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LES ÉTAPES ET LES ASPECTS MULTIPLES
DE LA THÉORIE DU POTENTIEL

par M. Brelot

1. La théorie du potentiel qui n'était d'abord qu'un chapitre de physique

mathématique, a posé depuis cent cinquante ans des problèmes

mathématiques difficiles et délicats qui ont attiré les mathématiciens les plus

célèbres comme Gauss, Hilbert ou Poincaré. Elle a suscité l'introduction

ou les développements de méthodes et d'outils nouveaux de grande portée

(méthodes variationnelles de Gauss-Dirichlet-Hilbert, distributions de

Schwartz, capacité et théorie des éléments extrémaux de Choquet...). Elle

s'est renouvelée par la topologie, approfondie et surtout élargie en axio-

matiques diverses dont certaines s'appliquent à de vastes classes d'équations

aux dérivées partielles du second ordre et elle s'est soudée aux probabilités

par les processus de Markov; elle devient aussi en partie un chapitre

d'analyse fonctionnelle.
Sa richesse considérable et sa diversité, sa croissance explosive depuis

une douzaine d'années, ses applications, son rôle de modèle en Analyse

suggèrent de faire un bilan historique que l'on va tenter ici. On le réduira
à ses grandes lignes car les publications sont trop nombreuses, il est peu
utile de détailler encore la période ancienne et malaisé de le faire brièvement

et clairement pour les travaux récents; cela implique un choix difficile et

un peu arbitraire et l'omission d'un grand nombre de publications et

d'auteurs, mais on renverra à des bibliographies partielles plus complètes.1)

x) De tels exposés ont déjà été publiés autrefois dans l'énorme Encyclopédie allemande
[60] et [160] (avant 1918), dans l'ouvrage célèbre de Kellogg Foundations ofpotential theory
[142] (1929) et comme article historique [45], assez détaillé pour la période de 1920 à 1950
environ, dans les Annales de l'Institut Fourier (1952-54).

Voir un exposé global récent mais bref, en anglais, comme introduction à une série
de cours à Stresa (1969) dans le cadre du CIME [2], et, pour la partie moderne, des exposés
partiels mais plus détaillés de C. Constantinescu, en allemand [76] (1966) et en anglais
[78] (1969). On consultera naturellement les volumes des Congrès et Séminaires indiqués
au début de la bibliographie, contenant bien des travaux non mentionnés dans le texte,
volumes auxquels on renverra souvent directement pour abréger la bibliographie par
auteurs. Ainsi [3 t 6] signifiera séminaire [3] tome 6.

Enfin on trouvera de larges bibliographies, souvent commentées, dans des ouvrages
récents comme mes deux cours de Bombay, [49] 2e édit. 1967 et [56] en anglais,
les ouvrages, surtout de théorie classique, de Brelot [50] (en français traduit en russe),
Helms [126] et du Plessis [188] en anglais, Landkoff [147] en russe pourvu d'une abondante
bibliographie russe.
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Nous indiquerons quatre périodes avec les idées dominantes.

2. Période classique ancienne (jusque vers la première guerre
mondiale). — De Gauss à Poincaré. Les grands problèmes.

La théorie du potentiel n'était encore vers 1800 que des études sur
l'électrostatique et l'attraction newtonienne. Mais on utilisait l'équation
de Laplace étendue par Poisson (1813), qui donna par ailleurs vers 1820

sous une forme préliminaire l'intégrale qui porte son nom, pour une boule;
la fonction de Green apparut bientôt (1828), mais c'est seulement en 1840

que Gauss publia un mémoire capital [120], en avance d'un siècle sur les

outils nécessaires et qui traitait dans R3 trois problèmes qui restent
fondamentaux :

— problème de l'équilibre (appelé souvent plus tard problème de Robin),
cherchant sur un « conducteur » S, frontière d'un domaine borné,
la distribution d'une masse donnée pour que le potentiel soit constant
sur S ; elle correspond à un minimum de l'énergie.

— problème du balayage, ainsi appelé depuis Poincaré, qui consiste à partir
de masses sur co (resp. Ccö) à en trouver d'autres sur S fournissant
le même potentiel sur Ccö (resp. sur co). C'est la traduction du phénomène
d'influence électrostatique, où des masses intérieures à un conducteur
relié au sol, font apparaître sur le conducteur des masses dont le potentiel
extérieur annule celui des masses intérieures;

— problème de Dirichlet, ainsi appelé plus tard par Riemann, qui consiste
à chercher dans co une fonction harmonique, c'est-à-dire solution de

l'équation de Laplace prenant sur la frontière les valeurs d'une fonction
réelle finie continue donnée. Rappelons le fait élémentaire que l'unicité
d'une solution possible vient de l'impossibilité d'un maximum ou minimum

d'une fonction harmonique en un point, sauf constance au voisinage,

ce qui entraîne qu'elle majore dans un ouvert borné par exemple
le inf. des lim. inf. à la frontière (principe élémentaire du minimum;
de même avec le maximum et cela est fondamental, avec des variantes,

en théorie générale du potentiel). Mais l'existence d'une solution est

difficile à établir et discuter.

Ces études qui sont liées étroitement étaient basées dans R3 sur
l'intégrale d'énergie J dp ou même J(C — 2/) dp où Uß désigne le potentiel

dp (y)
de ja mesure p > 0. En fait Gauss ne considérait que les mesures

| x — y \
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ayant une densité et admettait, ce qui est inexact sans restrictions, que les

| intégrales atteignaient leur minimum pour un /r dont le total était imposé.
1 Ces questions ont été adaptées plus tard dans le plan en remplaçant

I le potentiel newtonien précédent par le potentiel (dit logarithmique par
1 Neumann) basé sur le noyau log 1/| x — y | (déjà introduit en fait par

Laplace à propos du potentiel newtonien de cylindres homogènes parallèles).

| 3. L'insuffisance de rigueur par manque de notions nécessaires comme
la mesure générale et l'intégrale de Radon, ce qui ne permettait pas d'intro-

| duire facilement les restrictions et précisions indispensables, fit laisser de

côté pendant longtemps les problèmes traités par Gauss sauf celui de

| Dirichlet, problème aux limites-type, dont on donna d'abord d'autres solutions

également non satisfaisantes. Ainsi dans sa célèbre dissertation

inaugurale, Riemann [194] reprenant des idées de Gauss-W. Thomson

h (Lord Kelvin)-Dirichlet considérait Y intégrale de Dirichlet Jgrad2 u dx

(mesure volume ou aire dx) pour les u assez régulières prenant des valeurs
données à la frontière; lorsque le minimum est atteint u est harmonique
et vaut la solution cherchée ; mais cela donne lieu aux mêmes objections

que plus haut et elles n'ont été surmontées, dans ce cas, avec des restrictions
convenables, que par Hilbert vers 1900 [131], ce qui a inspiré la solution
approfondie de Lebesgue [153] explicitée dans le plan. D'autres méthodes,

rigoureuses, furent données entre temps. Citons le procédé alterné de

Schwarz ([198] 12 p. 133) permettant de passer de deux domaines se prêtant
à une solution (comme des boules) à leur réunion, sous certaines conditions
(d'où la résolutivité pour un domaine approchant arbitrairement un domaine
donné). Citons surtout la méthode basée sur l'usage des potentiels de double
couche (sur la frontière supposée assez régulière), d'abord selon Neumann
puis par une méthode de Fredholm [114] dont est issue sa célèbre théorie
(laquelle permet aussi avec une simple couche, de traiter le « problème de

Neumann » où la donnée est la dérivée normale). Mentionnons les résultats
de Harnack [125] sur les familles de fonctions harmoniques et ses célèbres
inégalités; insistons sur la solution du problème de Dirichlet par la méthode
du balayage de Poincaré (1887) (voir son ouvrage [189]). On se ramène par
approximation à une donnée qui se prolonge selon une fonction 0 de type
C2 avec A0 > 0 au moins dans un voisinage de cö (c'est-à-dire une fonction
dite plus tard sous-harmonique). On imagine la modification d'une fonction
dans co par son remplacement dans une boule beb cz cd par son intégrale
de Poisson. On recouvre co par une suite de boules bt et on procède à partir
de 0 aux modifications dans bu puis b2, puis bu b2, b3, etc., des fonctions
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obtenues successivement. Cela donne à la limite une fonction harmonique
qui prendra les valeurs de <P à la frontière 7>co moyennant des restrictions
(p. ex. : la condition dite souvent de Poincaré, en fait dégagée par Zaremba,
de l'existence pour tout x e 7)co d'un cône de révolution de sommet x et
extérieur à cd). Noter que dans un voisinage de œ, <P vaut à une fonction
harmonique près un potentiel <P0 de masses ^ 0 (à densité AL à un facteur
près d'après la formule de Poisson). L'opération de modification dans bu
revient à changer les masses correspondant à $0 et situées, dans bu en
d'autres masses sur ~bbu conservant le potentiel sur C bv C'est là un
« balayage » déjà mentionné, et les modifications successives correspondent
à de tels balayages.

