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FIBRES EN DROITES ET FEUILLETAGES DU PLAN

par Claude GODBILLON

1. INTRODUCTION

Il est bien connu que tout feuilletage & du plan R? posséde les propriétés
suivantes:

(i) & est orientable;

(i) chaque feuville de & est fermée dans R* et homéomorphe a la droite
réelle R: Poincaré-Bendixson;

(iii) ’espace des feuilles X de & est une variété topologique de dimen-
sion 1 a4 base dénombrable et simplement connexe (en général non séparée):
Haefliger-Reeb [2];

(iv) la projection p:R* — X est une fibration localement triviale:
Whitney [4].

Inversement d’ailleurs si X est une variété topologique de dimension 1

a base dénombrable et simplement connexe, et si #: E -2 X est un fibré
localement trivial en droites réelles sur X, I’espace total E est une variété
topologique de dimension 2 a base dénombrable et acyclique. Si elle est
séparée elle est homéomorphe au plan R?, et les fibres de # déterminent un
feuilletage du plan.

Deux feuilletages (orientés) & et #' de R? sont conjugués s’il existe un
homéomorphisme / du plan transformant les feuilles de 1'un en les feuilles
de I'autre. On peut de plus imposer a ’homéomorphisme /2 de conserver
'orientation du plan R?*, ou d’étre compatible avec les orientations des
feuilletages, ou encore d’avoir simultanément ces deux propriétés (cette
derniére situation a été étudiée par Kaplan [3]).

Dans chacun de ces cas les espaces des feuilles X et X' de & et &’ sont
homéomorphes, et les fibrés p: R* > X et p’: R*> > X’ sont isomorphes ?).

) Deux fibrés p 1 E — X et p’ : E’ — X’ sont isomorphes s’il existe des homéo-
morphismes F:E —~E’ et f: X — X’ tels que p’oF = fop. Lorsque X = X’ et
S = id.x on dit qu’ils sont équivalents.
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On peut donc ramener le probléme de la classification des feuilletages
du plan aux deux problémes suivants:

(1) classifier les variétés topologiques de dimension 1 a base dénom-
brable et simplement connexes;

(i) classifier sur une telle variété les fibrés en droites localement triviaux |
ayant un espace total séparé. |

2. UN EXEMPLE IMPORTANT: LE BRANCHEMENT SIMPLE [1]

Le branchement simple Z est la variété topologique de dimension 1
a base dénombrable et contractile obtenue a partir de ’espace somme de

deux exemplaires R; et R, de la droite réelle R en identifiant les points |
x; € Ry et x,e R, pour x; = x, < 0.

b 4 0
1
‘ : R, i
(
{
{
l
|
! R
X d 2
2 0
U z
Fic. 1
On identifie & ]— o0, 0[ I'ouvert U de Z correspondant aux points

x; < 0de R,.

La donnée d’un fibré en droites localement trivial # : E s Zsur Z

est équivalente a celle d’une application continue g de U dans le groupe G
des homéomorphismes de R. y
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2.1 Proposition. Pour que I’espace total E soit séparé il faut et il suffit
que pour tout y €R on ait lim g, (y) = — o (ou lim g.(y) = + ).

x—0 x—=0

2.2 Exemple. Si g : U — G est I'application associant & x €] — o0, 0]
1

la translation g, :y — y + —, 'espace total £ du fibré n : E 2, Z corres-
X

pondant a g est séparé.

On peut aussi vérifier que si n' 1 E ' 2y 7 est le fibré correspondant a

1
’application g~* (g;l 1y >y — ~) alors:
X

(i) n et n’ sont équivalents pour le groupe G;

(ii) n et n’ ne sont pas équivalents pour le groupe G* des homéo-
morphismes croissants de R;

(iii) # et n’ sont isomorphes pour le groupe G™.

2.3 THFEOREME [1]. Soient n et n’ deux fibrés en droites sur Z correspon-
dant a deux applications g et g’ de U dans le groupe G* et ayant des espaces
totaux séparés. Pour que n et ' soient équivalents pour le groupe G il faut
et il suffit que pour tout y € R on ait lim g, () = lim g ().

x—=0 x-0

Par conséquent les fibrés en droites localement triviaux sur le branche-
ment simple, ayant un espace total séparé, se répartissent en

2 classes d’équivalence pour le groupe G ;
1 classe d’isomorphie pour le groupe G*;

1 classe d’équivalence pour le groupe G.

