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On peut donc ramener le probléme de la classification des feuilletages
du plan aux deux problémes suivants:

(1) classifier les variétés topologiques de dimension 1 a base dénom-
brable et simplement connexes;

(i) classifier sur une telle variété les fibrés en droites localement triviaux |
ayant un espace total séparé. |

2. UN EXEMPLE IMPORTANT: LE BRANCHEMENT SIMPLE [1]

Le branchement simple Z est la variété topologique de dimension 1
a base dénombrable et contractile obtenue a partir de ’espace somme de

deux exemplaires R; et R, de la droite réelle R en identifiant les points |
x; € Ry et x,e R, pour x; = x, < 0.
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On identifie & ]— o0, 0[ I'ouvert U de Z correspondant aux points

x; < 0de R,.

La donnée d’un fibré en droites localement trivial # : E s Zsur Z

est équivalente a celle d’une application continue g de U dans le groupe G
des homéomorphismes de R. y
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2.1 Proposition. Pour que I’espace total E soit séparé il faut et il suffit
que pour tout y €R on ait lim g, (y) = — o (ou lim g.(y) = + ).

x—0 x—=0

2.2 Exemple. Si g : U — G est I'application associant & x €] — o0, 0]
1

la translation g, :y — y + —, 'espace total £ du fibré n : E 2, Z corres-
X

pondant a g est séparé.

On peut aussi vérifier que si n' 1 E ' 2y 7 est le fibré correspondant a

1
’application g~* (g;l 1y >y — ~) alors:
X

(i) n et n’ sont équivalents pour le groupe G;

(ii) n et n’ ne sont pas équivalents pour le groupe G* des homéo-
morphismes croissants de R;

(iii) # et n’ sont isomorphes pour le groupe G™.

2.3 THFEOREME [1]. Soient n et n’ deux fibrés en droites sur Z correspon-
dant a deux applications g et g’ de U dans le groupe G* et ayant des espaces
totaux séparés. Pour que n et ' soient équivalents pour le groupe G il faut
et il suffit que pour tout y € R on ait lim g, () = lim g ().

x—=0 x-0

Par conséquent les fibrés en droites localement triviaux sur le branche-
ment simple, ayant un espace total séparé, se répartissent en

2 classes d’équivalence pour le groupe G ;
1 classe d’isomorphie pour le groupe G*;

1 classe d’équivalence pour le groupe G.

3. VARIETES DE DIMENSION 1 SIMPLEMENT CONNEXES

On désigne maintenant par X une variété topologique de dimension 1
a base dénombrable et simplement connexe.

3.1 Proposition. 1l existe sur X un ordre localement isomorphe a [’ordre
de la droite réelle R.

En effet [2] la variété X s’étale sur R.
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