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On peut donc ramener le problème de la classification des feuilletages
du plan aux deux problèmes suivants :

(i) classifier les variétés topologiques de dimension 1 à base dénom-
brable et simplement connexes;

(ii) classifier sur une telle variété les fibrés en droites localement triviaux
ayant un espace total séparé.

2. Un exemple important: le branchement simple [1]

Le branchement simple Z est la variété topologique de dimension 1

à base dénombrable et contractile obtenue à partir de l'espace somme de

deux exemplaires R± et R2 de la droite réelle R en identifiant les points
x1 g R1 et x2 e R2 pour x± x2 < 0.

Fig. 1

On identifie à ]— co, 0[ l'ouvert U de Z correspondant aux points

x± < 0 de Rl.
La donnée d'un fibré en droites localement trivial rj : E Z sur Z

est équivalente à celle d'une application continue g de U dans le groupe G

des homéomorphismes de R.
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2.1 Proposition. Pour que l'espace total E soit séparé il faut et il suffit

que pour tout yeR on ait lim gx y) — oo {ou lim gx (7) + 00).
x-*0 *-*0

2.2 Exemple. Si g : U -> G est l'application associant axe]- 00, 0[

la translation gx : y -+ y H—, l'espace total E du fibré ri : E —> Z corres-
x

pondant à g est séparé.

On peut aussi vérifier que si rj' :E'-^->Z est le fibré correspondant à

l'application g~1 ^'g~1 : y -> y ^ alors:

(i) r\ et f sont équivalents pour le groupe G;

(ii) rj et f ne sont pas équivalents pour le groupe G+ des homéo-

morphismes croissants de R;

(iii) 7j et r\' sont isomorphes pour le groupe G+.

2.3 Théorème [1]. Soient t] et r\' deux fibrés en droites sur Z correspondant

à deux applications g et g' de U dans le groupe G+ et ayant des espaces

totaux séparés. Pour que rj et rj' soient équivalents pour le groupe G+ il faut
et il suffit que pour tout y e R on ait lim gx (y) lim gx (y).

x->0 x->0

Par conséquent les fibrés en droites localement triviaux sur le branchement

simple, ayant un espace total séparé, se répartissent en

2 classes d'équivalence pour le groupe G+ ;

1 classe d'isomorphic pour le groupe G+ ;

1 classe d'équivalence pour le groupe G.

3. Variétés de dimension 1 simplement connexes

On désigne maintenant par X une variété topologique de dimension 1

à base dénombrable et simplement connexe.

3.1 Proposition. Il existe sur X un ordre localement isomorphe à l'ordre
de la droite réelle R.

En effet [2] la variété X s'étale sur R.
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