3. VARIETES DE DIMENSION 1 SIMPLEMENT CONNEXES

On désigne maintenant par X une variété topologique de dimension 1
a base dénombrable et simplement connexe.

3.1 Proposition. 1l existe sur X un ordre localement isomorphe a [’ordre
de la droite réelle R.

En effet [2] la variété X s’étale sur R.
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Deux tels ordres sur X sont alors égaux ou opposés. Lorsqu’on a fait
choix d’un de ces deux ordres on dit que la variété X est ordonnée.

3.2 Exemple. Dans le cas du branchement simple Z I'identification de
Iouvert U a l'intervalle ]— oo, O] détermine le choix de ’ordre sur Z.

3.3 Proposition. Soit Y une seconde variété ordonnée, et soit h une
application bijective de X sur Y. Pour que h soit un homéomorphisme il faut
et il suffit qu’elle soit strictement monotone.

En particulier on peut répartir les homéomorphismes de X (indépen-
damment du choix de ordre) en deux classes: les homéomorphismes crois-
sants et les homéomorphismes décroissants (cette derniére classe pouvant
d’ailleurs €tre vide comme le montre ’exemple du branchement simple).

4. FIBRES EN DROITES

On se restreint maintenant aux fibrés en droites localement triviaux sur
X ayant un espace total séparé (on les qualifiera d’ailleurs simplement de
« fibrés en droites »). Un tel fibré a pour groupe structural le groupe G des
homéomorphismes de R.

4.1 Proposition. Le groupe structural d’un fibré en droites sur X peut étre
réduit au groupe G* des homéomorphismes croissants de R.

4.2 Hypothése. On suppose dans la suite que cette réduction a G* est
foujours faite.

Soit # : E %> X un fibré en droites sur X.

4.3  Proposition. Le choix d’un ordre sur X est équivalent au choix d’une
orientation sur l’espace total E.

Soit n’ : E’ 2, X un second fibré en droites sur X,etsoit (F, f), F:E—~E'
et f: X - X, un isomorphisme de 5 sur 5’ pour le groupe G*. Alors:

4.4  Proposition. Pour que F soit compatible avec les orientations de E et
E’ (correspondant a un ordre sur X) il faut et il suffit que f soit croissant.

Par contre si (F, f) est seulement un isomorphisme pour le groupe G,
F est compatible avec ces orientations si et seulement si f est décroissant.
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5. FIBRES EN DROITES ET FEUILLETAGES DU PLAN

On a vu que la donnée d’un fibré en droites n : E L, X sur X est équiva-
lente 2 celle d’un feuilletage & du plan ayant pour espace des feuilles une
variété qui peut étre identifiée a X.

La réduction du groupe structural de 5 au sous-groupe G correspond
alors au choix d’une orientation de % . Et, ceci fait, le choix d’un ordre sur X
correspond & celui d’une orientation du plan.

On peut distinguer quatre types de conjugaisons pour les feuilletages
orientés du plan orienté:

a) conjugaison des feuilletages non orientés;

b) conjugaison des feuilletages non orientés par un homéomorphisme
. conservant l'orientation du plan;

¢) conjugaison des feuilletages orientés;
d) conjugaison des feuilletages orientés par un homéomorphisme conser-

vant ’orientation du plan.

Soient alors & et &' deux feuilletages (orientés) du plan (orienté).
Si & et &' sont conjugués on peut supposer que leurs espaces des feuilles

sont identiques, et qu’il existe un isomorphisme (F,f) du fibré n : R* 2> X
associé & F sur le fibré n’ : R* 2> X associé 3 F'.
Dans ces conditions les différentes notions de conjugaisons des feuille-

tages s’interpreétent en termes d’isomorphismes de fibrés en droites au moyen
~ des correspondances suivantes:

premier cas: F et &' induisent le méme ordre sur X
a) (F,f) est un isomorphisme pour le groupe G;

b) (F,f) est un isomorphisme pour le groupe G, et f est croissant si
(F, f) est un isomorphisme pour le groupe G*, décroissant sinon;

c) (F,f) est un isomorphisme pour le groupe G*;

d) (F,f) est un isomorphisme pour le groupe G et f est croissant.

deuxiéme cas: F et ' induisent des ordres opposés sur X
les conclusions sont les mémes.