Soulignons que toutes les solutions rigoureuses du problème de Dirichlet
comportaient des restrictions sur la frontière; elles paraissaient dues aux
méthodes employées d'où la multiplicité des solutions, mais elles étaient
en fait inévitables comme l'ont remarqué Zaremba (1910) avec un point
frontière isolé et Lebesgue (1912) [154] avec un domaine dont le
complémentaire présente une pointe convenable (épine de Lebesgue).

L'analyticité des fonctions harmoniques et leurs singularités, les

relations de ces fonctions avec les séries trigonométriques, les fonctions de

Laplace et Legendre, la correspondance conforme et la transformation de

Kelvin sont d'autres questions anciennes que l'on trouve développées
dans les vieux traités d'analyse, comme celui de Picard, mais qui ont été

approfondies plus tard. De même pour les équations linéaires aux dérivées

partielles du second ordre de type elliptique (et même un peu de type
parabolique) qui donnent lieu à des problèmes analogues (voir les articles très

détaillés de YEncyclopédie allemande [60, 160, 161].

4. Deuxième période (à peu près l'entre-deux guerres). — Consolidation
de la théorie classique par l'usage de la mesure et de la capacité.

Fatou [111] avait illustré déjà en 1906 l'intégrale de Lebesgue pour
approfondir dans le disque l'étude à la frontière de l'intégrale de Poisson

(existence de limites angulaires p.p., pour une donnée bornée intégrable de

l'arc, ce qui a été beaucoup étendu plus tard).
L'intégrale de Radon (1913) allait être l'instrument-clef de théorie du

potentiel, aussitôt utilisé systématiquement d'abord par G. C. Evans

[107, 108], F. Riesz, De La Vallée Poussin, pour étudier le potentiel général

\h (\x—y\) dp (y) à noyau h logarithmique ou Newtonien.

La capacité inspirée par l'électrostatique, précisée d'abord par Wiener

[216] (1924) allait compléter le rôle de la mesure. On peut dans R3 définir
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la capacité d'un compact K selon De La Vallée Poussin [149] comme la

borne supérieure des masses > 0 qu'on peut distribuer sur K (mesure sur

K) de façon que le potentiel soit ^ 1. La théorie dans R2 donne lieu à des

différences (et à une notion spéciale de capacité logarithmique) à cause de

l'allure du noyau logarithmique log l/\ x — y \ non toujours > 0 comme

le noyau newtonien 1/ \ x — y \ (voir plus tard [115] ou un ouvrage différé

de De La Vallée Poussin [152]). Mais on peut opérer de même manière

par exemple avec la fonction de Green (noyau de Green) dans une boule ou

disque, ou plus généralement dans un domaine de Green co, c'est-à-dire où

existe une fonction de Green (d'ailleurs symétrique) qui est la fonction
minima Gy(x) (ou G(x,y)) valant au voisinage de y le noyau hy(x)

h (|x—y\) à une fonction harmonique près et harmonique > 0 ailleurs.

On opère alors avec le « potentiel de Green » J G (x, y) dji (y) (y > 0) ; cela

est dans cd partout + oo ou fini sur un ensemble dense et dit alors vrai

potentiel de Green. D'autre part est apparue la notion de « diamètre transfini

» d'un ensemble fermé (Fekete-Polya-Szegö [112, 190]) à propos d'équations

algébriques et Szegö montra son identité avec la capacité précédente
newtonienne ou logarithmique. On a discuté plus tard d'adaptation à R" et

de généralisations.

Remarquer maintenant qu'on peut définir dans un domaine de Green

(p. ex. R3) la capacité intérieure d'un ensemble quelconque (appelée capacité

et seule utilisée pendant longtemps) comme sup des capacités des

compacts contenus, c'est-à-dire en procédant comme pour la mesure. On
avait vite remarqué l'importance de la notion de capacité nulle (plus forte

que celle de la mesure de Lebesgue intérieure 0), soulignée aussi plus tard
(1936) par la caractérisation selon G. C. Evans [110] (et Selberg
indépendamment) d'un compact K de capacité nulle dans R3 comme lieu des infinis
du potentiel d'une mesure > 0 convenable sur K, ce qui a été plus tard
étendu aux ensembles Gô par Deny et Choquet [69]). Mais l'incommodité
de la notion de capacité intérieure conduisit enfin (1940) simultanément
Brelot [36], Beurling [21] et Monna à introduire et utiliser la capacité
extérieure, analogue à la mesure extérieure.

5. F. Riesz [195] en approfondissant l'étude des modules des fonctions
holomorphes f(z) fut conduit vers 1924 à introduire les fonctions
subharmoniques (dites maintenant sous-harmoniques, les opposées étant appelées
surharmoniques) dans des ouverts de R2, l'extension étant facile en fait
dans R"; elles étaient d'abord finies continues majorées dans chaque boule
par la moyenne périphérique au centre, ou de façon équivalente par l'inté-
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grale de Poisson partout (un cas particulier est justement \f{z)\ dans R2);
puis il remplaça la continuité par la semi-continuité supérieure avec la
condition pour la fonction u: u < -1- oo et finie p.p. (ce qui équivaut à u

finie sur un ensemble dense). Sans cette dernière condition la fonction est

dite aujourd'hui hypoharmonique et dans tout domaine partiel peut être
— oo. Les opposées dites surharmoniques resp. hyperharmoniques satisfont

au principe-frontière du minimum.
Outre l'utilité directe et multiple de cette nouvelle notion, son importance

vient de ce qu'une fonction surharmonique est caractérisée localement

comme un potentiel de mesure > 0 à noyau h (\x—y\) (newtonien ou
logarithmique) à une fonction harmonique près. Dans un domaine de Green où u

surharmonique admet une minorante harmonique cela vaut un (vrai)
potentiel de Green plus la plus grande minorante harmonique (dont la
nullité caractérise la propriété que u est un potentiel). Le cas des C2~

fonctions est facile grâce à l'équation de Poisson mais le passage au cas

général est délicat, même encore dans le petit livre de T. Radô [193] (1937)

qui rassemble les connaissances d'alors sur les fonctions sous-harmoniques

(voir aussi Privalolf [192]). Les distributions de Schwartz ont permis plus
tard d'étendre les démonstrations élémentaires, et le théorème de Choquet
sur les éléments extrémaux donne aujourd'hui une démonstration qui
s'applique aux axiomatiques locales; on reviendra sur ces questions.

Cette équivalence locale ou globale m'a incité à ramener des problèmes
de potentiel comme le balayage à des problèmes sur les fonctions sous ou
surharmoniques, que l'on pouvait résoudre par des méthodes de modification,

d'extrémisation de ces fonctions: méthodes qui ont donné des

résultats nouveaux (p. ex. [33] 1938) et se sont trouvées naturellement

adaptables plus tard à des théories sans noyau. Dans cet ordre d'idées j'ai
introduit en 1941 [37], pour remplacer la capacité intérieure nulle, la notion
d'ensemble polaire e dans Rn, définie par l'existence d'une fonction
surharmonique u dans Rn, valant + oo au moins sur e (ce qui a le caractère

local et équivaut dans un domaine de Green co => e à la même condition

avec u > 0). Peu après Cartan [64] montra (ce qui paraît naturel après la
caractérisation de Evans des compacts de capacité nulle) qu'il y a identité

avec les ensembles de capacité extérieure nulle définie dans co. Ce type
d'ensemble jouera le rôle des ensembles de mesure nulle en théorie de

l'intégration. On dit d'ailleurs quasi partout au lieu de sauf sur un ensemble

polaire.
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6. Parallèlement aux travaux de F. Riesz était approfondi le problème de

Dirichlet. Son impossibilité en général amenait Lebesgue puis Wiener [216]

(1924) à décomposer le problème en deux: l'un toujours résoluble pour
une donnée-frontière / finie continue (p. ex. un domaine borné co c= Rn)

avec une solution dite «généralisée»; l'autre est l'étude à la frontière de

cette solution. Wiener introduisit cette solution de deux manières

différentes; l'une considère la limite de la solution classique pour un ouvert
contenu approchant co, à la frontière assez régulière et une donnée

prolongeant continûment / (idée déjà utilisée par Bouligand pour définir la
fonction de Green dans le cas général); l'autre manière plus importante
[218] (1925) est inspirée de la résolution du problème classique donnée par
O. Perron [186] (1923) (et trouvée indépendamment par Remak) qui s'appliquait

en fait sous les conditions exactement minima. Voici l'idée, généralisée

plus tard à une donnée-frontière / réelle quelconque: on considère
l'enveloppe inférieure (inf. en chaque point) de l'ensemble des fonctions hyper-
harmoniques satisfaisant en tout point frontière X à la condition

r • f >f(X)lim inf u
> — oo

Cette enveloppe Hf est + oo, — oo ou harmonique.
On introduit Hf — H_f ; alors Hf ^ Hf.
S'il y a égalité avec valeur commune finie donc harmonique notée Hf,f

est dite résolutive et Hf solution (généralisée). C'est le cas où / est finie
continue (résultat difficilement établi par Wiener); aujourd'hui cela est facile
et l'on voit que Hf (x), fonctionnelle linéaire croissante s'écrit J/dp (avec
mesure unitaire dpxa dite mesure harmonique), représentation qui ne fut
établie que plus tard par De La Vallée Poussin [149, 151] à l'aide du
balayage de la mesure de Dirac.

