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2.1 Proposition. Pour que l'espace total E soit séparé il faut et il suffit

que pour tout yeR on ait lim gx y) — oo {ou lim gx (7) + 00).
x-*0 *-*0

2.2 Exemple. Si g : U -> G est l'application associant axe]- 00, 0[

la translation gx : y -+ y H—, l'espace total E du fibré ri : E —> Z corres-
x

pondant à g est séparé.

On peut aussi vérifier que si rj' :E'-^->Z est le fibré correspondant à

l'application g~1 ^'g~1 : y -> y ^ alors:

(i) r\ et f sont équivalents pour le groupe G;

(ii) rj et f ne sont pas équivalents pour le groupe G+ des homéo-

morphismes croissants de R;

(iii) 7j et r\' sont isomorphes pour le groupe G+.

2.3 Théorème [1]. Soient t] et r\' deux fibrés en droites sur Z correspondant

à deux applications g et g' de U dans le groupe G+ et ayant des espaces

totaux séparés. Pour que rj et rj' soient équivalents pour le groupe G+ il faut
et il suffit que pour tout y e R on ait lim gx (y) lim gx (y).

x->0 x->0

Par conséquent les fibrés en droites localement triviaux sur le branchement

simple, ayant un espace total séparé, se répartissent en

2 classes d'équivalence pour le groupe G+ ;

1 classe d'isomorphic pour le groupe G+ ;

1 classe d'équivalence pour le groupe G.

3. Variétés de dimension 1 simplement connexes

On désigne maintenant par X une variété topologique de dimension 1

à base dénombrable et simplement connexe.

3.1 Proposition. Il existe sur X un ordre localement isomorphe à l'ordre
de la droite réelle R.

En effet [2] la variété X s'étale sur R.
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Deux tels ordres sur X sont alors égaux ou opposés. Lorsqu'on a fait
choix d'un de ces deux ordres on dit que la variété X est ordonnée.

3.2 Exemple. Dans le cas du branchement simple Z l'identification de

l'ouvert U à l'intervalle ]— oo? 0[ détermine le choix de l'ordre sur Z.

3.3 Proposition. Soit Y une seconde variété ordonnée, et soit h une

application bijective de X sur Y. Pour que h soit un homéomorphisme il faut
et il suffit qu 'elle soit strictement monotone.

En particulier on peut répartir les homéomorphismes de X
(indépendamment du choix de l'ordre) en deux classes: les homéomorphismes croissants

et les homéomorphismes décroissants (cette dernière classe pouvant
d'ailleurs être vide comme le montre l'exemple du branchement simple).

4. Fibres en droites

On se restreint maintenant aux fibrés en droites localement triviaux sur
X ayant un espace total séparé (on les qualifiera d'ailleurs simplement de

« fibrés en droites »). Un tel fibré a pour groupe structural le groupe G des

homéomorphismes de R.

4.1 Proposition. Le groupe structural d'un fibré en droites sur Xpeut être
réduit au groupe G+ des homéomorphismes croissants de R.

4.2 Hypothèse. On suppose dans la suite que cette réduction à G+ est

toujours faite.

Soit q : E X un fibré en droites sur X.

4.3 Proposition. Le choix d'un ordre sur X est équivalent au choix d'une

orientation sur l'espace total E.

Soit q' : E' X un second fibré en droites sur X, et soit (F,/), F : E->E'

et/ : X -> X, un isomorphisme de q sur q' pour le groupe G+. Alors:

4.4 Proposition. Pour que F soit compatible avec les orientations de E et

Er (correspondant à un ordre sur X) il faut et il suffit que f soit croissant.

Par contre si (F,f) est seulement un isomorphisme pour le groupe G,

F est compatible avec ces orientations si et seulement si / est décroissant.
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