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2.1 Proposition. Pour que I’espace total E soit séparé il faut et il suffit
que pour tout y €R on ait lim g, (y) = — o (ou lim g.(y) = + ).

x—0 x—=0

2.2 Exemple. Si g : U — G est I'application associant & x €] — o0, 0]
1

la translation g, :y — y + —, 'espace total £ du fibré n : E 2, Z corres-
X

pondant a g est séparé.

On peut aussi vérifier que si n' 1 E ' 2y 7 est le fibré correspondant a

1
’application g~* (g;l 1y >y — ~) alors:
X

(i) n et n’ sont équivalents pour le groupe G;

(ii) n et n’ ne sont pas équivalents pour le groupe G* des homéo-
morphismes croissants de R;

(iii) # et n’ sont isomorphes pour le groupe G™.

2.3 THFEOREME [1]. Soient n et n’ deux fibrés en droites sur Z correspon-
dant a deux applications g et g’ de U dans le groupe G* et ayant des espaces
totaux séparés. Pour que n et ' soient équivalents pour le groupe G il faut
et il suffit que pour tout y € R on ait lim g, () = lim g ().

x—=0 x-0

Par conséquent les fibrés en droites localement triviaux sur le branche-
ment simple, ayant un espace total séparé, se répartissent en

2 classes d’équivalence pour le groupe G ;
1 classe d’isomorphie pour le groupe G*;

1 classe d’équivalence pour le groupe G.

3. VARIETES DE DIMENSION 1 SIMPLEMENT CONNEXES

On désigne maintenant par X une variété topologique de dimension 1
a base dénombrable et simplement connexe.

3.1 Proposition. 1l existe sur X un ordre localement isomorphe a [’ordre
de la droite réelle R.

En effet [2] la variété X s’étale sur R.
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Deux tels ordres sur X sont alors égaux ou opposés. Lorsqu’on a fait
choix d’un de ces deux ordres on dit que la variété X est ordonnée.

3.2 Exemple. Dans le cas du branchement simple Z I'identification de
Iouvert U a l'intervalle ]— oo, O] détermine le choix de ’ordre sur Z.

3.3 Proposition. Soit Y une seconde variété ordonnée, et soit h une
application bijective de X sur Y. Pour que h soit un homéomorphisme il faut
et il suffit qu’elle soit strictement monotone.

En particulier on peut répartir les homéomorphismes de X (indépen-
damment du choix de ordre) en deux classes: les homéomorphismes crois-
sants et les homéomorphismes décroissants (cette derniére classe pouvant
d’ailleurs €tre vide comme le montre ’exemple du branchement simple).

4. FIBRES EN DROITES

On se restreint maintenant aux fibrés en droites localement triviaux sur
X ayant un espace total séparé (on les qualifiera d’ailleurs simplement de
« fibrés en droites »). Un tel fibré a pour groupe structural le groupe G des
homéomorphismes de R.

4.1 Proposition. Le groupe structural d’un fibré en droites sur X peut étre
réduit au groupe G* des homéomorphismes croissants de R.

4.2 Hypothése. On suppose dans la suite que cette réduction a G* est
foujours faite.

Soit # : E %> X un fibré en droites sur X.

4.3  Proposition. Le choix d’un ordre sur X est équivalent au choix d’une
orientation sur l’espace total E.

Soit n’ : E’ 2, X un second fibré en droites sur X,etsoit (F, f), F:E—~E'
et f: X - X, un isomorphisme de 5 sur 5’ pour le groupe G*. Alors:

4.4  Proposition. Pour que F soit compatible avec les orientations de E et
E’ (correspondant a un ordre sur X) il faut et il suffit que f soit croissant.

Par contre si (F, f) est seulement un isomorphisme pour le groupe G,
F est compatible avec ces orientations si et seulement si f est décroissant.
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