Bien des méthodes conduisent à cette solution généralisée Hf (voir [210])
mais il importe surtout d'en étudier l'allure à la frontière, ce qui fit approfondir

la notion de point-frontière régulier X (Lebesgue), défini par la condition

que Hf(x) -*f(X) lorsque xeco, x-> X, \/f9 finie continue sur àco.

Si tous les points-frontière sont réguliers, le problème classique est toujours
résoluble et réciproquement. On a donné bien des critères suffisants de
régularité, comme la condition déjà signalée de Poincaré-Zaremba.
Indiquons deux critères nécessaires et suffisants:

a) L'existence d'une « barrière de Lebesgue » améliorée par Bouligand
selon l'existence d'une fonction surharmonique > 0 au voisinage de X
sur co, tendant vers 0 en X (ce critère s'étendra aux axiomatiques futures).
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b) Célèbre critère de Wiener [217] utilisant la capacité, trop euclidien

pour de larges extensions; par exemple dans R3, si ôn est l'intersection de

C co avec le lieu pn+1 ^ | x — X\ ^ pn, (le 7) co, 0<p < 1) et yn la capacité,
alors la série de terme général yjpn diverge ou converge selon que X est

régulier ou non.

Il était essentiel d'apprécier l'ensemble des points irréguliers. C'était
un problème, difficile au début, résolu seulement en 1933 par G. C. Evans

[109] (après Kellogg dans R2). L'ensemble en question est de mesure
harmonique nulle et même en fait polaire. La démonstration de Evans contenait
d'ailleurs en fait le résultat important suivant dégagé à la fois par lui-même
et par Yasilesco: la continuité d'un potentiel en un point du support fermé
des masses (> 0) sur ce support entraîne la continuité en ce point dans

l'espace. Voir un historique sur la régularité en 1938 dans [212].

7. Trois autres importantes questions furent encore traitées en 1935-40:

a) D'abord Frostman [115] en 1935, inspiré souvent par M. Riesz et de

De La Vallée Poussin, rendit précis et rigoureux le fameux travail de Gauss

en affaiblissant les résultats par l'introduction d'ensembles exceptionnels de

capacité (intérieure) nulle, en fait polaires. L'existence des solutions est

établie grâce à la convergence faible des mesures (dite maintenant, d'après
Cartan, convergence vague). L'unicité s'appuie sur deux résultats importants

dans R3:

a) L'énergie d'une mesure p pt — p2 à support compact, qui
s'écrit J Uß dp peut se définir en remplaçant le noyau par inf. (1/| x — y |, N)
et faisant tendre N vers + co ou à partir d'un développement formel

comme J Ußl dpx + J Uß2 dp2 — 2 J UH dp2 (en notant que J UH dp2

J Uß2 dp1 si les énergies de pu p2 sont finies). Le principe d'énergie dit

que l'énergie est > 0 et nulle seulement si p 0.

b) Le second résultat appelé principe du maximum dit que Uß pour
p > 0 à support compact est majoré par le sup. de Uß sur le support (ce

qui dans le cas de Uß continue équivaut au principe élémentaire du maximum
des fonctions harmoniques).

Noter que Lrostman traite d'abord de cas d'une frontière assez régulière.

L'adaptation à R" (n > 3) et à des noyaux cp (r) généraux est facile mais avec

quelque changement. La capacité est approfondie, à nouveau comparée au



diamètre transfini d'ailleurs généralisé, comparée aussi à la mesure de

Hausdorff et utilisée en théorie des fonctions (à ce stade de la capacité, voir

un historique [211], 1937). Enfin Frostman [115] considère aussi les noyaux
r~a déjà approfondis par M. Riesz dans une étude importante en soi et pour
l'avenir des théories globales du potentiel (voir la publication, différée,

dans [196]).

ß) La deuxième question concerne la convergence des fonctions sur-

harmoniques. On a d'abord montré (Szpilrajn-Radô [193]) qu'une suite

décroissante bornée inférieurement converge vers une fonction qui vaut
une fonction surharmonique sauf sur un ensemble e de mesure de Lebesgue
nulle. Ensuite j'ai établi [34] (1938) que cet ensemble e est même (localement)
de capacité intérieure nulle. Peu après en 1942, Cartan montrait en utilisant
l'énergie (voir les détails dans [64]) que la capacité même extérieure est nulle
(c'est-à-dire que e est polaire) et étendait le théorème aux ordonnés filtrants
décroissants. Cela devenait un théorème-clef de la théorie fine du potentiel,
dont on a donné depuis des variantes plus ou moins fortes et des démonstrations

variées sous des hypothèses axiomatiques plus ou moins faibles

(voir des cours récents comme [49, 50]).

y) La troisième question concerne le problème de Dirichlet pour une
donnée quelconque / sur la frontière éœ d'un domaine par exemple borné.
J'ai montré [35] (1939) que la résolutivité équivaut à la sommabilité de f par
rapport à la mesure harmonique dpce qui est indépendant de x e m.
Cela se conservera dans les axiomatiques ultérieures.

En théorie des fonctions la mesure harmonique et le problème de
Dirichlet étaient utilisés depuis longtemps dans des cas plus ou moins
étendus (voir par ex. Beurling [20], Nevanlinna, Privaloff...). Ils allaient
devenir, ainsi que toute la théorie du potentiel, un instrument général. Voir
des articles de Brelot (Soc. Royale des sciences de Liège 1939), de Monna,
Bolder, etc., vers 1940 à l'Académie des Sciences d'Amsterdam, et aussi
Beurling [21], plus tard Dufresnoy (Bull. Sc. Math. 1945)...

8. Bien d'autres questions restent à mentionner dans cette période:
singularités des fonctions harmoniques (historique dans [31]) et des fonctions

sous-harmoniques [32], recherches de Bouligand [29, 30], précurseur
sur bien des points; approfondissement des fonctions polyharmoniques
(Nicolesco [179]); perfectionnement du problème de Neumann; étude d'un
problème de Dirichlet pour compact K (Keldych-Lavrentieff [140, 141]
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et Brelot (mémoires repris plus tard dans [41])) introduisant les points stables

analogues aux points réguliers et liée à l'approximation sur K d'une fonction
finie continue par une fonction harmonique sur un voisinage de K; rôle des

points irréguliers dans la résolubilité (Keldych [140], Landkoff); extension
de questions comme le problème de Dirichlet généralisé à des équations du
second ordre de type elliptique; et des questions qui se rattachent déjà à

l'esprit de la période suivante : introduction d'espaces de Hilbert par O. Niko-
dym [180] au sujet du principe de Dirichlet, approfondi par Zaremba [219];
introduction de frontières plus raffinées que la frontière euclidienne pour le

problème de Dirichlet (frontière «ramifiée» [42] initiée par Perkins [185]
et De La Vallée Poussin [150]).

9. Troisième période (prémoderne: environ 1940-1955). — Renouvellement

par la topologie.

Sans énumérer- les multiples perfectionnements ou applications de la
théorie antérieure (nombreux articles depuis trente ans de M. Arsove

(dont un ouvrage de théorie classique est à l'impression), de Beckenbach,
Dinghas, Hayman, Weinstein, Huber, Reade, Hardy-Rogosinki, Landkoff...
Voir par exemple [11, 215, 137, 146] et en France des articles également
disparates de Deny [86], Choquet-Deny [73], Deny-Lelong [91], Brelot-
Choquet [58] etc.) signalons des inégalités et estimations numériques
ingénieuses sur la capacité et l'intégrale de Dirichlet dans un ouvrage de Polya-
Szego [190], mais détaillons surtout des idées nouvelles et importantes:

a) L \énergie, déjà fort utilisée, fut rénovée par H. Cartan [63, 64, 65]

(qui s'en servit d'ailleurs pour obtenir la forme définitive du théorème de

convergence des fonctions surharmoniques). Explicitant le cas de R" (n > 3)

ou d'un disque dans R2, il introduit la norme-énergie, un produit scalaire de

deux mesures J Uß dv convenablement précisé et montre que dans / 'espace

préhilbertien correspondant S des mesures dans Rn l'ensemble S+ des

mesures > 0 est complet. D'où les notions de convergence forte ou faible.
Le balayage classique pour un compact est interprété comme une projection
dans l'espace préhilbertien. Mais S n'est pas complet. Il le devient dans la
théorie de Deny dans R" [87] (1950), théorie de l'énergie où le noyau est

une distribution de Schwartz A, la mesure remplacée par une distribution
variable T, le potentiel remplacé par la convolution. L'énergie est \jf 12T\ 2dx

(<dx mesure de Lebesgue, Jf et ZT fonctions transformées de Fourier de N
et T sous des conditions convenables). Cela interprète et généralise les
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potentiels de double couche du magnétisme et est lié à l'étude des fonctions

BL et BLD (Beppo-Levi-Deny) qui prolongent les ^-fonctions d'intégrale
de Dirichlet finie.

