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LES ETAPES ET LES ASPECTS MULTIPLES
DE LA THEORIE DU POTENTIEL

par M. BRELOT

1. La théorie du potentiel qui n’était d’abord qu’un chapitre de physique
mathématique, a posé depuis cent cinquante ans des problémes mathé-
matiques difficiles et délicats qui ont attiré les mathématiciens les plus
célebres comme Gauss, Hilbert ou Poincaré. Elle a suscité 'introduction
ou les développements de méthodes et d’outils nouveaux de grande portée
(méthodes variationnelles de Gauss-Dirichlet-Hilbert, distributions de
Schwartz, capacité et théorie des éléments extrémaux de Choquet...). Elle
s’est renouvelée par la topologie, approfondie et surtout élargie en axio-
matiques diverses dont certaines s’appliquent a de vastes classes d’équations
aux dérivées partielles du second ordre et elle s’est soudée aux probabilités
par les processus de Markov; elle devient aussi en partie un chapitre
d’analyse fonctionnelle.

Sa richesse considérable et sa diversité, sa croissance explosive depuis
une douzaine d’années, ses applications, son rdle de modéle en Analyse
suggerent de faire un bilan historique que I’on va tenter ici. On le réduira
a ses grandes lignes car les publications sont trop nombreuses, il est peu
utile de détailler encore la période ancienne et malaisé de le faire brievement
et clairement pour les travaux récents; cela implique un choix difficile et
un peu arbitraire et 'omission d’un grand nombre de publications et
d’auteurs, mais on renverra a des bibliographies partielles plus complétes.t)

1) De tels exposés ont déja été publiés autrefois dans I’énorme Encyclopédie allemande
[60] et [160] (avant 1918), dans I’ouvrage célebre de Kellogg Foundations of potential theory
[142] (1929) et comme article historique [45], assez détaillé pour la période de 1920 a 1950
environ, dans les Annales de I’ Institut Fourier (1952-54).

Voir un exposé global récent mais bref, en anglais, comme introduction a une série
de cours a Stresa (1969) dans le cadre du CIME [2], et, pour la partie moderne, des exposés
partiels mais plus détaillés de C. Constantinescu, en allemand [76] (1966) et en anglais
[78] (1969). On consultera naturellement les volumes des Congrés et Séminaires indiqués
au début de la bibliographie, contenant bien des travaux non mentionnés dans le texte,
volumes auxquels on renverra souvent directement pour abréger la bibliographie par
auteurs. Ainsi [3 t 6] signifiera séminaire [3] tome 6.

Enfin on trouvera de larges bibliographies, souvent commentées, dans des ouvrages
récents comme mes deux cours de Bombay, [49] 2¢ édit. 1967 et [56] en anglais,
les ouvrages, surtout de théorie classique, de Brelot [50] (en frangais traduit en russe),

Helms [126] et du Plessis [188] en anglais, Landkoff [147] en russe pourvu d’une abondante
bibliographie russe.
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Nous indiquerons quatre périodes avec les idées dominantes.

2. PERIODE CLASSIQUE ANCIENNE (jusque vers la premiére guerre mon-
diale). — De Gauss a Poincaré. Les grands problémes.

La théorie du potentiel n’était encore vers 1800 que des études sur
Iélectrostatique et I’attraction newtonienne. Mais on utilisait 1’équation
de Laplace étendue par Poisson (1813), qui donna par ailleurs vers 1820
sous une forme préliminaire 'intégrale qui porte son nom, pour une boule;
la fonction de Green apparut bientdt (1828), mais c’est seulement en 1840
que Gauss publia un mémoire capital [120], en avance d’un siécle sur les
outils nécessaires et qui traitait dans R> trois problémes qui restent fon-
damentaux:

— probléme de [’équilibre (appelé souvent plus tard probléme de Robin),
cherchant sur un « conducteur » 2, frontiére d’un domaine borné,
Ja distribution d’une masse donnée pour que le potentiel soit constant
sur 2; elle correspond a un minimum de 1’énergie.

— probléme du balayage, ainsi appelé depuis Poincaré, qui consiste a partir
de masses sur w (resp. C@) a en trouver d’autres sur X fournissant
le méme potentiel sur Cw (resp. sur w). C’est la traduction du phénoméne
d’influence électrostatique, ou des masses intérieures a un conducteur
relié au sol, font apparaitre sur le conducteur des masses dont le potentiel
extérieur annule celui des masses intérieures;

— probléeme de Dirichlet, ainsi appelé plus tard par Riemann, qui consiste
a chercher dans w une fonction harmonique, c’est-a-dire solution de
I’équation de Laplace prenant sur la frontiére les valeurs d’une fonction
réelle finie continue donnée. Rappelons le fait élémentaire que I'unicité
d’une solution possible vient de I'impossibilité d’un maximum ou mini-
mum d’une fonction harmonique en un point, sauf constance au voisi-
nage, ce qui entraine qu’elle majore dans un ouvert borné par exemple
le inf. des lim. inf. & la frontiére (principe élémentaire du minimum;
de méme avec le maximum et cela est fondamental, avec des variantes,
en théorie générale du potentiel). Mais I’existence d’une solution est
difficile a établir et discuter.

Ces études qui sont liées étroitement étaient basées dans R> sur D’in-
tégrale d’énergie f U* du ou mé€me f(U“—2f) du ou U* désigne le potentiel
| dp ()

| de la mesure u > 0. En fait Gauss ne considérait que les mesures
x =y
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ayant une densité et admettait, ce qui est inexact sans restrictions, que les
intégrales atteignaient leur minimum pour un u dont le total était impos¢.

Ces questions ont été adaptées plus tard dans le plan en remplagant
~ le potentiel newtonien précédent par le potentiel (dit logarithmique par
Neumann) basé sur le noyau log 1/| x — y| (déja introduit en fait par

" Laplace a propos du potentiel newtonien de cylindres homogenes paralléles).

3. L’insuffisance de rigueur par manque de notions nécessaires comme

la mesure générale et 'intégrale de Radon, ce qui ne permettait pas d’intro-

;f duire facilement les restrictions et précisions indispensables, fit laisser de
" coté pendant longtemps les problémes traités par Gauss sauf celui de

- Dirichlet, probléme aux limites-type, dont on donna d’abord d’autres solu-
" tions également non satisfaisantes. Ainsi dans sa célébre dissertation

inaugurale, Riemann [194] reprenant des idées de Gauss-W. Thomson
(Lord Kelvin)-Dirichlet considérait intégrale de Dirichlet f grad? u dx
(mesure volume ou aire dx) pour les u assez réguliéres prenant des valeurs

 données a la frontiére; lorsque le minimum est atteint u est harmonique

et vaut la solution cherchée; mais cela donne lieu aux mémes objections
que plus haut et elles n’ont été surmontées, dans ce cas, avec des restrictions
convenables, que par Hilbert vers 1900 [131], ce qui a inspiré la solution
approfondie de Lebesgue [153] explicitée dans le plan. D autres méthodes,
rigoureuses, furent données entre temps. Citons le procédé alterné de

~ Schwarz ([198] t 2 p. 133) permettant de passer de deux domaines se prétant

a une solution (comme des boules) a leur réunion, sous certaines conditions
(d’ou la résolutivité pour un domaine approchant arbitrairement un domaine

- donné). Citons surtout la méthode basée sur I'usage des potentiels de double

couche (sur la frontiére supposée assez réguliére), d’abord selon Neumann

- puis par une méthode de Fredholm [114] dont est issue sa célébre théorie
~(laquelle permet aussi avec une simple couche, de traiter le « probléme de
- Neumann » ou la donnée est la dérivée normale). Mentionnons les résultats

| de Harnack [125] sur les familles de fonctions harmoniques et ses célébres

inégalités; insistons sur la solution du probléme de Dirichlet par la méthode

- du balayage de Poincaré (1887) (voir son ouvrage [189]). On se raméne par

approximation a une donnée qui se prolonge selon une fonction @ de type

' C? avec 49 > 0 au moins dans un voisinage de @ (c’est-a-dire une fonction
_ dite plus tard sous-harmonique). On imagine la modification d’une fonction

~dans o par son remplacement dans une boule » = b = w par son intégrale

- de Poisson. On recouvre w par une suite de boules b, et on procéde a partir

~de @ aux modifications dans by, puis b,, puis b,, b,, b,, etc., des fonctions
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obtenues successivement. Cela donne a la limite une fonction harmonique
qui prendra les valeurs de @ a la frontiére dw moyennant des restrictions
(p. ex.: la condition dite souvent de Poincaré, en fait dégagée par Zaremba,
de l'existence pour tout x € dw d’un cdne de révolution de sommet x et
extérieur & o). Noter que dans un voisinage de @, ¢ vaut a une fonction
harmonique prés un potentiel @, de masses = 0 (a densité A® a un facteur
prés d’apres la formule de Poisson). L’opération de modification dans b,
revient & changer les masses correspondant & @, et situées, dans b, en
d’autres masses sur db;, conservant le potentiel sur Cb;. Clest 12 un
« balayage » déja mentionné, et les modifications successives correspondent
a de tels balayages.

Soulignons que toutes les solutions rigoureuses du probléme de Dirichlet
comportaient des restrictions sur la frontiére; elles paraissaient dues aux
méthodes employées d’ou la multiplicité des solutions, mais elles étaient
en fait inévitables comme 1’ont remarqué Zaremba (1910) avec un point
frontiere isolé et Lebesgue (1912) [154] avec un domaine dont le complé-
mentaire présente une pointe convenable (épine de Lebesgue).

