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7. CLASSIFICATION DES FIBRES EN DROITES

Solent x et y deux points non séparés de X. On peut trouver dans X
un voisinage ouvert ¥ de { x,y} et un homéomorphisme, croissant ou
décroissant (cf. exemple 3.2), de V sur le branchement simple Z.

Dans I’arbre X associé & X ce voisinage V correspond a un sous-arbre ¥V
ayant 'un des deux aspects suivants:

Fi1G. 4

Par conséquent (proposition 2.1):

7.1 Proposition. Soit n un fibré en droites sur X. A tout couple ordonné

(o, p) d’arétes de X ayant méme origine ou méme extrémité on peut associer
un nombre [a, fl = + 1 de facon que [B, o] = — [a, B].

7.2 Définition. Une assignation sur [’arbre X est une correspondance <f

associant a tout couple ordonné (o, ) d’arétes de X ayant méme origine ou
méme extrémité un nombre Z (o, ) = + 1 de fagon que </ (B, o) =

— o (a, p).

On dit alors que D’assignation de la proposition 7.1 est 'assignation
associée au fibré 1.

Si &/ est une assignation sur AA’, et si f est un automorphisme de A;,
on désigne par — «f P’assignation («, f) - — & (a, ), et par f &/ assigna-
tion (2, ) > o (f ™ o, f 71 B).

Soient # et #’ deux fibrés en droites sur X, et soient o et &/’ les assigna-
tions correspondantes sur X. On a alors (théoreme 2.3):
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7.3 THEOREME. Si n et 3’ sont équivalents pour le groupe G* (resp.
pour le groupe G) on a oA’ = o (resp. &' = + ). Sin ety sont iso-
morphes pour le groupe G* (resp. pour le groupe G) il existe un automor-
phismef‘de X tel que ' =f&i (resp. o' = _—!_—]?sz).

De plus si X est simple ces conditions sont aussi suffisantes.

Inversement si o est une assignation sur X il existe un fibré en droites 7
sur X ayant &/ pour assignation (on construit # par récurrence en com-

mengant par oter un sommet extrémal de X ).

Soient &/’ une seconde assignation sur X et n" le fibré en droites sur X
correspondant & /', Si _]; est un automorphisme de X tel que ' = }; -4
il existe un isomorphisme (F, ) de % sur ' tel que f soit I'automorphisme de

X correspondant & ’homéomorphisme f.
Par conséquent:

7.4 THEOREME. Soit X une variété topologique de dimension 1 a base
dénombrable, simplement connexe, ayant un nombre fini de points de bran-
chement tous simples. La classification des fibrés en droites sur X est équiva-

lente a la classification des assignations sur [’arbre X associé a X.

7.5 Exemple. Dans le cas out X est la variété de I’exemple iii) de 6.4
il existe

a) en ce qui concerne les fibrés sur X:
4 classes d’équivalence pour le groupe G*;
2 classes d’équivalence pour le groupe G;
3 classes d’isomorphisme pour le groupe G*;

2 classes d’isomorphisme pour le groupe G;

b) en ce qui concerne les feuilletages du plan orienté ayant X pour
espace des feuilles (cf. § 5):

2 classes de conjugaison pour les feuilletages non orientés;
5 classes de conjugaison orientée pour les feuilletages non orientés;
5 classes de conjugaison pour les feuilletages orientés;

6 classes de conjugaison orientée pour les feuilletages orientés.
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