b) Bien des raisonnements de Frostman pouvaient visiblement s'étendre

à des espaces topologiques et des noyaux-fonctions plus généraux. D'où des

développements de ce type en France, tentatives non publiées puis travaux

importants de H. Cartan [63] déjà en 1941, sur un groupe topologique avec

composition de mesures, énergie, principe du maximum, et plus tard dans

[66], enfin une étude sans énergie (Deny [88]), et d'autre part au Japon,

par extensions successives du cas euclidien (Kametani, Kunugui ([145] avec

bibliographie) Ninomya...). A des hypothèses très larges on peut ajouter
comme axiomes, la validité de principes plus ou moins forts inspirés de la
théorie classique de façon à en imiter les démonstrations. La multiplicité
des principes et leur comparaison, la dissymétrie des noyaux possibles
conduisirent à beaucoup de développements qui se poursuivent encore

aujourd'hui.

c) L'introduction en théorie classique dans R" des ensembles effilés e en

un point x (Brelot, 1940, voir [36]) définis par l'existence d'une fonction
surharmonique u au voisinage de x, telle que lim inf u(y) > u (x) (condition

yee\ {x}
vérifiée plus ou moins conventionnellement si x$ë) fut inspirée par
des critères d'irrégularité et d'instabilité et permet d'améliorer des

propriétés topologiques de Bouligand sur les points-frontière irréguliers;
cela conduisit aussitôt H. Cartan à introduire la topologie fine qui est la
moins fine dans Rn rendant continues les fonctions surharmoniques locales

(car les voisinages fins de x sont les complémentaires des ensembles e effilés

en x $ e). Alors les points d'un ensemble où il est effilé (points finement
isolés) forment un ensemble polaire (résultat-clef, Brelot [38, 40]); en
particulier les ensembles effilés en tout point (ou en chacun de leurs points)
sont les ensembles polaires; les points irréguliers ou instables (pour œ

ouvert ou K compact) sont caractérisés par l'effilement de Co ou Cl
(d'où la polarité retrouvée de l'ensemble des points-frontière irréguliers)
et le critère d'irrégularité de Wiener s'étend selon un critère d'effilement
[36, 38]. Les nouvelles notions fournissent ou précisent des résultats sur
l'allure des fonctions surharmoniques, harmoniques ou méromorphes,
d'autant mieux que la limite fine en un point x0 d'une fonction équivaut
à la limite euclidienne hors d'un ensemble effilé (convenable) en x0 (Cartan),
ce qui conduit à mieux étudier topologiquement l'effilement. Ainsi, ô étant
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un voisinage ouvert d'un point-frontière irrégulier x0 d'un ouvert co, une
fonction surharmonique sur co n <5, bornée inférieurement admet une
limite fine en x0; de même pour vjh (|x —x0|) où h est le noyau newtonien
ou logarithmique.

Ces notions sont précieuses aussi pour traiter mieux ou autrement, avec
la topologie fine, de vieilles questions comme le principe de minimum et le

problème de Dirichlet, ou surtout la théorie du balayage dont voici une
forme définitive dans un domaine de Green co de Rn [40]; dans ce mémoire

on reprend et on utilise systématiquement (grâce au théorème-clef de convergence

(voir plus haut §7, ß)) la notion d'extrémisation et d'extrémale d'une
fonction surharmonique u > 0 dans co, relative maintenant à un ensemble

quelconque; c'est la plus petite fonction surharmonique >0 majorant u

quasi partout sur son complémentaire e ; on dit maintenant balayée relative

à e. Elle vaut la régularisée par semi-continuité inférieure notée Reu de la
fonction dite maintenant réduite Reu, inf. des v surharmoniques > 0 majorant
u sur e (cette propriété de la balayée est devenue la définition dans les axio-
matiques actuelles).

Partons du potentiel w de p > 0, à noyau de Green dans co. Reu est

alors un potentiel caractérisé par sa valeur égale à u quasi partout sur e

et la condition que la mesure associée soit portée par la base de e, lieu des

points où e est non effilé (adhérence fine à un ensemble polaire près).
Sans utiliser le théorème de convergence, Cartan retrouva autrement

ce résultat [65] en traitant d'abord les potentiels d'énergie finie.

d) Une définition de l'harmonicité et surharmonicité au voisinage du

point à l'infini sé de Rn permet l'adaptation systématique de la théorie

classique à des ouverts de R" (compactifié d'Alexandroff) [39]2) et à des

espaces-ê [57] séparés, localement homéomorphes à un ouvert de R" avec

changement de carte isométrique, ou aussi pour n — 2, conforme. Cela

contient les surfaces de Riemann classiques ; s'il y a une fonction de Green,
c'est un espace de Green qui se traite en gros comme R3 (y compris pour le

balayage).
Mais noter que le point à l'infini de Rn (n > 3) n'est pas polaire, donc

aussi les points d'un espace-<f dits à l'infini parce que leur image locale est

en stf. Alors un ensemble e est dit effilé en x0 e e, si e \ { x0 } est effilé

(même définition) et { x0 } polaire.

1) Ce qui, en particulier, contient les problèmes de Dirichlet dits « intérieur » et
« extérieur ».
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10. e) La recherche d'une représentation intégrale des fonctions har-
R2 _ | y |

2

moniques > 0 comme celle de Poisson-Stieltjes J Rn 2 ^ ^
{ji > 0 sur la frontière) dans la boule de R", conduisit R. S. Martin [167]

en 1941, après quelques tentatives en topologie euclidienne, à introduire

d'importantes notions topologiques nouvelles.

Considérons un domaine Q de R" pourvu d'une fonction de Green G

G(x,y)
(ou même un espace de Green) et normalisons selon K (x, y) —(j (x, y0)

(y0 fixé e Q). Alors il existe un espace compact Q (unique à un homéo-

morphisme près) où Q est dense, tel que les fonctions x -> K(x,y) soient

prolongeables continûment dans Q et séparent la frontière Q — Q A

(espace et frontière de Martin). C'est une généralisation naturelle de la

frontière des bouts premiers de Carathéodory pour les domaines plans

applicables conformément sur un disque (un essai de généralisation géométrique

dans R3 n'avait rien donné d'utile). Q n'est pas en général comparable
à l'adhérence euclidienne mais lui est identique dans les cas simples, comme
la boule ou le demi-espace.

On désigne par Au la partie de A, ensemble des points X tels que la

fonction correspondante K (X, y) soit minimale c'est-à-dire telle que toute
fonction harmonique > 0 minorante lui soit proportionnelle. Alors toute
fonction harmonique > 0 admet une représentation unique u (y)

J K (x, y) djiu (x) où pu est une mesure > 0 sur A, portée par A1.
Si l'on considère dans l'espace des fonctions finies continues sur Q

ou seulement des différences de fonctions harmoniques > 0, pourvu de la

topologie de la convergence uniforme locale, le cône H+ des fonctions
harmoniques > 0, la condition u (y0) 1 (y0 fixé) détermine une base

compacte métrisable dont les éléments extrémaux sont les fonctions
minimales égales à 1 en y0. Cela conduisit plus tard Choquet en 1956 à sa

fameuse théorie des éléments extrémaux avec représentation barycentrique
[68, 71 et 3, t 5] dont une illustration brillante est justement la représentation
de Martin, de technique originale difficile.

f) Cette frontière A permet un problème de Dirichlet analogue à celui de la
frontière euclidienne [47]. Mais on peut traiter aussi ce problème avec
d'autres compactifications [47] et le comparer avec le précédent (Naïm [178])
qui apparaît comme privilégié et auquel on peut se ramener. On peut
d'ailleurs au lieu des fonctions harmoniques et surharmoniques considérer
et traiter de même leurs quotients par une fonction harmonique positive
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fixe {relativisâtion du problème [47] qu'on retrouvera en axiomatique
ultérieure). Mais l'allure à la frontière demande des notions nouvelles
introduites plus tard et sur lesquelles on reviendra. A a d'autres avantages,
comme de déterminer à un facteur près les fonctions harmoniques > 0

associées à 0 au voisinage de tout Y s A (c'est-à-dire s'y annulant au sens

d'un problème de Dirichlet) sauf pour XeA; c'est alors Kx [44]. C'est le

principe des « singularités positives » que Bouligand avait beaucoup étudié

en frontière euclidienne sans pouvoir trouver un énoncé général (voir
Deny [85]).

g) On a aussi considéré des frontières non nécessairement compactes,
obtenues par complétion d'une métrique compatible avec la topologie, et

même des conditions-frontière définies par un système de filtres [42, 57];

un exemple est donné par des familles de lignes comme les lignes de Green

[57] (tangentes au gradient de Gy (x)) et les limites selon ces lignes (voir des

extensions par Ohtsuka dans son ouvrage ultérieur [183]). Il s'y rattache

une étude du principe de Dirichlet, autrement que selon Nikodym ou Deny
[46].

h) Les applications à la théorie des fonctions, aux surfaces de Riemann

et à leur classification commencent à devenir systématiques. Voir Parreau

[184] 1951, avec une importante bibliographie. Les fonctions plurisous-
harmoniques de P. Lelong [157] sont devenues un instrument très important
dans le domaine des fonctions de plusieurs variables complexes.

i) Enfin signalons vers 1953 un effort axiomatique de Choquet [67] pour
approfondir et généraliser la notion de capacité devenant ainsi un outil
fondamental en Analyse, précédant la mesure. On en a même séparé une
notion plus large qu'on peut, sans chercher le maximum de généralité et

dans un cadre encore un peu topologique, présenter comme une fonction
réelle d'ensemble C (e) dans un espace séparé, croissante et admettant le

passage à la limite pour des suites croissantes et aussi pour des suites décroissantes

de compacts. Pour cette « capacité généralisée », un ensemble est dit
C-capacitable si C (e) sup C (K) pour les compacts K contenus dans e.