L’analyticité des fonctions harmoniques et leurs singularités, les rela-
tions de ces fonctions avec les séries trigonométriques, les fonctions de
Laplace et Legendre, la correspondance conforme et la transformation de
Kelvin sont d’autres questions anciennes que l’on trouve développées
dans les vieux traités d’analyse, comme celui de Picard, mais qui ont été
approfondies plus tard. De mé€me pour les équations linéaires aux dérivées
partielles du second ordre de type elliptique (et méme un peu de type para-
bolique) qui donnent lieu & des problémes analogues (voir les articles tres
détaillés de I’Encyclopédie allemande [60, 160, 161].

4. DEUXIEME PERIODE (2 peu pres I'entre-deux guerres). — Consolidation
de la théorie classique par I'usage de la mesure et de la capacité.

Fatou [111] avait illustré déja en 1906 l'intégrale de Lebesgue pour
approfondir dans le disque I’étude a la frontiere de I'intégrale de Poisson
(existence de limites angulaires p.p., pour une donnée bornée intégrable de
I’arc, ce qui a été beaucoup étendu plus tard).

L’intégrale de Radon (1913) allait étre 'instrument-clef de théorie du
potentiel, aussitot utilisé systématiquement d’abord par G. C. Evans
[107, 108], F. Riesz, De La Vallée Poussin, pour étudier le potentiel général
[h (]x=y]) du (¥) & noyau / logarithmique ou Newtonien.

La capacité inspirée par I’électrostatique, précisée d’abord par Wiener
[216] (1924) allait compléter le role de la mesure. On peut dans R> définir
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la capacité d’un compact K selon De La Vallée Poussin [149] comme la
borne supérieure des masses >0 qu’on peut distribuer sur K (mesure sur
K) de fagon que le potentiel soit = 1. La théorie dans R? donne lieu a des
différences (et & une notion spéciale de capacité logarithmique) a cause de
Pallure du noyau logarithmique log 1/| x — y | non toujours >0 comme
le noyau newtonien 1/ | x — y | (voir plus tard [115] ou un ouvrage différé
de De La Vallée Poussin [152]). Mais on peut opérer de méme maniére
par exemple avec la fonction de Green (noyau de Green) dans une boule ou
disque, ou plus généralement dans un domaine de Green w, c’est-a-dire ou
existe une fonction de Green (d’ailleurs symétrique) qui est la fonction
minima G, (x) (ou G (x,y)) valant au voisinage de y le noyau #, (x)
= N (|]x—y|) & une fonction harmonique prés et harmonique > 0 ailleurs.
~ On opére alors avec le « potentiel de Green » f G (x,y)du(y) (u > 0); cela
est dans @ partout + oo ou fini sur un ensemble dense et dit alors vrai
potentiel de Green. D’autre part est apparue la notion de « diametre trans-
fini » d’un ensemble fermé (Fekete-Polya-Szego [112, 190]) & propos d’équa-
tions algébriques et Szegd montra son identité avec la capacité précédente
newtonienne ou logarithmique. On a discuté plus tard d’adaptation a R" et
de généralisations.

Remarquer maintenant qu’on peut définir dans un domaine de Green
(p. ex. R?) la capacité intérieure d’un ensemble quelconque (appelée capa-
cité et seule utilisée pendant longtemps) comme sup des capacités des
compacts contenus, c’est-a-dire en procédant comme pour la mesure. On
avait vite remarqué 'importance de la notion de capacité nulle (plus forte
que celle de la mesure de Lebesgue intérieure 0), soulignée aussi plus tard
(1936) par la caractérisation selon G. C. Evans [110] (et Selberg indépzn-
. damment) d’un compact K de capacité nulle dans R®> comme lieu des infinis
du potentiel d’une mesure >0 convenable sur K, ce qui a été plus tard
é¢tendu aux ensembles G5 par Deny et Choquet [69]). Mais I'incommodité
de la notion de capacité intérieure conduisit enfin (1940) simultanément
Brelot [36], Beurling [21] et Monna a introduire et utiliser la capacité exté-
rieure, analogue a la mesure extérieure.

5. F. Riesz [195] en approfondissant I’étude des modules des fonctions
~ holomorphes f(z) fut conduit vers 1924 a introduire les fonctions subhar-
~ monigues (dites maintenant sous-harmoniques, les opposées étant appelées
surharmoniques) dans des ouverts de R?, I'extension étant facile en fait
~dans R"; elles étaient d’abord finies continues majorées dans chaque boule
~ par la moyenne périphérique au centre, ou de fagon équivalente par I’inté-
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grale de Poisson partout (un cas particulier est justement | f(z) | dans R?);
puis il remplaga la continuité par la semi-continuité supérieure avec la
condition pour la fonction u:u < + oo et finie p.p. (ce qui équivaut a u
finie sur un ensemble dense). Sans cette derniére condition la fonction est
dite aujourd’hui hypoharmonique et dans tout domaine partiel peut €tre
— 00. Les opposées dites surharmoniques resp. hyperharmoniques satisfont
au principe-frontiére du minimum.

Outre P'utilité directe et multiple de cette nouvelle notion, son impor-
tance vient de ce qu’une fonction surharmonique est caractérisée localement
comme un potentiel de mesure > 0 & noyau 4 (Jx—y|) (newtonien ou loga-
rithmique) a une fonction harmonique prés. Dans un domaine de Green ol u
surharmonique admet une minorante harmonique cela vaut un (vrai)
potentiel de Green plus la plus grande minorante harmonique (dont la
nullité caractérise la propriété que u est un potentiel). Le cas des C*-
fonctions est facile grace a I’équation de Poisson mais le passage au cas
général est délicat, méme encore dans le petit livre de T. Rado [193] (1937)
qui rassemble les connaissances d’alors sur les fonctions sous-harmoniques
(voir aussi Privaloff [192]). Les distributions de Schwartz ont permis plus
tard d’étendre les démonstrations élémentaires, et le théoréeme de Choquet
sur les éléments extrémaux donne aujourd’hui une démonstration qui
s’applique aux axiomatiques locales; on reviendra sur ces questions.

Cette équivalence locale ou globale m’a incité a ramener des problemes
de potentiel comme le balayage & des problémes sur les fonctions sous ou
surharmoniques, que I'on pouvait résoudre par des méthodes de modifi-
cation, d’extrémisation de ces fonctions: méthodes qui ont donné des
résultats nouveaux (p. ex. [33] 1938) et se sont trouvées naturellement
adaptables plus tard a des théories sans noyau. Dans cet ordre d’idées j’ai
introduit en 1941 [37], pour remplacer la capacité intérieure nulle, la notion
d’ensemble polaire e dans R", définie par 'existence d’une fonction sur-
harmonique u dans R", valant + oo au moins sur e (ce qui a le caractére
local et équivaut dans un domaine de Green @ > e & la méme condition
avec u > 0). Peu aprés Cartan [64] montra (ce qui parait naturel aprés la
caractérisation de Evans des compacts de capacité nulle) qu’il y a identité
avec les ensembles de capacité extérieure nulle définie dans w. Ce type
d’ensemble jouera le role des ensembles de mesure nulle en théorie de
I’intégration. On dit d’ailleurs quasi partout au lieu de sauf sur un ensemble
polaire. \
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6. Paralléglement aux travaux de F. Riesz était approfondi le probléme de
Dirichlet. Son impossibilité en général amenait Lebesgue puis Wiener [216]
1 (1924) A décomposer le probléme en deux: I'un toujours résoluble pour
_ une donnée-frontiére f finie continue (p. ex. un domaine borné w = R”)
. avec une solution dite « généralisée »; P'autre est ’étude 2 la frontiére de
- cette solution. Wiener introduisit cette solution de deux manifres diffé-
~rentes; 'une considére la limite de la solution classique pour un ouvert
contenu approchant w, a la frontiére assez réguliére et une donnée pro-
; longeant continGment f (idée déja utilisée par Bouligand pour définir la
fonction de Green dans le cas général); I'autre maniére plus importante
- [218] (1925) est inspirée de la résolution du probléme classique donnée par
- O. Perron [186] (1923) (et trouvée indépendamment par Remak) qui s’appli-
quait en fait sous les conditions exactement minima. Voici I'idée, généralisée
plus tard & une donnée-frontiére f réelle quelconque: on considére I’en-
“veloppe inférieure (inf. en chaque point) de ensemble des fonctions hyper-
~ harmoniques satisfaisant en tout point frontiére X a la condition

= f(X)
> — 00

lim inf u

Cette enveloppe H, est + 00, — o0 ou harmonique.

On introduit H, = — H_,; alors H, = H .

S’il y a égalité avec valeur commune finie donc harmonique notée H,, f
est dite résolutive et H, solution (généralisée). C’est le cas ol f est finie
continue (résultat difficilement établi par Wiener); aujourd’hui cela est facile
et "on voit que H, (x), fonctionnelle linéaire croissante s’écrit ff dp.” (avec
mesure unitaire dp,” dite mesure harmonique), représentation qui ne fut
¢tablie que plus tard par De La Vallée Poussin [149, 151] & l'aide du

balayage de la mesure de Dirac.

