vecteurs de rang r dans Apkr; en effet soient co1 et cd2 deux éléments
de rang r de Apkn; alors, modulo une transformation linéaire convenable,
on peut supposer leurs supports confondus en un même sous-espace S de

dimension r; si une transformation linéaire, heGl(k,n), échange œt et

œ 2, elle laisse invariant S et sa restriction à S échange œ1 et co2, envisagés

en tant qu'éléments de APS; la réciproque est évidente.
11 est clair qu'à chaque orbite de Gl(k, r) dans 2prr (variété des /?-vecteurs

de rang r dans f\pkr) correspond biunivoquement une orbite de Gl k, n)
dans Ip>r (variété des /^-vecteurs de rang r dans Apkn), de même codimension.

La classification des /»-vecteurs de rang r sera donc faite dans un espace
de dimension r.

5. Remarques

Dans la suite, 1(D) désigne l'idéal de AE, engendré par D, droite de

l'espace vectoriel E de dimension finie et œD l'image du trivecteur œ par
l'application canonique: A3E -* A3E/D.

5.1. — œD — 0 o œ e I (D).

5.2. — Si Dt et D2 sont deux droites distinctes, et œ e I (D±) n I (D2)
alors œ est décomposable.

5.3. — Si œD est décomposable, alors l'image réciproque du support de

cd par la projection canonique de E sur E/D est un 4-plan, H (D, co),

contenant 2), que nous désignerons simplement par HD pour cd fixé. D'autre

part, à tout 3-plan P de HD, ne contenant pas D, est attaché un élément cd1,

de A3P tel que cd — cd x soit un élément de 1(D).

5.4. — Si D et A sont deux droites telles que: œ e 1(A), cd $ 1(D) et œD

décomposable, alors A est contenue dans HD.

En effet, si on désigne par 2 la projection de A sur E/D, il est clair

que cdd est un élément de l'idéal de AE/D engendré par 2•
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5.5 — Soient D et D' deux droites distinctes de E, telles que coD et coD>

soient décomposables ; si HD et HD> sont confondus, le rang de to est

strictement inférieur à 6.

En effet, il suffit de choisir dans HD un sous-espace F de dimension 3

ne contenant ni D ni D'. D'après la remarque 5.3, il existe un élément co^

de A3F tel que:

co — g I (D) y co — 2c0i e I (D') où Xek

donc

(l-X)col eI(D) + /(£')
donc

1-2 0 et

co - co1 e 1(D) n I(D')

et par conséquent, le rang ne peut être plus grand que 5.

II. Etude de ll>5 (k R ou C)

1. Proposition

Pour tout co élément de A3E, E de dimension 5, il existe une droite A a E,
telle que co soit un élément de 1(A).

Démonstration. — Soit D une droite quelconque. Si co $ I (D), coD est

un élément décomposable non nul de A3E/D; soit alors D' une droite
supplémentaire de HD dans E. La dimension de HD n H0, est 3. Désignons

par F ce sous-espace; d'après la démonstration de la remarque 5.5., il
existe un trivecteur cox de support F tel que co — co1 soit un élément de

1(D) n I(D') et par conséquent nul ou décomposable. Le premier cas est

trivial; dans le second A n SC01 est une droite et co un élément
de 1 (A).

Si co est de rang 5, d'après la remarque 5.2., la droite A est unique.

Corollaire. — 1) Soit co un élément de il existe une base

{al5..., a,,} de E telle que

co a a2 a a3 + ax a a4 a a5 (1)

2) ll)5 est une trajectoire de Gl (E) de dimension 5 (« — 3).
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2. Remarques

2.1. — L'expression (1) est pour cd, à la fois une expression minimale et

une ^-expression minimale: /(œ) L (co) 2.

2.2. — Soit co un élément quelconque de ll>5, et A la droite unique, telle

que co est élément de 1(A), alors quel que soit le sous-espace E±, avec
Scd A ® Ex, on a cd e A ® A2E1.