La théorie donne des conditions de capacitabilité ; ainsi, dans le cas classique

rappelé plus haut où la capacité extérieure est une capacité généralisée

précédente, il y a identité des capacités extérieure et intérieure pour les ensembles

boréliens et même analytiques, précieuse propriété.



— 15 —

11. Quatrième période (période moderne: environ 1955-1970). —

Topologies et axiomatiques privilégiées. Aspects probabilistes.

La complexité du sujet va nous obliger à une plus grande brièveté, à des

aperçus encore plus sommaires et plus incomplets.
Mentionnons évidemment les nombreux travaux et ouvrages sur les

équations aux dérivées partielles (voir p. ex. [171]) et les résolutions numériques

modernes pour ces équations. En fait elles s'inspirent de vieux travaux

sur l'équation de Laplace et le problème de Dirichlet, utilisant une approximation

par des fonctions définies sur des réseaux (Le Roux (1914), Philipps
et Wiener [187], Bouligand, Mme Lelong [156]). Cela fournit des théorèmes

d'existence et conduit à des calculs approchés. Voir l'ouvrage moderne de

Temam [208].
Puis indiquons, sans détails, en partie dans l'esprit topologique, quelques

prolongements importants de certaines idées précédentes : étude dans les

espaces d'abord euclidiens des fonctions multiplement ou pluri-harmoniques
ou surharmoniques (Avanissian [12], Lelong [158], Bremermann, Noverraz,
Hervé [127], Coeuré...), limites angulaires des fonctions harmoniques
(Calderon [61], Stein et Weiss [203], Doob, et même, sous restriction,
surharmoniques (Arsove-Huber)), raffinements classiques ou abstraits sur
la capacité ou l'effilement ou la topologie fine (Choquet [3, surtout t 3 ;

69; 70], Deny, Sion, Brelot, Getoor, Fuglede [118-119], voir [56]); théorie
semi-classique où les ensembles de mesure de Lebesgue nulle remplacent
les polaires (avec ou sans probabilités (voir Kac et Ciesielski [138-75]));
examen général d'ensembles exceptionnels (Carleson [62], Doob [103]);
relations avec l'analyse harmonique, la théorie ergodique et même la théorie
des jeux [1]; l'étude des potentiels besseliens [1, 10]... Détaillons plutôt :

a) L'étude axiomatique en espace topologique des noyaux-fonctions et

noyaux-mesures a été continuée par Choquet et Deny [3 tl, 3] et divers
japonais (Ninomya [3, t3], [181], Ohtsuka, Kishi [144] et [3, tl 1] avec
bibliographie). Mentionnons l'étude des modèles finis [74], les relations entre les

principes augmentés de variantes (aperçu général [182]), la recherche de

noyaux y satisfaisant, les aspects linéaires de la théorie du potentiel (Choquet
et Deny, C. R. Ac. Sc. 1956). Soulignons en espace localement compact
l'étude détaillée des noyaux-fonctions symétriques par Fuglede [116];
Durier [104] après son exposé [3, t9] des travaux de Kishi sur les noyaux
dissymétriques, qui n'utilisent pas de méthodes variationnelles mais un
théorème de point fixe, les améliore et montre des relations avec d'autres
théories comme celle des espaces de Dirichlet dont on parlera plus loin.
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Dans tout cela les potentiels continus jouent souvent un rôle privilégié:
ils servent de base dans les recherches et exposés de G. Anger [9] et ses

élèves, qui transposent aussi des méthodes de la théorie du potentiel aux
équations aux dérivées partielles d'ordre supérieur.

b) La recherche et l'étude des frontières se sont prolongées et
systématisées (voir l'ouvrage de Constantinescu-Cornea [79]). Citons la frontière
de Kuramochi où convergent « presque toutes » les lignes de Green, commode

pour l'étude des fonctions BLD (voir de nombreux articles au Japon de

l'Académie de Tokyo, de Y Osaka Math. Journal, etc., et le fasc. 58 des Lecture
Notes consacré à ce sujet) et aussi la frontière générale de Choquet ainsi

appelée par Bishop-de Leuw (voir Bauer [13]) qui raffine celle de Silov,
généralise l'étude des éléments extrémaux et a beaucoup de relations et

d'applications (voir p. ex. [56, 106]).

12. Mais la nouveauté topologique qui paraît la plus importante par ses

applications et qui pourrait faire disparaître l'emploi de la topologie Martin
qu'elle raffine, est d'abord pour les espaces de Green, un prolongement de

la topologie fine antérieure.

Uejfilement (dit maintenant minimal) de e ci Q en XeA, d'abord
considéré en fait dans le demi-espace en 1949 par Ahlfors-Heins [7] et par
Mme Lelong [155] est défini en général par la condition ReKx A Kx c'est-
à-dire qu'il existe une fonction surharmonique > 0 majorant Kx sur e mais

non partout, ou qu'il existe un potentiel de Green majorant Kx sur e, ce

qui équivaut à la définition originale et notion-clef de L. Naïm [178].

A1 peut être introduite, sans parler de A, comme ensemble des fonctions
minimales égales à 1 eny0. On montre qu'il existe sur Q u d1?une topologie
unique induisant la topologie fine sur Q et donnant comme intersections

avec Q des voisinages de tout Xe Alf les complémentaires des effilés en X.
On l'appelle topologie fine minimale. Elle est (sur QuAf) plus fine (et plus
utile) que la topologie Martin. Voir une présentation abstraite générale
dans [121, 56]. Dans le cas classique précédent, on peut considérer sur At
des points irréguliers pour le problème de Dirichlet-Martin, puis « finement

irréguliers » en un sens plus faible évident, ce qui permet de voir que leur
ensemble est de mesure harmonique nulle. Et cela s'étend aux notions
obtenues par relativisation avec une fonction harmonique h > 0 [178].

D'autre part v/Gyo, v/Kx ont en tout X e A (v surharmonique > 0) une
limite fine [178]. Et même vjh admet une limite fine finie d/ih — p.p. (résultat
fondamental de Doob [99]) cela s'étend aux fonctions BLD pour h 1
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et s'adapte pour tout h. Pour une fonction harmonique > 0 (mais non

surharmonique quelconque) dans un demi-espace ou une boule Q (dont Q est

identifiable à l'adhérence euclidienne) la limite fine entraîne la limite dite

non tangentielle ou angulaire [59], ce qui implique les résultats classiques

du type Fatou. Tout ceci conduit à comparer les deux types dyeffilement

[1, 51, 56], aussi pour les extensions ultérieures.

Il y a naturellement des applications à la théorie des fonctions, comme

un perfectionnement du théorème de Plessner et la correspondance de deux

surfaces de Riemann (voir des développements de Doob [100-102] et

Constantinescu-Cornea (voir surtout leur important livre [78])) qui
complètent le gros ouvrage de Tsuji [209] sur les applications plus anciennes de

la théorie du potentiel aux fonctions méromorphes. Pour les détails et
applications de la topologie fine, d'ailleurs aussi dans la théorie ultérieure, voir
[53-55-56].

13. Arrivons à ce qui caractérise le plus fortement l'époque moderne.

Ce sont des axiomatisations nouvelles poussées et parallèles de divers aspects
locaux et globaux du potentiel (harmonicité, énergie), la théorie des noyaux-
mesure de G. Hunt qui contient en fait les parties les plus intéressantes des

axiomatiques précédentes, les interprétations probabilistes grâce aux
processus de Markov, ce qui conduit même à une théorie probabiliste
indépendante du potentiel, enfin une discussion approfondie des relations
possibles, des analogies, des structures et principes communs à ces théories
d'où le problème inverse de bâtir une théorie d'allure potentielle à partir
de cônes de fonctions de type très général.

14. Après des tentatives de Tautz [205-206] et Kamke, Doob qui avait
déjà, après quelques précurseurs (P. Lévy, Kakutani...) introduit les

connexions avec les probabilités, en comparant dans R2 les fonctions sous-
harmoniques et les semi-martingales (dites maintenant sous-martingales)
[94], y revient dans des conditions différentes et générales dans un mémoire
très important [96] (1954-55) suivi de [96] et où il pose au début les bases

d'une axiomatique des fonctions harmoniques, en transposant et généralisant

l'idée que, dans le mouvement brownien, la probabilité du mouvement
à chaque instant est la même dans toutes les directions.

En modifiant le langage et les axiomes de base en vue d'une adaptation
systématique de la théorie classique, j'ai été amené en 1957-58 à la théorie
suivante [48] [49] : dans un espace connexe, localement connexe, localement

compact, non compact Q (que l'on compactifie selon Q grâce au point
d'Alexandroff), on donne sur chaque ouvert un espace vectoriel de fonctions

L'Enseignement mathém., t. XVIII, fasc. 1. 2
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réelles finies continues dites harmoniques satisfaisant aux axiomes suivants

(de caractère local).