’ Bien des méthodes conduisent a cette solution généralisée H, (voir [210])
~mais il importe surtout d’en étudier I'allure a la frontiére, ce qui fit appro-
fondir la notion de point-frontiére régulier X (Lebesgue), défini par la condi-
tion que H, (x) — f(X) lorsque xew, x > X, \vf, finie continue sur dw.
‘Si tous les points-frontiére sont réguliers, le probléme classique est toujours
~ résoluble et réciproquement. On a donné bien des critéres suffisants de
~régularité, comme la condition déja signalée de Poincaré-Zaremba.
- Indiquons deux critéres nécessaires et suffisants:

a) L’existence d’une « barri¢re de Lebesgue » améliorée par Bouligand
~selon I'existence d’une fonction surharmonique > 0 au voisinage de X
- sur o, tendant vers 0 en X (ce critére s’étendra aux axiomatiques futures).
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b) Célebre critére de Wiener [217] utilisant la capacité, trop euclidien
pour de larges extensions; par exemple dans R?, si §, est 'intersection de
Cwaveclelieu p"*' = | x — X| =p", (Xedw,0<p<1)ety,la capacité,
alors la série de terme général y,/p" diverge ou converge selon que X est
régulier ou non.

Il était essentiel d’apprécier ’ensemble des points irréguliers. C’était
un probléme, difficile au début, résolu seulement en 1933 par G. C. Evans
[109] (aprés Kellogg dans R?). L’ensemble en question est de mesure har-
monique nulle et méme en fait polaire. La démonstration de Evans contenait
d’ailleurs en fait le résultat important suivant dégagé a la fois par lui-méme
et par Vasilesco: la continuité d’un potentiel en un point du support fermé
des masses (= 0) sur ce support entraine la continuité en ce point dans
I’espace. Voir un historique sur la régularité en 1938 dans [212].

7. Trois autres importantes questions furent encore traitées en 1935-40:

o) D’abord Frostman [115] en 1935, inspiré souvent par M. Riesz et de
De La Vallée Poussin, rendit précis et rigoureux le fameux travail de Gauss
en affaiblissant les résultats par 'introduction d’ensembles exceptionnels de
capacité (intérieure) nulle, en fait polaires. L’existence des solutions est
établie grace a la convergence faible des mesures (dite maintenant, d’apres
Cartan, convergence vague). L’unicité s’appuie sur deux résultats impor-
tants dans R>:

a) L’énergiec d’une mesure p = pu,; — U, a support compact, qui
s’écrit f U* du peut se définir en remplagant le noyau par inf. (1/| x — y |, N)
et faisant tendre N vers + oo ou a partir d’'un développement formel
comme [U™ du, + [U" du, — 2 [U" du, (en notant que [ U™ du,
= fU“? du, si les énergies de uq, u, sont finies). Le principe d’énergie dit
que I’énergie est > 0 et nulle seulement si u = 0.

b) Le second résultat appelé principe du maximum dit que U* pour
u >0 a support compact est majoré par le sup. de U*” sur le support (ce
qui dans le cas de U* continue équivaut au principe élémentaire du maximum
des fonctions harmoniques).

Noter que Frostman traite d’abord de cas d’une frontiére assez régulicre.
L’adaptation a R" (n > 3) et a des noyaux ¢ (r) généraux est facile mais avec
quelque changement. La capacité est approfondie, a nouveau comparée au
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diamétre transfini d’ailleurs généralisé, comparée aussi & la mesure de
Hausdorff et utilisée en théorie des fonctions (& ce stade de la capacité, voir
un historique [211], 1937). Enfin Frostman [115] considére aussi les noyaux
r~* déja approfondis par M. Riesz dans une étude importante en soi et pour

" lavenir des théories globales du potentiel (voir la publication, différée,

dans [196]).

B) La deuxiéme question concerne la convergence des fonctions sur-
harmoniques. On a d’abord montré (Szpilrajn-Rado [193]) qu’une suite
décroissante bornée inférieurement converge vers une fonction qui vaut
une fonction surharmonique sauf sur un ensemble e de mesure de Lebesgue
nulle. Ensuite j’ai établi [34] (1938) que cet ensemble e est méme (localement)
de capacité intérieure nulle. Peu aprés en 1942, Cartan montrait en utilisant
I’énergie (voir les détails dans [64]) que la capacité méme extérieure est nulle
(c’est-a-dire que e est polaire) et étendait le théoréme aux ordonnés filtrants
décroissants. Cela devenait un théoréme-clef de la théorie fine du potentiel,
dont on a donné depuis des variantes plus ou moins fortes et des démons-
trations variées sous des hypothéses axiomatiques plus ou moins faibles

~ (voir des cours récents comme [49, 50]).

y) La troisiéme question concerne le probléme de Dirichlet pour une
donnée quelconque f sur la frontiére dw d’un domaine par exemple borné.
Jai montré [35] (1939) que la résolutivité équivaut a la sommabilité de f par
rapport 4 Ja mesure harmonique dpy, ce qui est indépendant de x e w.
Cela se conservera dans les axiomatiques ultérieures.

En théorie des fonctions la mesure harmonique et le probléme de
Dirichlet étaient utilisés depuis longtemps dans des cas plus ou moins
¢tendus (voir par ex. Beurling [20], Nevanlinna, Privaloff...). Ils allaient
devenir, ainsi que toute la théorie du potentiel, un instrument général. Voir
des articles de Brelot (Soc. Royale des sciences de Li¢ge 1939), de Monna,
Bolder, etc., vers 1940 a I’Académie des Sciences d’Amsterdam, et aussi
Beurling [21], plus tard Dufresnoy (Bull. Sc. Math. 1945)...

8. Bien d’autres questions restent & mentionner dans cette période:
singularités des fonctions harmoniques (historique dans [31]) et des fonc-
tions sous-harmoniques [32], recherches de Bouligand [29, 30], précurseur
sur bien des points; approfondissement des fonctions polyharmoniques
(Nicolesco [179]); perfectionnement du probléme de Neumann; étude d’un
probléme de Dirichlet pour compact K (Keldych-Lavrentieff [140, 141]
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et Brelot (mémoires repris plus tard dans [41])) introduisant les points stables
analogues aux points réguliers et liée a ’approximation sur K d’une fonction
finie continue par une fonction harmonique sur un voisinage de K; role des
points irréguliers dans la résolubilité (Keldych [140], Landkoff); extension
de questions comme le probléme de Dirichlet généralisé & des équations du
second ordre de type elliptique; et des questions qui se rattachent déja a
I’esprit de la période suivante: introduction d’espaces de Hilbert par O. Niko-
dym [180] au sujet du principe de Dirichlet, approfondi par Zaremba [219];
introduction de frontiéres plus raffinées que la frontiére euclidienne pour le
probléme de Dirichlet (frontiére « ramifiée » [42] initiée par Perkins [185]
et De La Vallée Poussin [150]).

9. TROISIEME PERIODE (prémoderne: environ 1940-1955). — Renouvel-
lement par la topologie.

Sans énumérer. les multiples perfectionnements ou applications de la
théorie antérieure (nombreux articles depuis trente ans de M. Arsove
(dont un ouvrage de théorie classique est & I'impression), de Beckenbach,
Dinghas, Hayman, Weinstein, Huber, Reade, Hardy-Rogosinki, Landkoff...
Voir par exemple [11, 215, 137, 146] et en France des articles également
disparates de Deny [86], Choquet-Deny [73], Deny-Lelong [91], Brelot-
Choquet [58] etc.) signalons des inégalités et estimations numériques ingé-
nieuses sur la capacité et I'intégrale de Dirichlet dans un ouvrage de Polya-
Szego [190], mais détaillons surtout des idées nouvelles et importantes:

a ) L énergie, déja fort utilisée, fut rénovée par H. Cartan [63, 64, 65]
(qui s’en servit d’ailleurs pour obtenir la forme définitive du théoréme de
convergence des fonctions surharmoniques). Explicitant le cas de R" (n > 3)
ou d’un disque dans R?, il introduit la norme-énergie, un produit scalaire de
deux mesures f U*" dv convenablement précisé et montre que dans [’espace
préhilbertien correspondant & des mesures dans R” ’ensemble &* des
mesures > 0 est complet. D’ou les notions de convergence forte ou faible.
Le balayage classique pour un compact est interprété comme une projection
dans I’espace préhilbertien. Mais & n’est pas complet. Il le devient dans la
théorie de Deny dans R" [87] (1950), théorie de ’énergie ou le noyau est
une distribution de Schwartz N, la mesure remplacée par une distribution
variable T, le potentiel remplacé par la convolution. L’énergie est f N T | 2dx
(dx mesure de Lebesgue, A" et J fonctions transformées de Fourier de N
et T sous des conditions convenables). Cela interpréte et généralise les
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potentiels de double couche du magnétisme et est lié a I’étude des fonctions
 BL et BLD (Beppo-Levi-Deny) qui prolongent les C'-fonctions d’intégrale
de Dirichlet finie.