2.3. — Si E est hermitien (ou euclidien), compte tenu des propriétés des

bivecteurs, la base, dans laquelle co s'écrit sous forme canonique, peut-
être choisie orthonormée.

III. Etude de 6

A. — Cas complexe

Nous envisageons d'abord le cas où E est un espace vectoriel de dimension

6 sur le corps des complexes.

1. Recherche de modèles

1.1. — Proposition 1. — Tout élément de peut s'écrire sous l'une des

deux formes

(1) oc1 a oc2 a a3 + a4 a a5 a a6

(2) a1 a a2 a a3 + a a4 a a5 + a2 a a4 a a6

{gc1, oc2, a3> a4> a5> aô} étant une base de E. Pour le démontrer, nous
utiliserons deux lemmes.

1.2. — Lemme 1. — Soient yx et y2 deux élément de f\2E, de rang 4, de

même support F c E. Alors, il existe fi e C tel que y2 — py^ soit décompo-
sable. En effet, A*F est une droite domplexe contenant yt a ys i j
1,2 : yx a est non nul; posons y2 a y2 ayx a. yl9 ae C, a A 0

yL a y 2 by a be C (b pouvant être nul)

pour tout pie C (y2—^yi) A (72—Wi) 71 A 7i (a—2pb + ji2) donc il
existe jweC tel que (72 —Wi) A (72~ A£7i) 0 ce qui signifie que

72 — Wi est décomposable.
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Remarque. — Si E est un espace vectoriel sur le corps des réels, dans

les hypothèses du lemme 1, deux cas pourront se présenter:

1) il existe p,E R tel que yx — juy2 soit décomposable.

2) quel que soit jie R, — py2 est de rang 4 et de support F.

1.3. — Lemme 2. — Quel que soit cd el^, il existe un élément a / 0 de

E, tel que a a cd soit un élément décomposable de A4E.

Démonstration. — Soit œ un élément de et soit ß un élément

non nul quelconque de E. D'après I 1.2., en choissisant pour E1 le sous-

espace engendré par ß, on peut écrire œ =- ß a y x + co1 avec Ex © E2 E,

œ1 eA3E2 cz A3E yx e A2E2 a A2E. est au maximum de rang 5.

Le seul cas à envisager est donc celui où ©1 est de rang 5 et y t de rang 4.

Donc cox a1 a y2 où y2eA2E2 Si e Syi la conclusion est immédiate.

Si oc1 Syi en choisissant Syi — Sy2 (II), et en utilisant le lemme 1,

on voit facilement que ß -f pax convient.

Remarque. — Il est possible de démontrer le lemme 2 par l'argument
géométrique suivant. Soit cd e A3E, supposons que, pour toute droite
D a E, l'image œD de œ dans A3E/D est de rang 5; il correspond à œD (II)
une droite dans E/D, qui définit un plan F contenant D dans E. Soit A

l'orthogonale de D dans F; l'application D A définirait un automor-
phisme de l'espace projectif F5 (C) sans point fixe, d'où contradiction.

1.4. — Démonstration de la proposition

Choisissons donc pour a un élément de E tel que a a œ soit
décomposable

œ a a y1 + cdx avec Sn + Sœi E2

Si yx est de rang 2 Syi © SC01 E2.
Il existe donc une base de E oc1 a, a2, a6 telle que

co oc1 a a2 a oc3 + a4 a a5 a a6 (1)

Si yx est de rang 4 Syl n Sœi est de dimension 2. Soit a2, a4 une base
de S}l n Sœv Deux cas peuvent se présenter:

a) cc2 a a4 a y1 =* 0 Donc [3].