1) (Axiome de faisceau); elles définissent un faisceau, c'est-à-dire que
toute fonction harmonique dans un ouvert co est harmonique dans tout
ouvert partiel et toute fonction localement harmonique dans co est

harmonique dans co.

2) (Axiome de résolubilité locale du problème de Dirichlet). On appelle
régulier tout ouvert relativement compact co pour lequel toute fonction
finie continue réelle / sur i)co se prolonge continuement dans co de façon
unique selon une fonction harmonique, >0 si / > 0. Ce prolongement

Hf (x) est de la forme J/(y) dp (y) (dpx mesure > 0 sur c)co, dite mesure

harmonique).
L'axiome 2 exprime l'existence d'une base d'ouverts réguliers (ou de

façon équivalente, de domaines réguliers).

3) (Axiome de convergence.) Toute suite croissante un de fonctions

harmoniques dans un domaine a une limite + oo ou harmonique (énoncé

équivalent avec un ordonné filtrant croissant d'après Constantinescu-

Cornea). Cela entraîne a) une fonction harmonique u > 0 dans un domaine

co, est partout 0 ou partout > 0. (On le voit en considérant la suite n u.)

b) Les fonctions harmoniques > 0 dans co, égales à 1 en y0 e co sonté
gaiement continues en tout point (résultat difficile de Mokobodski (voir [54])
mais avec l'hypothèse d'une base dénombrable, hypothèse supprimée plus
tard par P. Loeb-B. Walsh [164]). Noter que (a) -f (b) équivaut à l'axiome 3

(vu son importance on l'avait introduit comme axiome 3' impliquant 3).

Principe de minimum. Si dans un ouvert co existe une fonction
harmonique h > z > 0, alors pour toute fonction harmonique u sur co, la

condition lim inf u > 0 à la frontière implique u > 0. Lorsque les constantes

sont harmoniques, on a donc pour toute fonction harmonique w,

inf u inf (lim inf. à la frontière)
co ôco

(forme banale du principe).
Noter que les quotients par une fonction finie continue h > 0 fixe,

définissent un autre faisceau satisfaisant aux axiomes (faisceau des fonctions

A-harmoniques). Si h est harmonique, les constantes sont A-harmoniques.
Les fonctions hyperharmoniques u dans co ouvert se définissent comme

s.c.i. > — oo majorant sur tout co' régulier (œ' a co) \udp'; elles satisfont

au principe de minimum comme les harmoniques ; dans un domaine u vaut
— oo ou est finie sur un ensemble dense (et alors dite surharmonique).
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Lorsque u surharmonique admet des minorantes harmoniques qui sont

toutes ^ 0,u est dit un potentiel (qui est le potentiel de Green d'une mesure

> 0 dans un domaine classique de Green). Un outil commode est la notion
de fonction à peu près hyperharmonique, déduite de la précédente en

remplaçant s.c.i. et > — oo par « localement bornée intérieurement » et l'intégrale

par une intégrale J. Cela remplace dans le cas classique une vieille

notion de fonction presque sous harmonique. Un ensemble e dans œ ouvert

y est dit maintenant polaire s'il existe u surharmonique > 0 valant + oo au

moins sur e. Si un ensemble e0 est localement polaire dans co, il est polaire
dans co s'il existe un potentiel > 0 dans co; sinon, mais s'il y a dans co une

fonction harmonique > 0, il existe une fonction surharmonique dans co

valant + oo sur e0 (Anandam [8]), ce qui dans la définition originale du

cas classique était encore désigné par « polaire » ; le terme « localement

polaire » correspondant à la notion la plus utile évite tout désaccord.

Noter que Doob supposait la métrisabilité de Q, les constantes

harmoniques et un axiome de convergence plus faible (limite harmonique si elle

est finie sur un ensemble dense) complété par une condition permettant
d'obtenir une forme de principe élémentaire de minimum indispensable.
Pour des suites xn, où xn+1 est choisi sur la frontière d'un domaine régulier
œn 3 xn avec une probabilité égale à la mesure harmonique dans mn, il y a

un « processus de Markov » (extension du mouvement brownien) dont
{ xn} est trajectoire, et la « probabilité de transition » celle qui précède.

Alors, sous certaines conditions générales, toute fonction surharmonique
> 0 a une limite sur « presque toutes » les trajectoires. C'était le but essentiel
de Doob dont la théorie par ailleurs est peu poussée et se développe moins
bien que dans celle qui a suivi en théorie pure du potentiel et que j'esquisse
maintenant.

L'existence dans Q d'un potentiel > 0 (qui a lieu dès qu'existent deux
fonctions harmoniques > 0 non proportionnelles) et souvent d'une base
dénombrable permettent l'extension d'une grande partie de la théorie
classique:

— Propriétés de treillis (qui ne demandent pas de dénombrabilité)
selon l'ordre spécifique défini par u < v signifiant v u + / et /
surharmonique > 0.

— Problème de Dirichlet avec théorème de résolubilité.

— Topologie de l'espace des différences de fonctions surharmoniques
> 0 permettant une base compacte métrisable du cône S+ des fonctions
> 0 (ce qui est difficile sans axiome supplémentaire et alors dû à Mme Hervé
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[128]), d'où par la théorie des éléments extrémaux, une représentation
intégrale qui dans le cas classique donne celle de Riesz-Martin.

— Grâce à l'hypothèse de proportionalité P des potentiels de support
ponctuel { x } (c'est-à-dire harmoniques hors { x }), définition d'un espace
et d'une frontière de Martin avec problème de Dirichlet correspondant et

forme étendue de la représentation de Martin-Riesz.

— Introduction de la topologie fine et du balayage avec des développements

ultérieurs utilisant ou non les axiomes supplémentaires qui suivent

(Mme Hervé [128] (balayage), Brelot [52] (capacité des ensembles décroissants),

Constantinescu-Cornea [77-80], Fuglede [118-119] et Berg (usage

et propriétés importantes de la topologie fine).

— Un axiome nouveau D de « domination » (impliquant le principe du
maximum du type Frostman) entraîne l'extension du grand théorème de

convergence des fonctions surharmoniques (et lui est même équivalent avec

P) ce qui permet l'extension de la partie la plus fine du potentiel classique.
Tout cela s'applique dans R" aux équations linéaires aux dérivées partielles
du second ordre de type elliptique à coefficients lipschitziens (voir Mme Hervé

[128] et l'ouvrage [26]) puis même en un certain sens au cas des coefficients

discontinus [129-130] dont la théorie directe est difficile comme on le voit
dans Stampacchia [202].

— Les équations adjointes se trouvent axiomatisées dans la théorie
du faisceau adjoint de Mme Hervé (avec P et un axiome supplémentaire, mais

sans D).

Bien d'autres compléments furent donnés. Outre tous ceux déjà cités

de Mme Hervé et autres, citons : Boboc-Constantinescu-Cornea (nombreux
perfectionnements) [24, 81...], Loeb [163], Loeb-B. Walsh (classification de

faisceaux, frontières compactes diverses), K. Gowrisankaran (extension du
théorème de Doob sur la limite fine minimale [121-122], le problème de

Dirichlet et les pôles des fonctions minimales pour une frontière compacte
[3 tl 1], les fonctions multiplement surharmoniques); Constantinescu-

Cornea [81] et D. Sibony [200] (correspondance de deux espaces

«harmoniques» c'est-à-dire pourvus d'axiomatiques), Mokobodski [1, 3 tl 1]

(topologie sur S+ et points de proportionalité), de la Pradelle [148] (quasi-

analyticité), J. Taylor [207] (correspondance des faisceaux et de la frontière
de Martin), E. Smyrnelis (allure au voisinage d'un point-frontière irrégulier),
Lumer-Naïm [166] (espaces J4fp de fonctions harmoniques et extension des

fonctions fortement sous harmoniques de Gârding-Hôrmander), notion de

flux (Nakai, voir [197]), Anandam [8] (espaces harmoniques sans potentiel
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positif) etc. Soulignons le rôle de la nucléarité (Loeb-B. Walsh [160],

Hinrichsen [132]), de la cohomologie, dualité, flux, perturbation de structures,

même dans des axiomatiques plus faibles (B. Walsh [213-214]).

Voir un aperçu général de cette axiomatique avec beaucoup de compléments

dans [54] pourvu de bibliographie.