b) Bien des raisonnements de Frostman pouvaient visiblement s’étendre
a des espaces topologiques et des noyaux-fonctions plus généraux. D’ol des
développements de ce type en France, tentatives non publiées puis travaux
importants de H. Cartan [63] déja en 1941, sur un groupe topologique avec
composition de mesures, énergie, principe du maximum, et plus tard dans
[66], enfin une étude sans énergie (Deny [88]), et d’autre part au Japon,
par extensions successives du cas euclidien (Kametani, Kunugui ([145] avec
bibliographie) Ninomya...). A des hypothéses trés larges on peut ajouter
comme axiomes, la validité de principes plus ou moins forts inspirés de la
théorie classique de fagon & en imiter les démonstrations. La multiplicité
des principes et leur comparaison, la dissymétrie des noyaux possibles
conduisirent a beaucoup de développements qui se poursuivent encore
aujourd’hui.

c¢) L’introduction en théorie classique dans R" des ensembles effilés e en
un point x (Brelot, 1940, voir [36]) définis par I’existence d’une fonction

surharmonique u au voisinage de x, telle que lim inf u () > u (x) (condition
yeel {x}
vérifiée plus ou moins conventionnellement si x ¢e) fut inspirée par

des critéres d’irrégularité et d’instabilité et permet d’améliorer des pro-
priétés topologiques de Bouligand sur les points-frontiére irréguliers;
cela conduisit aussitdot H. Cartan a introduire la topologie fine qui est la
moins fine dans R” rendant continues les fonctions surharmoniques locales
(car les voisinages fins de x sont les complémentaires des ensembles e effilés
~en x ¢e). Alors les points d’un ensemble ou il est effilé (points finement
isolés) forment un ensemble polaire (résultat-clef, Brelot [38, 40]); en par-
ticulier les ensembles effilés en tout point (ou en chacun de leurs points)
sont les ensembles polaires; les points irréguliers ou instables (pour w
ouvert ou K compact) sont caractérisés par Ieffilement de Cw ou CK
(d’ott la polarité retrouvée de 'ensemble des points-frontiére irréguliers)
et le critere d’irrégularité de Wiener s’étend selon un critére d’effilement
- [36, 38]. Les nouvelles notions fournissent ou précisent des résultats sur
Pallure des fonctions surharmoniques, harmoniques ou' méromorphes,
d’autant mieux que la limite fine en un point x, d’une fonction équivaut
a la limite euclidienne hors d’un ensemble effilé (convenable) en x, (Cartan),
ce qui conduit & mieux étudier topologiquement Peffilement. Ainsi, § étant




un voisinage ouvert d’un point-frontiére irrégulier x, d’un ouvert w, une
fonction surharmonique sur w N, bornée inférieurement admet une
limite fine en x,; de méme pour v/h (|x—x,|) ol A est le noyau newtonien
ou logarithmique.

Ces notions sont précieuses aussi pour traiter mieux ou autrement, avec
la topologie fine, de vieilles questions comme le principe de minimum et le
probléme de Dirichlet, ou surtout la théorie du balayage dont voici une
forme définitive dans un domaine de Green w de R" [40]; dans ce mémoire
on reprend et on utilise systématiquement (grace au théoréme-clef de conver-
gence (voir plus haut §7, f)) la notion d’extrémisation et d’extrémale d’une
fonction surharmonique u > 0 dans w, relative maintenant a un ensemble
quelconque; c’est la plus petite fonction surharmonique > 0 majorant u
quaslt partout sur son complémentaire e; on dit maintenant balayée relative

a e. Elle vaut la régularisée par semi-continuité inférieure notée R, de la
fonction dite maintenant réduite R;, inf. des v surharmoniques > 0 majorant
u sur e (cette propriété de la balayée est devenue la définition dans les axio-
matiques actuelles).

Partons du potentiel u de p >0, a noyau de Green dans o. j{ﬁ est
alors un potentiel caractérisé par sa valeur égale a u quasi partout sur e
et la condition que la mesure associée soit portée par la base de e, lieu des
points ou e est non effilé (adhérence fine & un ensemble polaire pres).

Sans utiliser le théoréme de convergence, Cartan retrouva autrement
ce résultat [65] en traitant d’abord les potentiels d’énergie finie.

d) Une définition de [’harmonicité et surharmonicité au voisinage du
point a l'infini o/ de R" permet ’adaptation systématique de la théorie
classique a des ouverts de R (compactifié d’Alexandroff) [39]2) et a des
espaces-& [57] séparés, localement homéomorphes a un ouvert de R" avec
changement de carte isométrique, ou aussi pour n = 2, conforme. Cela
contient les surfaces de Riemann classiques; s’il y a une fonction de Green,
c’est un espace de Green qui se traite en gros comme R (y compris pour le
balayage). \

Mais noter que le point & I'infini de R" (n > 3) n’est pas polaire, donc
aussi les points d’un espace-& dits a I'infini parce que leur image locale est
en o/. Alors un ensemble e est dit effilé en xy€e, si e\ {x,} est effilé
(méme définition) et { x, } polaire.

1) Ce qui, en particulier, contient les problémes de Dirichlet dits «intérieur » et
« extérieur ».
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10. e¢) La recherche d’une représentation intégrale des fonctions har-
RZ _ ! y !2
; |x = |
(1 >0 sur la frontiére) dans la boule de R”, conduisit R. S. Martin [167]
en 1941, aprés quelques tentatives en topologie euclidienne, a introduire
 d’importantes notions topologiques nouvelles.
t Considérons un domaine 2 de R” pourvu d’une fonction de Green G
G (x,y)
X G (x, y,)

(y, fixé € Q). Alors il existe un espace compact © (unique & un homeéo-
" morphisme prés) ou Q est dense, tel que les fonctions x - K (x y) solent

~ moniques > 0 comme celle de Poisson-Stieltjes fR"_z

~ (ou méme un espace de Green) et normalisons selon K (x, y) =

prolongeables continiment dans Q et séparent la fronticre Q-0 =14
(espace et frontiére de Martin). C’est une généralisation naturelle de la
frontiére des bouts premiers de Carathéodory pour les domaines plans
- applicables conformément sur un disque (un essai de généralisation géome-

trique dans R> n’avait rien donné d’utile). Q n’est pas en général comparable
a adhérence euclidienne mais lui est identique dans les cas simples, comme
- la boule ou le demi-espace.

On désigne par 4,, la partie de 4, ensemble des points X tels que la
fonction correspondante K (X, y) soit minimale c’est-a-dire telle que toute
fonction harmonique > 0 minorante lui soit proportionnelle. Alors toute
fonction harmonique >0 admet wune représentation unique u(y)
= fK (x, y) du, (x) ou u, est une mesure > 0 sur 4, portée par 4.

Si I'on considére dans I’espace des fonctions finies continues sur Q
ou seulement des différences de fonctions harmoniques > 0, pourvu de la
topologie de la convergence uniforme locale, le cone H ™' des fonctions
harmoniques >0, la condition u (y,) = 1 (y, fixé) détermine une base
compacte métrisable dont les éléments extrémaux sont les fonctions mini-
- males €gales a 1 en y,. Cela conduisit plus tard Choquet en 1956 a sa
 fameuse théorie des éléments extrémaux avec représentation barycentrique
- [68, 71 et 3,t 5] dont une illustration brillante est justement la représentation
de Martin, de technique originale difficile.

| f) Cette frontiére A permet un probléme de Dirichlet analogue a celui dela
- frontiére euclidienne [47]. Mais on peut traiter aussi ce probléme avec
- d'autres compactifications [47] et le comparer avec le précédent (Naim [178])
; f qui apparait comme privilégié et auquel on peut se ramener. On peut
lﬁ d’ailleurs au lieu des fonctions harmoniques et surharmoniques considérer
- et traiter de méme leurs quotients par une fonction harmonique positive
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fixe (relativisation du probléme [47] qu’on retrouvera en axiomatique ulté-
rieure). Mais I'allure & la frontiére demande des notions nouvelles intro-
duites plus tard et sur lesquelles on reviendra. 4 a d’autres avantages,
comme de déterminer a un facteur prés les fonctions harmoniques > 0
associées a 0 au voisinage de tout Y e 4 (c’est-a-dire s’y annulant au sens
d’un probléme de Dirichlet) sauf pour X € 4; c’est alors Ky [44]. Cest le
principe des « singularités positives » que Bouligand avait beaucoup étudié

en frontiére euclidienne sans pouvoir trouver un énoncé général (voir
Deny [85]).

g) On a aussi considéré des frontiéres non nécessairement compactes,
obtenues par complétion d’'une métrique compatible avec la topologie, et
méme des conditions-frontiére définies par un systéme de filtres [42, 57];
un exemple est donné par des familles de lignes comme les lignes de Green
[57] (tangentes au gradient de G, (x)) et les limites selon ces lignes (voir des
extensions par Ohtsuka dans son ouvrage ultérieur [183]). II s’y rattache
une étude du principe de Dirichlet, autrement que selon Nikodym ou Deny
[46].

h) Les applications a la théorie des fonctions, aux surfaces de Riemann
et a leur classification commencent a devenir systématiques. Voir Parreau
[184] 1951, avec une importante bibliographie. Les fonctions plurisous-
harmoniques de P. Lelong [157] sont devenues un instrument trés important
dans le domaine des fonctions de plusieurs variables complexes.

i ) Enfin signalons vers 1953 un effort axiomatique de Choquet [67] pour
approfondir et généraliser la notion de capacité devenant ainsi un outil
fondamental en Analyse, précédant la mesure. On en a méme séparé une
notion plus large qu’on peut, sans chercher le maximum de généralité et
dans un cadre encore un peu topologique, présenter comme une fonction
réelle d’ensemble C (e) dans un espace séparé, croissante et admettant le
passage a la limite pour des suites croissantes et aussi pour des suites décrois-
santes de compacts. Pour cette « capacité généralisée », un ensemble est dit
C-capacitable si C (e) = sup C(K) pour les compacts K contenus dans e.
La théorie donne des conditions de capacitabilité; ainsi, dans le cas classique
rappelé plus haut ou la capacité extérieure est une capacité généralisée pré-
cédente, il y a identité des capacités extérieure et intérieure pour les ensembles
boréliens et méme analytiques, précieuse propriété.
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11. QUATRIEME PERIODE (période moderne: environ 1955-1970). —

| Topologies et axiomatiques privilégiées. Aspects probabilistes.