71 — ^2 A a4 + a3 a a5 où a2, a4, a3, a5 est une base de *Syr

L'Enseignement mathém., .t XVIII, fasc. 3-4. 16
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Soit a2, oc4, a6 une base de S

Alors, co (a + aé) a a2 Aoc4 + aAa3 a ce5 et nous retrouvons
l'expression (1).

b) a2 a a4 a y 0. Donc [3].

7i a2 a oc3 + a4 a a5 avec a2, cc3, cc4, a5 base de Sn.
Par conséquent il existe une base {a a1? a2, a6} de E telle que:

co oc ^ a a2 a a3 -f ax a a4 a a5 + a2 a a4 a a6 (2)

1.5. — Remarques. — a) J. A. Schouten commence la démonstration de

la Prop 1 d'une manière tout à fait analogue à la précédente. En effet,

après avoir remarqué que pour tout trivecteur co de rang plus grand que 3,

il existe toujours une forme u telle que coLu soit de longueur supérieure
à 1, il envisage un tel u pour co de rang 6 donné, alors coLu est de longueur 2

et dans une base telle que e6 (par ex.) soit dual de u, co s'éciit co co' + co"

avec co' e6 a v, où v est un bivecteur de longueur 2, co" un trivecteur.
Les supports de v et co" sont contenus dans un espace E5, de dimension 5,

transverse à e6. Si co" est décomposable, la démonstration se poursuit
comme ci-dessus dans le cas où y est de rang 4. Si co" est de rang 5, la
discussion est beaucoup plus longue et plus compliquée. Elle fait intervenir
les positions respectives du support de v et de la direction invariante associée

à co", dans le support de co", ainsi que celles des supports des 2 trivecteurs

décomposables dont la somme est co" et des supports des 2 bivecteurs

décomposables dont la somme est v. Les invariants géométriques dont
nous parlons dans la remarque suivante sont obtenus en utilisant les

enveloppes des hyperplans déterminés par les formes u telles que coLu soit

décomposable.

b) Invariants géométriques. — co étant un trivecteur de rang 6,
considérons 2 droites D et D' telles que (/5) œD et œD> soient décomposables.

Alors 2 cas peuvent se présenter.
D cr Hd.9 cd est donc un élément de 1(D) + I (D') et, D' c= HD,

D' £ Hd. Soit F HD n HD.9 2 ^ dim F ^ 3.

Choisissons dans HD un sous-espace P de dimension 3 contenant F
et dans HD> un sous-espace P' de dimension 3 contenant F. Il existe

et tels que:

cd — cdt e I (D); cd — cojl e I (D')\ n Sœ^ F

(Dx — œ[ est donc un élément décomposable de 1(D) + I(Dr) et par



— 235 —

I conséquent co1 co\. Donc Fest de dimension 3 et co± — co\ est un élément

j de 1(D) n I(D'). œ s'écrit donc œ œ1 + co2 Da Sœ2, D' a Sœv

I Sœi n Sœ2 {0}. C'est à dire que œ est de type (1).

j Conséquences. — a Si œ est de type (2)

1 œ al a oc2 a a3 + a1 a a4 a cc5 + a2 a a4 a cc6.

| Il est clair que si D est contenue dans FalAa2Aa4, alors coD est décomposable.

Réciproquement, soit D telle que coD soit décomposable. Désignons par
Dt (i 1, 2, 4) la droite de E engendrée par oq. Alors, D a HDv D a HD2

donc D a HDlnHD2 et D a SalAûC2Mé.

Donc FalAa2Aa4 est le sous-espace des droites D de F, telles que œD

soit décomposable.

ß Si œ est de type (1)

co a4 a oc2 a a3 + a4 a a5 a a6

Il est clair que pour toute droite D de SalAa2Aa3 (resp. Aac,saA (bD

est décomposable.
Réciproquement, soit D telle que <oD soit décomposable. Utilisons les

notations précédentes.

* Si D est contenue dans deux HD. pour i 1, 2, 3, (resp. 4, 5, 6)
alors D est contenue dans ^4A,5Act6 (resp. Aa»2A*3)

** Si non, soit par exemple

D 4: HDl, D £ HDrPosons HDl n IID P, ; HDl n P2.

