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6. ARBRE ASSOCIE A UNE VARIETE DE DIMENSION 1

6.1 Définition. Un point de branchement de X est un point de X non séparé
d’un autre point de X.

6.2 Hypothése. On suppose dans la suite que X est une variété topologique
de dimension 1 a base dénombrable, simplement connexe et ordonnée, dont
l’ensemble B des points de branchement est fini (et non vide) *).

Si B a n éléments le complémentaire U = X — B est un ouvert séparé
de X ayant n + 1 composantes connexes (toutes homéomorphes a R).
L’ordre sur X détermine alors un ordre sur ’ensemble de ces composantes
connexes.

Dans ces conditions on peut associer & X un graphe ordonné, noté X,
de la fagon suivante:

(i) ’ensemble des sommets de X est Pensemble des composantes
connexes de 'ouvert U = X — B;

(ii) il existe une aréte (ordonnée) d’origine a et d’extrémité b si et seu-
lement si

—a<b,

—a<c<bentralnec=aouc=>=s.

Il y a donc une correspondance biunivoque entre les arétes de X et les

points de branchements de X; et par conséquent X posséde la propriété
suivante:

(P) pour toute aréte o de X il existe une aréte f de X, B # a, telle que
o et f aient méme origine cu méme extrémité.

6.3 Proposition. Le graphe X est un arbre.

En effet [2] le complémentaire d’un point de X a deux composantes
connexes.

On dit alors que X est Uarbre (ordonné) associé a la variété ordonnée X.

1) Cette hypothése est par exemple satisfaite pour les feuilletages du plan définis
par des équations polynomiales.
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6.4 Exemples. Arbres associés aux variétés ayant au plus 4 points de

branchement:
i) . / ¢
\; .
ii) .
.<. |
iii) ¢
\.
.<
iv)
¢
0/.
X"

Fi1G. 2
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vi) )
/'
+ »
> .
' )
\ .‘
vii)
9
[ ]
\ . /
' / \
[ 4
viii) -
/ . '
v > /.v
L
T L 7‘ ® —p P :‘v
FiG. 2 (suite)

6.5 Proposition. Soit Y une seconde variété ordonnée, et soit Y [’arbre
ordonné associé a Y. Un homéomorphisme f de X sur Y détermine un iso-

morphisme f de X sur Y. Si f est croissant (resp. décroissant) il en est de

méme de f.
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En effet f transforme I’ensemble des points de branchement de X en
I’ensemble des points de branchement de Y.

Inversement la donnée d’un arbre ordonné fini 4 vérifiant la propriété(P)
détermine une variété de dimension 1 ordonnée 4 ayant un arbre associé

isomorphe & 4 (on construit 4 par récurrence sur le nombre de sommets de
A en commengant par en Oter un sommet extrémal).
Soit B un autre tel arbre, et soit B une variété de dimension 1 ayant B

pour arbre associé. Un isomorphisme g de A sur B détermine (de fagon
non univoque) un homéomorphisme g de 4 sur B tel que g lui corresponde
par la construction de 6.5.

Par conséquent:

6.6 THEOREME. La classification des variétés topologiques de dimension 1
a base dénombrable, simplement connexes, ordonnées, ayant un nombre fini
de points de branchement est équivalente a la classification des arbres ordonnés
finis vérifiant la propriété (P). ’

6.7 Définition. Un point de branchement x de X est simple si [’ensemble
B, des points y # x non séparés de x posséde l'une des deux propriétés
suivantes :

a) B, est réduit a un seul point ;

b) B, ne contient que deux points distincts qui sont eux-mémes séparés.

On dit alors que X est simple si tous ses points de branchement sont
simples.

Dans ces conditions en chaque sommet non extrémal de I’arbre X associé
a X la configuration est semblable & I'une des trois suivantes:

S ~_
— —

Fi1G. 3

T —
™~ S~

En particulier les exemples ii), iv) et v) de 6.4 ne sont pas simples.
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