La complexité du sujet va nous obliger & une plus grande briéveté, a des

i apercus encore plus sommaires et plus incomplets.

Mentionnons évidemment les nombreux travaux et ouvrages sur les

& équations aux dérivées partielles (voir p. ex. [171]) et les résolutions numé-
riques modernes pour ces équations. En fait elles s’inspirent de vieux travaux
sur I’équation de Laplace et le probléme de Dirichlet, utilisant une approxi-
mation par des fonctions définies sur des réseaux (Le Roux (1914), Philipps
et Wiener [187], Bouligand, M™¢ Lelong [156]). Cela fournit des théorémes
d’existence et conduit & des calculs approchés. Voir I'ouvrage moderne de
 Temam [208].

Puis indiquons, sans détails, en partie dans ’esprit topologique, quelques

- prolongements importants de certaines idées précédentes: étude dans les
- espaces d’abord euclidiens des fonctions multiplement ou pluri-harmoniques
ou surharmoniques (Avanissian [12], Lelong [158], Bremermann, Noverraz,
 Hervé [127], Coeuré...), limites angulaires des fonctions harmoniques
i‘ (Calderon [61], Stein et Weiss [203], Doob, et méme, sous restriction,
- surharmoniques (Arsove-Huber)), raffinements classiques ou abstraits sur
la capacité ou l'effilement ou la topologie fine (Choquet [3, surtout t 3;

69; 70], Deny, Sion, Brelot, Getoor, Fuglede [118-119], voir [56]); théorie
semi-classiqgue ol les ensembles de mesure de Lebesgue nulle remplacent
les polaires (avec ou sans probabilités (voir Kac et Ciesielski [138-75]));
examen général d’ensembles exceptionnels (Carleson [62], Doob [103]);
relations avec ’analyse harmonique, la théorie ergodique et méme la théorie
des jeux [1]; I’étude des potentiels besseliens [1, 10]... Détaillons plutét :

a) L’¢étude axiomatique en espace topologique des noyaux-fonctions et
noyaux-mesures a été continuée par Choquet et Deny [3 t1, 3] et divers

japonais (Ninomya [3, t3], [181], Ohtsuka, Kishi [144] et [3, t11] avec biblio-

graphie). Mentionnons 1’étude des modeéles finis [74], les relations entre les

principes augmentés de variantes (apergu général [182]), la recherche de
noyaux y satisfaisant, les aspects linéaires de la théorie du potentiel (Choquet
et Deny, C. R. Ac. Sc. 1956). Soulignons en espace localement compact
Pétude détaillée des noyaux-fonctions symétriques par Fuglede [116];
Durier [104] aprés son exposé [3, t9] des travaux de Kishi sur les noyaux
dissymétriques, qui n’utilisent pas de méthodes variationnelles mais un
théoréme de point fixe, les améliore et montre des relations avec d’autres
théories comme celle des espaces de Dirichlet dont on parlera plus loin.
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Dans tout cela les potentiels continus jouent souvent un role privilégié:
ils servent de base dans les recherches et exposés de G. Anger [9] et ses
€leves, qui transposent aussi des méthodes de la théorie du potentiel aux
équations aux dérivées partielles d’ordre supérieur.

b) La recherche et I'étude des frontiéres se sont prolongées et systé-
matisées (voir ’ouvrage de Constantinescu-Cornea [79]). Citons la frontiére
de Kuramochi ol convergent « presque toutes » les lignes de Green, commode
pour I’étude des fonctions BLD (voir de nombreux articles au Japon de
I’Académie de Tokyo, de I’ Osaka Math. Journal, etc., et le fasc. 58 des Lecture
Notes consacré a ce sujet) et aussi la frontiére générale de Choquet ainsi
appelée par Bishop-de Leuw (voir Bauer [13]) qui raffine celle de Silov,
généralise I’étude des éléments extrémaux et a beaucoup de relations et
d’applications (voir p. ex. [56, 106]).

12. Mais la nouveauté topologique qui parait la plus importante par ses
applications et qui pourrait faire disparaitre ’emploi de la topologie Martin
qu’elle raffine, est d’abord pour les espaces de Green, un prolongement de
la topologie fine antérieure.

Leffilement (dit maintenant minimal) de e < Q en Xed, d’abord
considéré en fait dans le demi-espace en 1949 par Ahlfors-Heins [7] et par
Mme Lelong [155] est défini en général par la condition Ry, # Ky c’est-
a-dire qu’il existe une fonction surharmonique > 0 majorant K, sur e mais
non partout, ou qu’il existe un potentiel de Green majorant Ky sur e, ce
qui équivaut a la définition originale et notion-clef de L. Naim [178].

A, peut étre introduite, sans parler de 4, comme ensemble des fonctions
minimales égales a 1 en y,. On montre qu’il existe sur 2 U 4,,une topologie
unique induisant la topologie fine sur Q et donnant comme intersections
avec Q des voisinages de tout X € 4, les complémentaires des effilés en X.
On Pappelle topologie fine minimale. Elle est (sur QuA4,) plus fine (et plus
utile) que la topologie Martin. Voir une présentation abstraite générale
dans [121, 56]. Dans le cas classique précédent, on peut considérer sur 4,
des points irréguliers pour le probléme de Dirichlet-Martin, puis « finement
irréguliers » en un sens plus faible évident, ce qui permet de voir que leur
ensemble est de mesure harmonique nulle. Et cela s’étend aux notions
obtenues par relativisation avec une fonction harmonique 2 > 0 [178].
D’autre part v/G, , v/Ky ont en tout X e 4 (v surharmonique > 0) une
limite fine [178]. Et m&me v/h admet une limite fine finie du, — p.p. (résultat
fondamental de Doob [99]) cela s’étend aux fonctions BLD pour /2 = 1




et s’adapte pour tout 4. Pour une fonction harmonique > 0 (mais non sur-

harmonique quelconque) dans un demi-espace ou une boule 2 (dont € est
identifiable & ’adhérence euclidienne) la limite fine entraine la limite dite
non tangentielle ou angulaire [59], ce qui implique les résultats classiques
du type Fatou. Tout ceci conduit & comparer les deux types d’effilement
[1, 51, 56], aussi pour les extensions ultérieures.

Il y a naturellement des applications a la théorie des fonctions, comme
un perfectionnement du théoréme de Plessner et la correspondance de deux
surfaces de Riemann (voir des développements de Doob [100-102] et
Constantinescu-Cornea (voir surtout leur important livre [78])) qui com-
plétent le gros ouvrage de Tsuji [209] sur les applications plus anciennes de
la théorie du potentiel aux fonctions méromorphes. Pour les détails et appli-
cations de la topologie fine, d’ailleurs aussi dans la théorie ultérieure, voir
[53-55-56].

13. Arrivons a ce qui caractérise le plus fortement [’époque moderne.
Ce sont des axiomatisations nouvelles poussées et paralléles de divers aspects
~ locaux et globaux du potentiel (harmonicité, énergie), la théorie des noyaux-
mesure de G. Hunt qui contient en fait les parties les plus intéressantes des
axiomatiques précédentes, les interprétations probabilistes grace aux pro-
cessus de Markov, ce qui conduit méme a une théorie probabiliste indé-
pendante du potentiel, enfin une discussion approfondie des relations
possibles, des analogies, des structures et principes communs a ces théories
d’ou le probléme inverse de batir une théorie d’allure potentielle a partir
de cones de fonctions de type trés général.

14. Apres des tentatives de Tautz [205-206] et Kamke, Doob qui avait
déja, aprés quelques précurseurs (P. Lévy, Kakutani...) introduit les
- connexions avec les probabilités, en comparant dans R? les fonctions sous-
~ harmoniques et les semi-martingales (dites maintenant sous-martingales)
[94], y revient dans des conditions différentes et générales dans un mémoire
trés important [96] (1954-55) suivi de [96] et ou il pose au début les bases
d’une axiomatique des fonctions harmoniques, en transposant et généra-
lisant I'idée que, dans le mouvement brownien, la probabilité du mouvement
a chaque instant est la méme dans toutes les directions.

En modifiant le langage et les axiomes de base en vue d’une adaptation
systématique de la théorie classique, j’ai été amené en 1957-58 & la théorie
suivante [48] [49]: dans un espace connexe, localement connexe, localement

compact, non compact £ (que ’on compactifie selon Q grace au point
d’Alexandroff), on donne sur chaque ouvert un espace vectoriel de fonctions

L’Enseignement mathém., t. XVIII, fasc. 1. 2
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réelles finies continues dites harmoniques satisfaisant aux axiomes suivants
(de caractére local).

1) (Axiome de faisceau); elles définissent un faisceau, c’est-a-dire que
toute fonction harmonique dans un ouvert @ est harmonique dans tout
ouvert partiel et toute fonction localement harmonique dans w est har-
monique dans .