Alors, la dimension de Ptn P2 est au moins 2 et P1 n P2 est contenu
dans HDl n HDl et

œ œt+ co2 S<oi=Pi
co co[ + a>2Sa/— P2 cû2 n 1(D)

r f /
[ cox — co1 — co2 — co2 co4 — co4 est une décomposable dont le support

contient P1 n F2. Donc œ1 cou œ2 co2 et P± P2 HDln HDv
D ^ ^aiAa2Aa3*

I Les droites D de E telles que œD soit décomposable sont donc soit les
droites de FaiAa2Aa3 soit les droites de Fa4AasAa6. Ceci entraîne en particulier
que la décomposition de œ sous la forme œ œ1 + co2 avec Sco1 n Sœ2 —

{0} est unique.
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c) Si E est un espace vectoriel sur le corps des réels, les éléments co de

In> 6 pour lesquels il existe oc e E, oc ^ 0, avec oc a co décomposable,
s'écriront aussi sous la forme (1) ou sous la forme (2).

2. Trajectoires

2.1. — Remarques préliminaires

En chaque point de A3E, l'espace tangent à A3E sera identifié à A3E.

Désignons par I, le cône des éléments décomposables de A3E, si co

est un élément de I, on note T0J l'espace tangent à I au point co.

Soit co « oc1 a oc2 a a3 un élément de 1 {al5 a2, oc6} étant une
base de E. Une représentation paramétrique d'un voisinage de co dans I

6

est 2 [(aj+öq) a (a2 + a2) a (a3 + a3)] où at £ ajocj et 2, a/ ek.
j= 4

Donc l'espace tangent, Tœ, en co à T est l'ensemble des vecteurs
6 6 6

/j (oq a a2 a a3) + ej oq a a2 a a3 + e2 ax a ocj a oc 3 + s3 oc± aoc2a ocj.
j=4 j=4 J —4

T0i est donc engendré par les éléments oq a oq a ock où {i,j, k} n {1, 2, 3}
contient au moins 2 éléments.

2.2.—Proposition 2.—L'ensemble Tu des trivecteurs de rang 6 et de

longueur deux est une trajectoire ouverte de Gl (E) dans A3E.

Il est clair que cet ensemble constitue une trajectoire de Gl(E) qui est

une sous-variété de A3E, en tant que trajectoire d'un groupe de Lie. Il reste
à déterminer sa dimension.

Les co s'écrivant sous la forme (1) sont caractérisés par

CO COjl + C02

cOiEl ie {1,2}

(Ot A C02 # 0

Soit U cz Z x L U — {(cûi, co2) | cox a co2 ^ 0}

/: I x I -> A6E définie par /(co1? co2) co1 a co2 est continue. Donc
U est ouvert.

Soit h : U -> A3# définie par /z (co1? co2) cox + co2 ù est différentiable

et A' : rra] © ro,2 -+ A3Eesttelle que h' (ij,, ??2) + r\2.
Soit {a1? a2, a6} une base de E1 telle que
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coi âj A a2 A a3, «4 A a5 A a6

Ai n T„t2 {0} done /Cer h' {0} et A' est un difféomorphisme local.

L'image de £/ par h est donc un ouvert.

2.3 — Proposition 3.—L'ensemble, T2, des trivecteurs de rang 6 qui

s'écrivent sous Informe (2) est trajectoire de codimension 1.

Il est clair que cet ensemble est une trajectoire de Gl{E). Nous avons

à déterminer sa dimension.
Les co qui s'écrivent sous la forme (2) sont caractérisés par:

CO COi + CO 2 + CJ 3

co^eZ iE {1,2,3}

dim Sm n SWj 1

conditions (a)n Sœj cjz Sak pour i^j^k^i
ij, kE {1,2,3}

_
Soit V a Z x Z x Z, V {(co1? co2, co3) | Scov Sœ2, Sm3 vérifient (a)}.

