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FIBRES EN DROITES ET FEUILLETAGES DU PLAN

par Claude GODBILLON

1. INTRODUCTION

Il est bien connu que tout feuilletage & du plan R? posséde les propriétés
suivantes:

(i) & est orientable;

(i) chaque feuville de & est fermée dans R* et homéomorphe a la droite
réelle R: Poincaré-Bendixson;

(iii) ’espace des feuilles X de & est une variété topologique de dimen-
sion 1 a4 base dénombrable et simplement connexe (en général non séparée):
Haefliger-Reeb [2];

(iv) la projection p:R* — X est une fibration localement triviale:
Whitney [4].

Inversement d’ailleurs si X est une variété topologique de dimension 1

a base dénombrable et simplement connexe, et si #: E -2 X est un fibré
localement trivial en droites réelles sur X, I’espace total E est une variété
topologique de dimension 2 a base dénombrable et acyclique. Si elle est
séparée elle est homéomorphe au plan R?, et les fibres de # déterminent un
feuilletage du plan.

Deux feuilletages (orientés) & et #' de R? sont conjugués s’il existe un
homéomorphisme / du plan transformant les feuilles de 1'un en les feuilles
de I'autre. On peut de plus imposer a ’homéomorphisme /2 de conserver
'orientation du plan R?*, ou d’étre compatible avec les orientations des
feuilletages, ou encore d’avoir simultanément ces deux propriétés (cette
derniére situation a été étudiée par Kaplan [3]).

Dans chacun de ces cas les espaces des feuilles X et X' de & et &’ sont
homéomorphes, et les fibrés p: R* > X et p’: R*> > X’ sont isomorphes ?).

) Deux fibrés p 1 E — X et p’ : E’ — X’ sont isomorphes s’il existe des homéo-
morphismes F:E —~E’ et f: X — X’ tels que p’oF = fop. Lorsque X = X’ et
S = id.x on dit qu’ils sont équivalents.
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On peut donc ramener le probléme de la classification des feuilletages
du plan aux deux problémes suivants:

(1) classifier les variétés topologiques de dimension 1 a base dénom-
brable et simplement connexes;

(i) classifier sur une telle variété les fibrés en droites localement triviaux |
ayant un espace total séparé. |

2. UN EXEMPLE IMPORTANT: LE BRANCHEMENT SIMPLE [1]

Le branchement simple Z est la variété topologique de dimension 1
a base dénombrable et contractile obtenue a partir de ’espace somme de

deux exemplaires R; et R, de la droite réelle R en identifiant les points |
x; € Ry et x,e R, pour x; = x, < 0.
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On identifie & ]— o0, 0[ I'ouvert U de Z correspondant aux points

x; < 0de R,.

La donnée d’un fibré en droites localement trivial # : E s Zsur Z

est équivalente a celle d’une application continue g de U dans le groupe G
des homéomorphismes de R. y
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