2) (Axiome de résolubilité locale du probléme de Dirichlet). On appelle
régulier tout ouvert relativement compact w pour lequel toute fonction
finie continue réelle f sur dw se prolonge continuement dans w de fagon
unique selon une fonction harmonique, >0 si f > 0. Ce prolongement
H; (x) est de la forme ff(y) dp$ () (dp, mesure > 0 sur dw, dite mesure
harmonique).

L’axiome 2 exprime ’existence d’une base d’ouverts réguliers (ou de
fagon équivalente, de domaines réguliers).

3) (Axiome de comvergence.) Toute suite croissante u, de fonctions
harmoniques dans un domaine a une limite + oo ou harmonique (énoncé
équivalent avec un ordonné filtrant croissant d’aprés Constantinescu-
Cornea). Cela entraine @) une fonction harmonique # > 0 dans un domaine
w, est partout 0 ou partout > 0. (On le voit en considérant la suite n . u.)
b) Les fonctions harmoniques > 0 dans w, égales 2 1 en y, € ® sonté ga-
lement continues en tout point (résultat difficile de Mokobodski (voir [54])
mais avec I’hypothése d’une base dénombrable, hypotheése supprimée plus
tard par P. Loeb-B. Walsh [164]). Noter que (@) + (b) équivaut a I’axiome 3
(vu son importance on l’avait introduit comme axiome 3’ impliquant 3).

Principe de minimum. Si dans un ouvert w existe une fonction har-
monique # > =z > 0, alors pour toute fonction harmonique u sur o, la
condition lim inf u > 0 & la frontiére implique # > 0. Lorsque les constantes
sont harmoniques, on a donc pour toute fonction harmonique u,

inf u = inf (lim inf. & la fronticre)
w ow
(forme banale du principe).

Noter que les quotients par une fonction finie continue 2 > 0 fixe,
définissent un autre faisceau satisfaisant aux axiomes (faisceau des fonctions
h-harmoniques). Si & est harmonique, les constantes sont A-harmoniques.

Les fonctions hyperharmoniques u dans w ouvert se définissent comme
s.c.i. > — oo majorant sur tout w’ régulier (@' < w) fu dp?’; elles satisfont
au principe de minimum comme les harmoniques; dans un domaine u vaut
— oo ou est finie sur un ensemble dense (et alors dite surharmonique).
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' Lorsque u surharmonique admet des minorantes harmoniques qui sont
¢ toutes = 0, u est dit un potentiel (qui est le potentiel de Green d’une mesure

> 0 dans un domaine classique de Green). Un outil commode est la notion

i . , . r _r
¥ de fonction & peu prés hyperharmonique, déduite de la précedente en rem-
" plagant s.c.i. et > — oo par « localement bornée inférieurement » et I'inte-

- grale par une intégraleT. Cela remplace dans le cas classique une vieille
- notion de fonction presque sous harmonique. Un ensemble e dans w ouvert
"y est dit maintenant polaire s’il existe u surharmonique > 0 valant + oo au
moins sur e. Si un ensemble e, est localement polaire dans w, il est polaire

~ dans o s’il existe un potentiel > 0 dans w; sinon, mais s’il y a dans o une

fonction harmonique > 0, il existe une fonction surharmonique dans w

valant + oo sur e, (Anandam [8]), ce qui dans la définition originale du
- cas classique était encore désigné par « polaire »; le terme « localement

polaire » correspondant a la notion la plus utile évite tout désaccord.
Noter que Doob supposait la métrisabilité de 2, les constantes har-

- moniques et un axiome de convergence plus faible (limite harmonique st elle

est finie sur un ensemble dense) complété par une condition permettant
d’obtenir une forme de principe élémentaire de minimum indispensable.
Pour des suites x,, ou x,. , est choisi sur la frontiere d’un domaine régulier
w, 3 X, avec une probabilité égale a la mesure harmonique dans w,, il y a
un « processus de Markov » (extension du mouvement brownien) dont
{ x,} est trajectoire, et la «probabilité de transition» celle qui précéde.
Alors, sous certaines conditions générales, toute fonction surharmonique
= 0 a une limite sur « presque toutes » les trajectoires. C’était le but essentiel
de Doob dont la théorie par ailleurs est peu poussée et se développe moins
bien que dans celle qui a suivi en théorie pure du potentiel et que j’esquisse
maintenant.

L’existence dans € d’un potentiel > 0 (qui a lieu dés qu’existent deux

fonctions harmoniques > 0 non proportionnelles) et souvent d’une base

- dénombrable permettent I’extension d’une grande partie de la théorie clas-

sique:

— Propriétés de treillis (qui ne demandent pas de dénombrabilité)

selon Pordre spécifique défini par u < v signifiant v = u + f et f sur-
~harmonique > 0.

— Probléme de Dirichlet avec théoréme de résolubilité.

— Topologie de I'espace des différences de fonctions surharmoniques

- >0 permettant une base compacte métrisable du cdne S* des fonctions
>0 (ce qui est difficile sans axiome supplémentaire et alors dfi & Mme Hervé

}‘}:. ]
i
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[128]), d’ott par la théorie des éléments extrémaux, une représentation
intégrale qui dans le cas classique donne celle de Riesz-Martin.

— Gréce a 'hypothese de proportionalité P des potentiels de support
ponctuel { x} (c’est-a-dire harmoniques hors { x }), définition d’un espace
et d’'une frontiére de Martin avec probléme de Dirichlet correspondant et
forme étendue de la représentation de Martin-Riesz.

— Introduction de la topologie fine et du balayage avec des développe-
ments ultérieurs utilisant ou non les axiomes supplémentaires qui suivent
(Mme Hervé [128] (balayage), Brelot [52] (capacité des ensembles décrois-
sants), Constantinescu-Cornea [77-80], Fuglede [118-119] et Berg (usage
et propriétés importantes de la topologie fine).

— Un axiome nouveau D de « domination » (impliquant le principe du
maximum du type Frostman) entraine I’extension du grand théoréme de
convergence des fonctions surharmoniques (et lui est méme équivalent avec
P) ce qui permet I’extension de la partie la plus fine du potentiel classique.
Tout cela s’applique dans R" aux équations linéaires aux dérivées partielles
du second ordre de type elliptique a coefficients lipschitziens (voir Mme Hervé
[128] et 'ouvrage [26]) puis méme en un certain sens au cas des coefficients
discontinus [129-130] dont la théorie directe est difficile comme on le voit
dans Stampacchia [202].

— Les équations adjointes se trouvent axiomatisées dans la théorie
du faisceau adjoint de Mme Hervé (avec P et un axiome supplémentaire, mais
sans D).

Bien d’autres compléments furent donnés. Outre tous ceux déja cités
de Mme Hervé et autres, citons: Boboc-Constantinescu-Cornea (nombreux
perfectionnements) [24, 81...], Loeb [163], Loeb-B. Walsh (classification de
faisceaux, frontiéres compactes diverses), K. Gowrisankaran (extension du
théoréme de Doob sur la limite fine minimale [121-122], le probléme de
Dirichlet et les poles des fonctions minimales pour une frontiére compacte
[3t11], les fonctions multiplement surharmoniques); Constantinescu-
Cornea [81] et D. Sibony [200] (correspondance de deux espaces « har-
moniques » c’est-a-dire pourvus d’axiomatiques), Mokobodski [1, 3 t11]
(topologie sur S™ et points de proportionalité), de la Pradelle [148] (quasi-
analyticité), J. Taylor [207] (correspondance des faisceaux et de la frontiére
de Martin), E. Smyrnelis (allure au voisinage d’un point-frontiére irrégulier),
Lumer-Naim [166] (espaces #? de fonctions harmoniques et extension des
fonctions fortement sous harmoniques de Géarding-Hormander), notion de
flux (Nakai, voir [197]), Anandam [8] (espaces harmoniques sans potentiel
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| positif) etc. Soulignons le rdle de la nucléarite (Loeb-B. Walsh [160],
' Hinrichsen [132]), de la cohomologie, dualité, flux, perturbation de struc-
tures, méme dans des axiomatiques plus faibles (B. Walsh [213-214]).

Voir un apergu général de cette axiomatique avec beaucoup de compleé-
ments dans [54] pourvu de bibliographie.