F sous-variété régulière de codimension 3, en effet, considérons

fi M1,2,3}

f : Z x Z x Z A6E ~ k

f (col9 co2, co3) coy a cok où f,y, k est une permutation paire de 1, 2, 3.

F est l'ensemble des (uq, co2, co3) où /2 /3 0 et où

c//i, df2, df2 sont linéairement indépendantes.
Soit h :Z x Z x Z -> A3(£") définie par

h (cOj, C02, (D3) CD^ + co2 + co3

la restriction f de h à V est de rang 19.

En effet, en un point de F, il existe un seul vecteur de base de A3(£) qui
ne se laisse pas écrire dans Tœi + Tœ2 + Tœv c'est avec les notations
précédentes a3 a a5 a a6. D'autre part, Kqt h' est transverse à l'espace

tangent à F en un point de F. / est donc aussi de rang 19 et /(F) est une
sous-variété de codimension 1.

Remarque. — Soit co at a a2 a a3 + ax a a4 a oc5 + a2 a a4 a oc6.
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Si nous faisons dans Ele changement de base

«î 2ßi +h,a2 ßi+ y, «s y >

Jl
«6 y, °U 2jS3 + y3, a3 +

il vient

m -ßxaß2a ß3 - i y1a y2ay3 + (ßt + yj a (ß2 + y2) a (ß3 + y3)-

Nous avons deux expressions minimales de a). Dans la première les supports
des coi ont deux à deux une droite en commun, dans la seconde, ils sont
deux à deux en position de somme directe. Ce résultat met en défaut la

conjecture de J. Martinet [4] (page 113).

3. — Si E est de dimension n, il est clair que la proposition 1 reste vraie

en remplaçant 6 par Z^6. Les propositions 2 et 3 deviennent:

Proposition 2. — L 'ensemble des trivecteurs de rang 6 et de longueur 2

est une trajectoire ouverte dans Z„}6.

Proposition 3. —L'ensemble des trivecteurs de rang 6 et de longueur 3

est une trajectoire de codimension un dans Z^j6, c'est-à-dire de dimension

19 + 6 (n — 6).

B. — Cas Réel

Dans la suite E désigne un espace vectoriel réel de dimension n 6.

1. — Désignons par Ec le complexifié de E

Zc6,6 l'ensemble des éléments de rang 6 de f\3Ec

œc e A 3EC l'image canonique de co e A3E

(très souvent on identifiera co et coc).
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E est identifié au sous-ensembie des éléments 1 (x) a de Ec où a e E.

Une base de E étant aussi une base de Ec, il est clair, en considérant les

formes canoniques obtenues pour les différents éléments de A3ifc, que toutes
les trajectoires de Gl (Ec) dans A3EC rencontrent A3E.

Proposition 1. — Tout trivecteur de rang 6 s'écrit sous l'une des formes

(l)fl cc1 a a2 a a3 + a4 a oc5 a oc6

(1)ô ccl a cc2 a a3 + ol1 a oc4 a cc5 + oc2 a a4 a a6 — oc3 a oc5 a oc6

(2) oc1 a cc2 a a3 + a1 a a4 a oc5 + oc2 a a4 a a6

{ocu oc2, oc3, a4, a5, oc6} étant une base de E.

Démonstration. — Soit co un élément de ^ Utilisons la remarque 1

et les démonstrations des lemmes 1 et 2 de A. Le seul cas à examiner est
celui où nous ne savons pas s'il existe a A 0 (a e E) tel que a a co soit
décomposable. Alors o a a y± + oc x a y2 où aef a é 0 quelconque
A1 est la droite engendrée par oc1;

E1 la droite engendrée par oc; E E1 © E2; E2 At ® Syi;
Syi Sy2 F; yx et y2ef\2F de rang 4.