15. Mais la théorie ne s'applique pas, contrairement à celle de Doob,
à l'équation de la chaleur. Alors H. Bauer [14, 15, 16] élargit la théorie

précédente pour traiter en même temps une large classe d'équations
paraboliques. Pour définir un « espace harmonique » (espace topologique pourvu
d'un faisceau) il remplace essentiellement l'axiome 3 par l'axiome de

convergence KD plus faible de Doob (ou même un autre, Ku encore plus

faible où les fonctions sont uniformément majorées) et par un axiome de

séparation qui assure un principe de minimum. Avec une base dénombrable

et l'existence pour chaque x d'un potentiel > 0 en x (les fonctions hyper-
harmoniques et les potentiels se définissent comme plus haut), ce qui donne

un espace « fortement harmonique », il peut alors étendre en gros toute la

partie de la théorie précédente indépendante de P et D (D n'est d'ailleurs pas
vérifié pour l'équation de la chaleur), en laissant à Mokobodski l'adaptation
de la représentation intégrale (moins facile et moins utile puisqu'il n'y a pas
nécessairement de base de S+) et sans s'occuper de théorie adjointe. Une

comparaison approfondie avec l'axiomatique précédente est faite dans

[3, t6 n° lb; 54, 17] et surtout [3 t 11 n° 6]. Les élèves de Bauer complétèrent
et élargirent diversement sa théorie et ses applications (Hansen (noyaux
harmoniques), Sieveking (recherche de représentation intégrale « concrète »),

Bliedtner (groupes harmoniques), Köhn (donnée-frontière sur une partie
fermée de la frontière pour les domaines de base) (voir Lecture Notes 69),
Guber (Congrès de Loutraki, Lecture Notes 31; recherche d'équations
paraboliques entrant dans le cadre de Bauer), K. Jansen (thèse Erlangen
1969 étendant la théorie des Jfp-fonctions de Lumer-Naïm)). Voir aussi les

nombreux articles de Boboc, Constantinescu-Cornea et l'ouvrage à

l'impression de Constantinescu-Cornea [82] complétant les axiomatiques
précédentes ou développant une axiomatique plus faible.

Il est avantageux de suivre la théorie de Bauer sous sa forme d'allure
définitive [17] en la complétant, lorsque c'est nécessaire, par des restrictions
qui l'identifient à la théorie précédente et permettent un développement
plus poussé.

Les questions de topologies et frontières étendues et étudiées dans ces

axiomatiques ont été systématiquement examinées et approfondies de façon
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illustre et détaille les applications surtout dans le cas classique (Brelot [56]).

16. La question se posait de chercher les ou des faisceaux satisfaisant aux
axiomes. C'est ce qu'a entrepris Bony dans Rn [27, 28]. Considérons dans R"

l'axiomatique détaillée plus haut, affaiblie par suppression de l'axiome 3

(mais faisant par commodité les constantes harmoniques). Il existe un
opérateur elliptique L (à forme quadratique positive et coefficients non
tous nuls à la fois) tel que, pour toute u harmonique de type C2 dans un
ouvert, Lu 0 ; L est même unique à un facteur près et ses coefficients sont

réguliers dans un sous ouvert dense. S'il y a (au sens d'une certaine approximation)

suffisamment de fonctions harmoniques de type C2, il y a dans un
ouvert dense convenable, équivalence pour les C2-fonctions, des conditions
d'harmonicité et de surharmonicité avec les conditions Lu 0, Lu ^ 0

pour l'opérateur associé. Indiquons encore entre autres que les axiomes de

convergence (axiome 3, forme de Doob KD ou même forme faible Kf)
peuvent être caractérisés par le type de L et que le cas des faisceaux invariants

par translation peut être complètement élucidé.

17. Parallèlement aux axiomatiques locales précédentes, les travaux sur
l'énergie de Cartan-Deny ont conduit Beurling et Deny à dégager de la

théorie des fonctions à intégrale de Dirichlet finie, des propriétés servant
d'axiomes pour construire une axiomatique globale de l'énergie sous le nom
de théorie des espaces de Dirichlet, d'abord dans le cas élémentaire d'un

espace à un nombre fini de points, puis sous son aspect général [22, 90].

L'idée nouvelle a été la remarque de Beurling qu'une transformation T
du plan complexe qui est une contraction conservant l'origine donne par
composition avec une fonction u une fonction Tu d'intégrale de Dirichlet
minorée.

Appelons d'abord avec Deny, espace de Dirichlet fonctionnel H, de

base une mesure Ç > 0 dans un espace localement compact dénombrable
à l'infini, un espace vectoriel complexe de fonctions sommables — £

localement, muni d'une norme le rendant complet, et tel que l'intégrale — dé,

sur tout compact tende vers 0 avec la norme (propriété de continuité).
Tel est dans un ouvert borné de R", pourvu de la mesure de Lebesgue,

l'espace obtenu par complétion à partir des fonctions de type C2 ou même

C00, à intégrale de Dirichlet finie, avec le produit scalaire

(u, v) » J (grad w, grad v) dx
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I et la norme-énergie JJ | grad u|2 Dans ce cas particulier, on re-

1 marque, grâce à la formule élémentaire de Green, que si v est le potentiel

| de Green de la mesure de densité p Av supposée à support compact
• (u, v) vaut Jw p dx à un facteur près.

Dans le cas général on appellera potentiel engendré par une fonction /
bornée à support compact, le point Pf de l'espace hilbertien H défini par
la condition (u,Pf) \ uj dÇ, yue H. Un potentiel pur est défini comme
élément adhérent à l'ensemble des potentiels précédents engendrés par
les / > 0.

Un espace de Dirichlet, qui contient et généralise le cas particulier cité

à base d'intégrale de Dirichlet est un espace de Hilbert fonctionnel pour
lequel toute contraction T (dite normale) indiquée plus haut minore la

; norme. Le développement de la théorie est fécond surtout pour les espaces
dits réguliers où les fonctions de H situées dans l'espace Ck des fonctions
finies continues à support compact sont denses dans H et même dans Q.
Critères divers, capacité, théorèmes d'équilibre et de balayage analogues

aux théories précédentes et bien d'autres notions se rattachant à d'autres
domaines en font une théorie très riche. Soulignons seulement que pour
un H à potentiels purs réels, H est un espace de Dirichlet si et seulement si

est vérifié le principe important suivant dit «principe complet du maximum

» approfondi dans Deny [1]: l'inégalité Pf ^Pg + 1 (/, g e Ck)

doit être vraie p.p. — dé, dans Q si elle l'est de même sur {x\ f > 0 }. On

peut d'ailleurs développer la théorie abstraite sans mettre à la base une
mesure £ (Thomas [3, t9]). Enfin à côté du cas d'invariance par translation,
signalons l'étude analogue par Berg [3, tl3] sur la sphère avec invariance

par rotation.

18. Arrivons à la théorie globale des noyaux de G. Hunt (1957-58) [134]
qui domine la théorie moderne du potentiel en ce sens qu'elle contient au
fond les axiomatiques précédentes au moins dans les cas les plus intéressants,
les relient aux processus de Markov et inspire les recherches récentes. Vu la
quantité et la complexité des travaux sur le sujet nous nous contenterons
d'une introduction et de quelques résultats essentiels en renvoyant à un
aperçu de Deny [3, t5] et aux ouvrages détaillés de P. A. Meyer [169] et
Blumenthal-Getoor [23] plus complets et plus faciles que les travaux ori-

i ginaux de Hunt.
Soit un espace localement compact E à base dénombrable ; on considère

Uun noyau-mesure px>0 dépendant de xeE qu'on écrit aussi V(x,e)
(e ensemble borélien), fonction borélienne de x pour e relativement compact.

V
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Alors à une fonction f borélienne > 0 correspond la fonction potentiel def
qu'on peut écrire:

Vf (x) \fdpx ou \f{y) V (x, dy) (d'ailleurs la donnée / -> V équivaut à

celle de px).

A une mesure 6 > 0 correspond la mesure, dite potentiel de 8 :

8V(e) fV(x, é) d9 (x).

Le noyau identité V (x, e) vaut 0 ou 1 selon que x £ e ou x e e, et conserve

f(x) et 0 (e). Extension facile pour des signes quelconques.

Comme exemple élémentaire, prenons dans R3 le noyau \e- -dy
\x — y\

(mesure de Lebesgue dy). On voit que Vf est le potentiel newtonien de la
mesure de densitéf et 6 V est la mesure de densité égale au potentiel newtonien

de 6. On notera V. W le noyau produit J V(x, dy) W(y, e); Vt (*>0)
est un semi-groupe si Vt+S Vt Vs. On note Ck, C0 les ensembles de fonctions

finies continues à support compact ou tendant vers 0 à l'infini. On
dit que V satisfait au principe complet du maximum si quelles que soient

/, g > 0 de Ck et a > 0, l'inégalité Vf ^ Vg + a là où/ > 0 entraîne l'inégalité

partout.

Théorème de Hunt: Si V donne de Ch une image dense dans C0 et
satisfait au principe complet du maximum, il existe un semi-groupe unique
Pt (t >0) tel que Vf J

^ Ptfdt (/>0) où Pt (dit Fellerien) applique Ck dans

C0, vaut pour P0 le noyau unité et satisfait à Ptf -» /(/eC0) uniformément
f-+0

localement, et àf^l) ^ 1.

La démonstration utilise une famille de noyaux dits « résolvantes » et un
célèbre théorème de Hille-Yosida. Des variantes améliorées ont été données

plus tard (Ray, Lion [162], Hirsch [133], Berg, etc.). Relativement à {Pt},
/borélienne > 0 est dite « excessive » si Ptf et Ptf ->f et invariante

/-+ o

en cas d'égalité; une définition correspondante de potentiel est évidente,

conservant la décomposition de Riesz mais il y a bien d'autres notions de

potentiel dans ces questions.