15. Mais la théorie ne s’applique pas, contrairement a celle de Doob,
A I'équation de la chaleur. Alors H. Bauer [14, 15, 16] élargit la théorie pré-
cédente pour traiter en méme temps une large classe d’équations para-
boliques. Pour définir un « espace harmonique » (espace topologique pourvu
d’un faisceau) il remplace essentiellement I'axiome 3 par [’‘axiome de
convergence Kp plus faible de Doob (ou méme un autre, K, encore plus
faible ou les fonctions sont uniformément majorées) et par un axiome de
séparation qui assure un principe de minimum. Avec une base dénombrable
et Pexistence pour chaque x d’un potentiel > 0 en x (les fonctions hyper-
harmoniques et les potentiels se définissent comme plus haut), ce qui donne
un espace « fortement harmonique », il peut alors étendre en gros toute la
partie de la théorie précédente indépendante de P et D (D n’est d’ailleurs pas
vérifié pour I’équation de la chaleur), en laissant 8 Mokobodski I’adaptation
de la représentation intégrale (moins facile et moins utile puisqu’il n’y a pas
nécessairement de base de S*) et sans s’occuper de théorie adjointe. Une
comparaison approfondie avec l’axiomatique précédente est faite dans
[3, t6 n° 1b; 54, 17] et surtout [3t 11 n° 6]. Les éléves de Bauer complétérent
et élargirent diversement sa théorie et ses applications (Hansen (noyaux
harmoniques), Sieveking (recherche de représentation intégrale « concréte »),
Bliedtner (groupes harmoniques), Kohn (donnée-frontiére sur une partie
fermée de la frontiére pour les domaines de base) (voir Lecture Notes 69),
Guber (Congrés de Loutraki, Lecture Notes 31; recherche d’équations
paraboliques entrant dans le cadre de Bauer), K. Jansen (thése Erlangen
1969 étendant la théorie des s#°P-fonctions de Lumer-Naim)). Voir aussi les
nombreux articles de Boboc, Constantinescu-Cornea et I’ouvrage a 1'im-
pression de Constantinescu-Cornea [82] complétant les axiomatiques
précédentes ou développant une axiomatique plus faible.

Il est avantageux de suivre la théorie de Bauer sous sa forme d’allure
définitive [17] en la complétant, lorsque c’est nécessaire, par des restrictions
~qui P'identifient & la théorie précédente et permettent un développement
plus poussé.

Les questions de topologies et frontiéres étendues et étudiées dans ces
axiomatiques ont été systématiquement examinées et approfondies de fagon
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abstraite préliminaire dans un ouvrage global, qui par souci de briéveté,
illustre et détaille les applications surtout dans le cas classique (Brelot [56]).

16. La question se posait de chercher les ou des faisceaux satisfaisant aux
axiomes. C’est ce qu’a entrepris Bony dans R” [27, 28]. Considérons dans R”"
Paxiomatique détaillée plus haut, affaiblie par suppression de I’axiome 3
(mais faisant par commodité les constantes harmoniques). Il existe un
opérateur elliptique L (& forme quadratique positive et coefficients non
tous nuls & la fois) tel que, pour toute u harmonique de type C* dans un
ouvert, Lu = 0; L est méme unique a un facteur prés et ses coefficients sont
réguliers dans un sous ouvert dense. S’il y a (au sens d’une certaine approxi-
mation) suffisamment de fonctions harmoniques de type C?, il y a dans un
ouvert dense convenable, équivalence pour les C2-fonctions, des conditions
d’harmonicité et de surharmonicité avec les conditions Lu = 0, Lu =0
pour I'opérateur associé. Indiquons encore entre autres que les axiomes de
convergence (axiome 3, forme de Doob K, ou méme forme faible K;)
peuvent étre caractérisés par le type de L et que le cas des faisceaux invariants
par translation peut étre complétement élucidé.

17. Parallélement aux axiomatiques locales précédentes, les travaux sur
I’énergie de Cartan-Deny ont conduit Beurling et Deny a dégager de la
théorie des fonctions a intégrale de Dirichlet finie, des propriétés servant
d’axiomes pour construire une axiomatique globale de I’énergie sous le nom
de théorie des espaces de Dirichlet, d’abord dans le cas élémentaire d’un
espace & un nombre fini de points, puis sous son aspect général [22, 90].
L’idée nouvelle a été la remarque de Beurling qu’une transformation 7T
du plan complexe qui est une contraction conservant ’origine donne par
composition avec une fonction u une fonction 7Tu d’intégrale de Dirichlet
minorée.

Appelons d’abord avec Deny, espace de Dirichlet fonctionnel H, de
base une mesure & > 0 dans un espace localement compact dénombrable
a I’infini, un espace vectoriel complexe de fonctions sommables — & loca-
lement, muni d’une norme le rendant complet, et tel que I'intégrale — d¢&
sur tout compact tende vers 0 avec la norme (propriété de continuité).

Tel est dans un ouvert borné de R”, pourvu de la mesure de Lebesgue,
I’espace obtenu par complétion & partir des fonctions de type C* ou méme
C®, a intégrale de Dirichlet finie, avec le produit scalaire

(u,v) = [(grad u, grad 7) dx



I

:
& marque, grace 4 la formule élémentaire de Green, que si v est le potentiel
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et Ja norme-énergie \/ ﬂ grad u |? dx. Dans ce cas particulier, on re-

. de Green de la mesure de densité p = Av suppos€e a support compact

(u, v) vaut [u p dx a un facteur preés.

Dans le cas général on appellera potentiel engendré par une fonction f

bornée & support compact, le point P, de I’espace hilbertien H défini par
‘la condition (u, P;) = fu fdé, xyue H. Un potentiel pur est défini comme
~¢élément adhérent & I’ensemble des potentiels précédents engendrés par
les f > 0.

Un espace de Dirichlet, qui contient et généralise le cas particulier cité

| a base d’intégrale de Dirichlet est un espace de Hilbert fonctionnel pour
“lequel toute contraction T (dite normale) indiquée plus haut minore la
norme. Le développement de la théorie est fécond surtout pour les espaces

dits réguliers ou les fonctions de H situées dans I’espace C, des fonctions
finies continues a support compact sont denses dans H et méme dans C,.

- Critéres divers, capacité, théorémes d’équilibre et de balayage analogues
aux théories précédentes et bien d’autres notions se rattachant a d’autres
~domaines en font une théorie trés riche. Soulignons seulement que pour

un H a potentiels purs réels, H est un espace de Dirichlet si et seulement si
est vérifié le principe important suivant dit « principe complet du maxi-
mum » approfondi dans Deny [1]: linégalit¢ P, =P, + 1(f, g€ C))
doit étre vraie p.p. — d¢, dans Q si elle I'est de méme sur { x|/ > 0}. On
peut d’ailleurs développer la théorie abstraite sans mettre a la base une
mesure ¢ (Thomas [3, t9]). Enfin & c6té du cas d’invariance par translation,

 signalons I’étude analogue par Berg [3, t13] sur la sphére avec invariance
- par rotation.

18. Arrivons a la théorie globale des noyaux de G. Hunt (1957-58) [134]

~qui domine la théorie moderne du potentiel en ce sens qu’elle contient au
fond les axiomatiques précédentes au moins dans les cas les plus intéressants,
les relient aux processus de Markov et inspire les recherches récentes. Vu la
quantité et la complexité des travaux sur le sujet nous nous contenterons

~ d’une introduction et de quelques résultats essentiels en renvoyant a un
apergu de Deny [3, t5] et aux ouvrages détaillés de P. A. Meyer [169] et
Blumenthal-Getoor [23] plus complets et plus faciles que les travaux ori-
“ginaux de Hunt.

Soit un espace localement compact E & base dénombrable; on considére

~un noyau-mesure yu, >0 dépendant de xe E qu’on écrit aussi V (x, e)
. (e ensemble borélien), fonction borélienne de x pour e relativement compact.

2
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Alors a une fonction f borélienne > 0 correspond la fonction potentiel de f,
qu’on peut écrire:

Vf(x) = J fdu, ou ff (») V (x, dy) (d’ailleurs la donnée f — V équivaut a
celle de pu,). |

A une mesure 0 > 0 correspond la mesure, dite potentiel de 6:
OV (e) = JV(x, e)do (x).

Le noyau identité V' (x, e) vaut 0 ou 1 selon que x ¢ e ou x € e, et conserve

S (x) et 0 (e). Extension facile pour des signes quelconques.

1
Comme exemple élémentaire, prenons dans R> le noyau fe |~——Idy
xX—y

(mesure de Lebesgue dy). On voit que ¥V, est le potentiel newtonien de la
mesure de densité f, et O} est la mesure de densité égale au potentiel newto-
nien de 0. On notera V. W le noyau produit J Vx, dy) W(y,e); V,(t=0)
est un semi-groupe si V,,, = V, V,. On note C,, C, les ensembles de fonc-
tions finies continues a support compact ou tendant vers 0 a I'infini. On
dit que V satisfait au principe complet du maximum si quelles que soient
f,g >0de Cpeta > 0, Pinégalité V, =V, + a 1a o f > 0 entraine I'inéga-
lité¢ partout.

Théoréme de Hunt: St V donne de C, une image dense dans C, et
satisfait au principe complet du maximum, il existe un semi-groupe unique
P, (t1=0)tel que V, = f‘g P, fdt (f>0)ou P, (dit Fellerien) applique C,, dans

C,, vaut pour P, le noyau unité et satisfait a P,f — f(feC,) uniformément
t-0

localement, et a P, (1) = 1.

La démonstration utilise une famille de noyaux dits « résolvantes » et un
célébre théoréme de Hille-Yosida. Des variantes améliorées ont €té données
plus tard (Ray, Lion [162], Hirsch [133], Berg, etc.). Relativement a { P, },

f borélienne > 0 est dite « excessive » si P, f = fet P,f — f, et invariante
=0

en cas d’égalité; une définition correspondante de potentiel est évidente,
conservant la décomposition de Riesz mais il y a bien d’autres notions de
potentiel dans ces questions.

19. Les relations avec les axiomatiques précédentes sont faciles a exprimer.
Avec la premiére axiomatique locale (base dénombrable, axiomes 1, 2, 3,
existence d’un potentiel > 0 et constantes harmoniques), P. A. Meyer [168]
a montré, en utilisant un noyau de Mme Hervé, qu’on peut le choisir de fagon
a ce qu’il satisfasse aux conditions de Hunt et les fonctions excessives du




25

semi-groupe correspondant sont alors exactement les fonctions hyper-
harmoniques > 0 de ’axiomatique.