Chacun de ces sous-espaces en engendre un dans Ec.

Nous reprenons la démonstration du lemme 1 avec a, be R.

Alors, l'équation a — 2/iù + \x2 0, a deux racines complexes con-
jugées

X b + ic x c é 0.

72 - *?i et y2 - xyx sont deux éléments décomposables de A2FC. Posons

Ï2 — X7l ßl A ßs> ßl — a2 + ^55 ^3 ^3 + za4 OÙ

_ oc + hoc
x

oc29 a3, a4, a5GT et a6
c

Nous obtenons l'expression

© a a2 A a3 + Kj A a4 A a5 + a2 A a4 A a6 - a3 a a5 A a6

et {ccu a2, a3, oc4, a5, a6} est une base de car y2 - a2 a a3 +
a4 a a5) est de rang 4.
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Remarquons que:

œ ~ — A (oc2 + iœ5) a (oc3-hia4) +
^(a1 + /a6) a (a2 — ioc5) A (oc3 — ioc4)

donc co ne peut être mis sous la forme (l)a compte tenu de la remarque
(B 1.5.a).

2. On en déduit la proposition suivante:

Proposition 2.—L'ensemble 6 est constitué de trois orbites.

1) Deux orbites ouvertes correspondant aux modèles (l)a et (l)è.

2) Une orbite de codimension 1 correspondant au modèle (2).

Remarques. — 1) Tout co élément de tel que coc est de longueur 3,

est aussi de longueur 3.

2) Soit co de ^-longueur 4. Dans A3E on peut aussi l'écrire

co — (ot5 — a2) a a3 a ocx + (oc5 + a2) A cc4 a oc6 +
(at +a6) A a5 A (a3~a4)

co est donc de longueur 3 et les supports des trivecteurs décomposables qui
interviennent dans l'expression donnée sont deux à deux en position de

somme directe.

3) La précédente remarque montre que la longueur et la R-longueur ne

sont conservées par complexification.

4) Pour n > 6 il est clair que la proposition 1 est conservée. Les conclusions

de la proposition 2 sont remplacées par les suivantes:

1. Deux orbites ouvertes dans Z*t6 correspondant aux modèles (l)fl et

(1),.

2. Une orbite de codimension 1 dans c'est à dire de dimension
19 + 6 02-6).
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3. Récapitulation

3.1. — On peut remplacer la conjecture de J. Martinet [4] (page 113) par
la suivante:

k k

Soient œ Y cof et œ Y œ j deux ^-expressions minimales de co;
i=i j=1

les collections F et F' de sous-espaces Ft et F'j, support respectif de <x>t

et œ'j sont égales dans E, c'est-à-dire qu'il existe un automorphisme g de

E tel que, pour tout i il existe j avec g (F— F'j.

3.2. — Les tableaux suivants résument les résultats relatifs aux trajectoires
de Gl6(k) dans A3E6, espace vectoriel de dimension 20 sur k;

k C

Rang Longueur Modèle Dimension
de la trajectoire

0 0 0

3 1 10

5 2 15

6

3 o 19

2 20

1) Les sommets des triangles représentent des vecteurs de E linéairement indépendant.
2) Chaque triangle représente un trivecteur décomposable de support le sous-espace engendré par lestrois sommets.

"2 Chaque figure représente le trivecteur somme des trivecteurs décomposables représentés par chacunues triangles.
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k R

Rang Longueur R-Longueur Modèle Dimension
de la trajectoire

0 0 0 0

3 1 1 10

5 2 2 15

6

3 3 o 19

2 2 20

3 4 ÈL 20

*) Dans ce cas les coefficients attribués aux trivecteurs décomposables ne sont pas indifférents.

Il est évident que le rang, la longueur, la B-longueur sont des invariants
très grossiers. Ils ne suffiront plus à distinguer les trajectoires lorsque
n > 6.
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