19. Les relations avec les axiomatiquesprécédentes sont faciles à exprimer.
Avec la première axiomatique locale (base dénombrable, axiomes 1, 2, 3,

existence d'un potentiel > 0 et constantes harmoniques), P. A. Meyer [168]

a montré, en utilisant un noyau de Mme Hervé, qu'on peut le choisir de façon
à ce qu'il satisfasse aux conditions de Hunt et les fonctions excessives du
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semi-groupe correspondant sont alors exactement les fonctions hyper-

harmoniques > 0 de l'axiomatique.
Dans la théorie de Bauer pour un espace fortement harmonique et les

constantes surharmoniques, ce qui est plus général, on arrive à la même

identité (voir [18]) à l'aide d'une variante élargie (Hansen) du théorème

de Hunt [123]. Toute axiomatique analogue et plus faible ultérieure pose le

même problème d'interprétation.
Enfin si l'on examine les espaces de Dirichlet réels, on voit que le noyau

qui fournit la définition du potentiel, lorsqu'il s'annule à l'infini, est un

noyau de Hunt et qu'alors les potentiels sont des fonctions excessives. C'est

ce qui arrive dans le cas de l'espace de Dirichlet classique, dans un domaine

régulier de Rn (c'est-à-dire sans points-frontière irréguliers). Voir aussi

J. Elliott [3, t6].

20. Aspects probabilistes. On savait depuis longtemps, au moins dans

R2, vingt ans avant l'ouvrage de P. Lévy [159], que, pour le mouvement
brownien, la probabilité que la trajectoire issue d'un point x0 rencontre
la frontière d'un domaine co 3 x0 pour la première fois sur une partie e c= ôco

(p. ex. borélienne) est la mesure harmonique de e relative à x0; P. Lévy
avait même interprété aussi le potentiel capacitaire, Kakutani savait
caractériser les ensembles polaires comme ceux que les trajectoires précédentes
ne rencontrent presque sûrement pas et Doob interpréta l'efîilement.
Etudiant la notion de quasi ou semi-martingale, appelée maintenant sous-

martingale, en analogie frappante avec les fonctions sousharmoniques,
Doob montre même [94] que si u est sousharmonique de croissance pas
trop rapide à l'infini et X(t) une trajectoire brownienne dans R", u (X(/))
définit une sousmartingale.

Nous allons préciser des notions plus générales dans le cadre des

processus de Markov, qui serviront à interpréter la théorie des noyaux de Hunt.
On considère un espace abstrait Q0 pourvu d'une tribu d'ensembles sé et
d'une probabilité-mesure P (mesure sur sé de total 1), et une application
de Q0 dans un espace E (dit espace des états) pourvu d'une tribu 0$, par
une fonction X (x), sé-mesurable (c'est-à-dire que si e e X~ 1

(e) e sé)
dite variable aléatoire. Si X est réelle finie ou non (c'est-à-dire E R1

augmenté de + oo et £§ tribu borélienne), on introduit ê (X) J X dP,
dite espérance mathématique; l'espérance conditionnelle relative à une
sous-tribu sé' est toute fonction ja/'-mesurable y (x) telle que \ay dP \aXdP
(yctesé'). y est unique, en ce sens que si y1,y2 répondent à la question,
y i y2 presque partout. On note y $ (X\sé'). Quand X est l'indicateur
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d'un ensemble a0, y est dite probabilité conditionnelle P(a0|j» (fonction
de x).

Une famille { Xt} (t réel dit temps) définit un processus stochastique
dont Xt (x) décrit la « trajectoire » de x dans E. Un cas très particulier est le

mouvement brownien dans R". Un cas plus général est le «processus de

Markov » de type suivant: Xt (y>0), probabilité-mesure Py sur sé dépendant
d'un point y e E et satisfaisant aux conditions suivantes:

a) Py ({X0=y}) 1, Py (a) est J'-mesurable;

b) Si sés est la sous-tribu engendrée par les ensembles X~x (e) (r^s;
ee@) on impose : Py ({Xteß} | ») PXs(x) ({Xteß}\ yß e â8, \js,t;s^t,Py
presque partout dans Q0. Ceci signifie grossièrement que la trajectoire issue

de y ne dépend pas, après l'époque s, des positions antérieures.

Alors, moyennant une légère adaptation, tout semi-groupe Pt de la
théorie de Hunt s'interprète, au moyen d'un processus de Markov du type
précédent, selon Pt (y, e) — Py ({Xtee}).

Quant aux martingales, considérons un processus Xt « adapté » à la

famille croissante 2Tt de sous-tribus de -W% tribu sur Q0, c'est-à-dire tel que
Xt soit ^Â-mesurable (y/>0). C'est une martingale (resp. sur ou sous-

martingale) si Xt (x) est P-intégrable yt et si \/s, I, s^t, S (Xt\dPs) Xs

(resp. ^ ou ». Voir tous les traités modernes de probabilités, et une étude

directe avec applications dans Hunt [136].
Ces notions et bien d'autres comme les temps d'arrêt, temps d'entrée,

diverses réduites ou balayages ont beaucoup de relations et propriétés,

permettent d'interpréter les notions essentielles de théorie classique ou axio-

matique du potentiel et donnent lieu à des études approfondies de cas

particuliers (comme le mouvement brownien dont les trajectoires sont

continues). Pour tous ces travaux considérables, qui comportent même

une théorie du potentiel probabiliste et indépendante, voir, outre les traités
de Meyer [169, 170], Blumenthal-Getoor [23] et Dynkin [105], une quantité
d'articles comme ceux des auteurs précédents ou de G. Hunt, K. Ito-
S. Watanabe, Kunita-Watanabe, Bony, Courrège, Priouret, Kemeny, Snell,
J. B. Walsh, Kac suivi de Strook, Sieveking, Cairoli, Port-Stone, J. Taylor,
etc. (voir [3 t8, 138, 204, 5, 3 tl4]...).

21. Nouvelles discussions et extensions ; problèmes inverses. Le succès

des axiomatiques précédentes tient à des propriétés de base que l'on a

progressivement dégagées pour en discuter le rôle puis s'en servir pour
élargir les théories. Les relations avec la synthèse de Hunt ont enrichi ce
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genre de travaux (Boboc, Constantinescu, Cornea (réf. dans [78]), comme

[25]), Hansen [123], Bliedtner [6], Cela devait s'accentuer, comme on va
le voir, dans des recherches parallèles ou ultérieures à un niveau abstrait

encore plus élevé, surtout sur les liaisons ou analogies entre les axiomatiques
| et la théorie du type Hunt et toutes les notions associées comme le balayage,

les réduites, les résolvantes, etc.

Ainsi Mokobodski et D. Sibony ont approfondi le rôle du principe du

minimum. En partant sur un espace localement compact d'un cône de fonctions

s.c.i. qui y satisfont, ils bâtissent une théorie locale du type Brelot-
Bauer, grâce à quelques autres propriétés, de façon à ce que les fonctions
surharmoniques bornées correspondantes soient les fonctions du cône,
mais il leur faut prendre un cône maximal dans la famille des cônes de type
ordonné par inclusion [177].

Ils ont aussi remarqué le rôle des espaces et cônes adaptés, introduits
par Choquet [4, tl] : c'est, sur un espace localement compact, un espace
vectoriel réel V de fonctions finies continues v engendré par les fonctions
v > 0, contenant pour tout x une v non nulle en x, enfin possédant la
propriété de domination suivante: pour tout v > 0, il existe une we V+ qui la

w
domine à l'infini, c'est-à-dire telle que > oo selon le filtre des complé-

v

w
mentaires des compacts (— étant pris + oo quand indéterminé). Un cône

v

convexe C est adapté si C — C est un espace adapté. L'intérêt est qu'alors
une forme linéaire sur V, positive sur V +, se représente par jV dp, à l'aide
d'une mesure p, souvent unique dans les applications. Cela permet d'étendre
la théorie globale de Hunt en remplaçant l'espace des fonctions continues
s'annulant à l'infini par un espace adapté.

Ils ont pu ainsi, encore plus nettement, traiter des problèmes plutôt
inverses des théories initiales: à partir d'un cône convexe de fonctions
par exemple continues, chercher des conditions générales à peu près nécessaires

et suffisantes pour bâtir une axiomatique (qui conserve les
caractéristiques intéressantes des précédentes) ou un semi-groupe de type Hunt,
dont les fonctions continues respectivement surharmoniques ou excessives
soient à peu près les précédentes. Voir d'abord [3 tll], puis des variantes, et
des constructions plus ou moins générales ou abstraites avec des notions
nouvelles sur la dualité de deux cônes, la dérivation des potentiels et le
balayage, dans bien des articles récents ou en cours, surtout de Mokobodski
(voir [172 à 177] et [3, 4]).
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D'autre part, sans probabilités et dans un cadre local, une nouvelle
généralisation des axiomatiques est entreprise, à base du principe du minimum

et de maximalité, qui englobe aussi la théorie des fonctions pluri-
sousharmoniques [113]. On a examiné aussi une axiomatique où les fonctions

harmoniques prennent leurs valeurs dans un espace topologique
ordonné général (Monna) et on a élargi les axiomatiques en remplaçant
la topologie par une semi-topologie, ce dont on se sert pour les approximations

d'espaces harmoniques (Bertin [19]). Enfin signalons que l'on s'occupe
de plus en plus de problèmes non linéaires.

Quelques années apporteront sans doute, comme Mokobodski s'y
emploie, des exposés synthétiques caractérisant un nouveau stade cohérent
de la théorie du potentiel et qui sera plus facile à analyser.
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