Dans la théorie de Bauer pour un espace fortement harmonique et les
constantes surharmoniques, ce qui est plus général, on arrive a la méme
identité (voir [18]) & I'aide d’une variante élargie (Hansen) du theéoréme
de Hunt [123]. Toute axiomatique analogue et plus faible ultérieure pose le
méme probléme d’interprétation.

Enfin si ’on examine les espaces de Dirichlet réels, on voit que le noyau
qui fournit la définition du potentiel, lorsqu’il s’annule & I'infini, est un
noyau de Hunt et qu’alors les potentiels sont des fonctions excessives. C’est
ce qui arrive dans le cas de I’espace de Dirichlet classique, dans un domaine
régulier de R" (c’est-a-dire sans points-frontiére irréguliers). Voir aussi
J. Elliott [3, t6].

20. Aspects probabilistes. On savait depuis longtemps, au moins dans
R?, vingt ans avant Iouvrage de P. Lévy [159], que, pour le mouvement
brownien, la probabilité que la trajectoire issue d’un point x, rencontre
la frontiére d’un domaine w 3 x, pour la premiére fois sur une partie e = ow
(p. ex. borélienne) est la mesure harmonique de e relative a x,; P. Lévy
avait méme interprété aussi le potentiel capacitaire, Kakutani savait carac-
tériser les ensembles polaires comme ceux que les trajectoires précédentes
ne rencontrent presque slirement pas et Doob interpréta [I’effilement.
Etudiant la notion de quasi ou semi-martingale, appelée maintenant sous-
martingale, en analogie frappante avec les fonctions sousharmoniques,
Doob montre méme [94] que si u est sousharmonique de croissance pas
trop rapide a I'infini et X (¢) une trajectoire brownienne dans R", u (X (1))
définit une sousmartingale.

Nous allons préciser des notions plus générales dans le cadre des pro-
cessus de Markov, qui serviront a interpréter la théorie des noyaux de Hunt.
On considére un espace abstrait Q, pourvu d’une tribu d’ensembles o/ et
d’une probabilité-mesure P (mesure sur </ de total 1), et une application
de Q, dans un espace E (dit espace des états) pourvu d’une tribu 2, par
une fonction X (x), o/-mesurable (c’est-a-dire que si ee %, X ! (e) € )
dite variable aléatoire. Si X est réelle finie ou non (c’est-a-dire E = R*?
augmenté de £ oo et # tribu borélienne), on introduit & (X) = fX dP,
dite espérance mathématique; Iespérance conditionnelle relative & une
sous-tribu .27’ est toute fonction o/ '-mesurable y (x) telle que fay dP = f XdP
(Yoes/"). y est unique, en ce sens que si y,, y, répondent & la question,
Y1 = y, presque partout. On note y = & (X {Jzi ). Quand X est 'indicateur
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d’un ensemble o, y est dite probabilité conditionnelle P (ay|.o7") (fonction
de x).

Une famille { X,} (¢ réel dit temps) définit un processus stochastique
dont X, (x) décrit la « trajectoire » de x dans E. Un cas trés particulier est le
mouvement brownien dans R". Un cas plus général est le « processus de
Markov » de type suivant: X, (1 >0), probabilité-mesure P? sur & dépendant
d’un point y € E et satisfaisant aux conditions suivantes:

a) PP ({Xo=y}) = 1, P¥(a) est B-mesurable;

b) Si o, est la sous-tribu engendrée par les ensembles X, ' (e) (r=s;
ee%) onimpose: P ({X,ef}| o) = P*X ({Xef}), vpe B, s, t; s =t, P*
presque partout dans Q. Ceci signifie grossiérement que la trajectoire issue
de y ne dépend pas, aprés I’époque s, des positions antérieures.

Alors, moyennant une légére adaptation, fout semi-groupe P, de la
théorie de Hunt s’interpréte, au moyen d’un processus de Markov du type
précédent, selon P,(y,e) = P’ ({X.e}).

Quant aux martingales, considérons un processus X, « adapté » a la
famille croissante J, de sous-tribus de J, tribu sur Q,, c’est-a-dire tel que
X, soit I ~mesurable (\y#>0). Cest une martingale (resp. sur ou sous-
martingale) si X, (x) est P-intégrable \yz et si \ys, ¢, s =¢, 6 (X,|T,) = X,
(resp. = ou >). Voir tous les traités modernes de probabilités, et une étude
directe avec applications dans Hunt [136].

Ces notions et bien d’autres comme les temps d’arrét, temps d’entrée,
diverses réduites ou balayages ont beaucoup de relations et propriétés,
permettent d’interpréter les notions essentielles de théorie classique ou axio-
matique du potentiel et donnent lieu & des études approfondies de cas par-
ticuliers (comme le mouvement brownien dont les trajectoires sont
continues). Pour tous ces travaux considérables, qui comportent méme
une théorie du potentiel probabiliste et indépendante, voir, outre les traités
de Meyer [169, 170], Blumenthal-Getoor [23] et Dynkin [105], une quantité
d’articles comme ceux des auteurs précédents ou de G. Hunt, K. Ito-
S. Watanabe, Kunita-Watanabe, Bony, Courrége, Priouret, Kemeny, Snell,
J. B. Walsh, Kac suivi de Strook, Sieveking, Cairoli, Port-Stone, J. Taylor,
etc. (voir [3t8, 138, 204, 5, 3 t14]...).

21. Nouvelles discussions et extensions,; problémes inverses. Le succes
des axiomatiques précédentes tient a des propriétés de base que l'on a
progressivement dégagées pour en discuter le rdle puis s’en servir pour
élargir les théories. Les relations avec la syntheése de Hunt ont enrichi ce
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genre de travaux (Boboc, Constantinescu, Cornea (réf. dans [78]), comme
[25]), Hansen [123], Bliedtner [6], ...). Cela devait s’accentuer, comme on va
le voir, dans des recherches paralléles ou ultérieures a un niveau abstrait
encore plus élevé, surtout sur les liaisons ou analogies entre les axiomatiques
et la théorie du type Hunt et toutes les notions associées comme le balayage,
les réduites, les résolvantes, etc.

Ainsi Mokobodski et D. Sibony ont approfondi le réle du principe du
minimum. En partant sur un espace localement compact d’un cone de fonc-
tions s.c.i. qui y satisfont, ils batissent une théorie locale du type Brelot-
Bauer, grace a quelques autres propriétés, de fagon a ce que les fonctions
surharmoniques bornées correspondantes soient les fonctions du cOne,
mais il leur faut prendre un cdne maximal dans la famille des cones de type
ordonné par inclusion [177].

Ils ont aussi remarqué le role des espaces et cones adaptés, introduits
par Choquet [4, t1]: c’est, sur un espace localement compact, un espace
vectoriel réel V' de fonctions finies continues v engendré par les fonctions
v > 0, contenant pour tout x une v non nulle en x, enfin possédant la pro-

i <y . . . . . 4 .
priété de domination suivante: pour tout v > 0, il existe une we V'™ qui la

1% ,
domine a I'infini, c’est-a-dire telle que — — oo selon le filtre des complé-
v

h

: w, . T - A
mentaires des compacts (— étant pris + oo quand indéterminé). Un cOne
v

convexe C est adapté st C — C est un espace adapté. L’intérét est qu’alors
une forme linéaire sur V, positive sur ¥ *, se représente par de/,z, a l'aide
d’une mesure u, souvent unique dans les applications. Cela permet d’étendre
la théorie globale de Hunt en remplagant ’espace des fonctions continues
s’annulant & I'infini par un espace adapté.

Ils ont pu ainsi, encore plus nettement, traiter des problémes plutét
inverses des théories initiales: a partir d’un cdne convexe de fonctions
par exemple continues, chercher des conditions générales & peu prés néces-
saires et suffisantes pour bitir une axiomatique (qui conserve les caracté-
ristiques intéressantes des précédentes) ou un semi-groupe de type Hunt,
dont les fonctions continues respectivement surharmoniques ou excessives
soient a peu pres les précédentes. Voir d’abord [3 t11], puis des variantes, et
des constructions plus ou moins générales ou abstraites avec des notions
nouvelles sur la dualité de deux cOnes, la dérivation des potentiels et le

balayage, dans bien des articles récents ou en cours, surtout de Mokobodski
(voir [172 a 177] et [3, 4]).
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D’autre part, sans probabilités et dans un cadre local, une nouvelle
généralisation des axiomatiques est entreprise, a base du principe du mini-
mum et de maximalité, qui englobe aussi la théorie des fonctions pluri-
sousharmoniques [113]. On a examiné aussi une axiomatique ou les fonc-
tions harmoniques prennent leurs valeurs dans un espace topologique
ordonné général (Monna) et on a élargi les axiomatiques en remplagant
la topologie par une semi-topologie, ce dont on se sert pour les approxima-
tions d’espaces harmoniques (Bertin [19]). Enfin signalons que I’on s’occupe
de plus en plus de problémes non linéaires.

Quelques années apporteront sans doute, comme Mokobodski s’y
emploie, des exposés synthétiques caractérisant un nouveau stade cohérent
de la théorie du potentiel et qui sera plus facile a analyser.
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