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6. Arbre associé a une variété de dimension 1

6.1 Définition. Un point de branchement de X est un point de Xnon séparé
d'un autre point de X.

6.2 Hypothèse. On suppose dans la suite que X est une variété topologique
de dimension 1 à base dénombrable, simplement connexe et ordonnée, dont

l'ensemble B des points de branchement est fini (et non vide) 1).

Si B a n éléments le complémentaire U — X — B est un ouvert séparé
de X ayant n + 1 composantes connexes (toutes homéomorphes à R).
L'ordre sur X détermine alors un ordre sur l'ensemble de ces composantes
connexes.

Dans ces conditions on peut associer à X un graphe ordonné, noté X\
de la façon suivante :

(i) l'ensemble des sommets de X est l'ensemble des composantes
connexes de l'ouvert U X — B;

(ii) il existe une arête (ordonnée) d'origine a et d'extrémité b si et
seulement si

— a < b

— a < c < b entraîne c a ou c b

Il y a donc une correspondance biunivoque entre les arêtes de X et les

points de branchements de X; et par conséquent X possède la propriété
suivante :

(P) pour toute arête a de X il existe une arête ß de X, ß =£ a, telle que

a et ß aient même origine ou même extrémité.

6.3 Proposition. Le graphe X est un arbre.

En effet [2] le complémentaire d'un point de I a deux composantes

connexes.

On dit alors que X est Yarbre (ordonné) associé à la variété ordonnée X.

1) Cette hypothèse est par exemple satisfaite pour les feuilletages du plan définis

par des équations polynomials.
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6.4 Exemples. Arbres associés aux variétés ayant au plus 4 points de

branchement:

i)



Fig. 2 (suite)

6.5 Proposition. Soit Y une seconde variété ordonnée, et soit Y l'arbre
ordonné associé à Y. Un homéomorphisme f de X sur Y détermine un iso-

morphisme f de X sur Y. Sif est croissant (resp. décroissant) il en est de

même de f.
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En effet / transforme l'ensemble des points de branchement de X en

l'ensemble des points de branchement de Y.

Inversement la donnée d'un arbre ordonné fini A vérifiant la propriété (P)
détermine une variété de dimension 1 ordonnée A ayant un arbre associé

isomorphe à A (on construit A par récurrence sur le nombre de sommets de

A en commençant par en ôter un sommet extrémal).

Soit B un autre tel arbre, et soit B une variété de dimension 1 ayant B

pour arbre associé. Un isomorphisme g de A sur B détermine (de façon
non univoque) un homéomorphisme g de A sur B tel que g lui corresponde
par la construction de 6.5.

Par conséquent:

6.6 Théorème. La classification des variétés topologiques de dimension 1

à base dénombrable, simplement connexes, ordonnées, ayant un nombre fini
de points de branchement est équivalente à la classification des arbres ordonnés

finis vérifiant la propriété (P).

6.7 Définition. Un point de branchement x de X est simple si l'ensemble
Bx des points y ^ x non séparés de x possède l'une des deux propriétés
suivantes :

a) Bx est réduit à un seul point ;

b) Bx ne contient que deux points distincts qui sont eux-mêmes séparés.

On dit alors que X est simple si tous ses points de branchement sont
simples.

Dans ces conditions en chaque sommet non extrémal de l'arbre X associé
à X la configuration est semblable à l'une des trois suivantes :

Fig. 3

En particulier les exemples ii), iv) et v) de 6.4 ne sont pas simples.
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