* v . " PR s XFXTIYIT O _ . A 4
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6. ARBRE ASSOCIE A UNE VARIETE DE DIMENSION 1

6.1 Définition. Un point de branchement de X est un point de X non séparé
d’un autre point de X.

6.2 Hypothése. On suppose dans la suite que X est une variété topologique
de dimension 1 a base dénombrable, simplement connexe et ordonnée, dont
l’ensemble B des points de branchement est fini (et non vide) *).

Si B a n éléments le complémentaire U = X — B est un ouvert séparé
de X ayant n + 1 composantes connexes (toutes homéomorphes a R).
L’ordre sur X détermine alors un ordre sur ’ensemble de ces composantes
connexes.

Dans ces conditions on peut associer & X un graphe ordonné, noté X,
de la fagon suivante:

(i) ’ensemble des sommets de X est Pensemble des composantes
connexes de 'ouvert U = X — B;

(ii) il existe une aréte (ordonnée) d’origine a et d’extrémité b si et seu-
lement si

—a<b,

—a<c<bentralnec=aouc=>=s.

Il y a donc une correspondance biunivoque entre les arétes de X et les

points de branchements de X; et par conséquent X posséde la propriété
suivante:

(P) pour toute aréte o de X il existe une aréte f de X, B # a, telle que
o et f aient méme origine cu méme extrémité.

6.3 Proposition. Le graphe X est un arbre.

En effet [2] le complémentaire d’un point de X a deux composantes
connexes.

On dit alors que X est Uarbre (ordonné) associé a la variété ordonnée X.

1) Cette hypothése est par exemple satisfaite pour les feuilletages du plan définis
par des équations polynomiales.
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6.4 Exemples. Arbres associés aux variétés ayant au plus 4 points de

branchement:
i) . / ¢
\; .
ii) .
.<. |
iii) ¢
\.
.<
iv)
¢
0/.
X"

Fi1G. 2
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vi) )
/'
+ »
> .
' )
\ .‘
vii)
9
[ ]
\ . /
' / \
[ 4
viii) -
/ . '
v > /.v
L
T L 7‘ ® —p P :‘v
FiG. 2 (suite)

6.5 Proposition. Soit Y une seconde variété ordonnée, et soit Y [’arbre
ordonné associé a Y. Un homéomorphisme f de X sur Y détermine un iso-

morphisme f de X sur Y. Si f est croissant (resp. décroissant) il en est de

méme de f.




e T
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En effet f transforme I’ensemble des points de branchement de X en
I’ensemble des points de branchement de Y.

Inversement la donnée d’un arbre ordonné fini 4 vérifiant la propriété(P)
détermine une variété de dimension 1 ordonnée 4 ayant un arbre associé

isomorphe & 4 (on construit 4 par récurrence sur le nombre de sommets de
A en commengant par en Oter un sommet extrémal).
Soit B un autre tel arbre, et soit B une variété de dimension 1 ayant B

pour arbre associé. Un isomorphisme g de A sur B détermine (de fagon
non univoque) un homéomorphisme g de 4 sur B tel que g lui corresponde
par la construction de 6.5.

Par conséquent:

6.6 THEOREME. La classification des variétés topologiques de dimension 1
a base dénombrable, simplement connexes, ordonnées, ayant un nombre fini
de points de branchement est équivalente a la classification des arbres ordonnés
finis vérifiant la propriété (P). ’

6.7 Définition. Un point de branchement x de X est simple si [’ensemble
B, des points y # x non séparés de x posséde l'une des deux propriétés
suivantes :

a) B, est réduit a un seul point ;

b) B, ne contient que deux points distincts qui sont eux-mémes séparés.

On dit alors que X est simple si tous ses points de branchement sont
simples.

Dans ces conditions en chaque sommet non extrémal de I’arbre X associé
a X la configuration est semblable & I'une des trois suivantes:

S ~_
— —

Fi1G. 3

T —
™~ S~

En particulier les exemples ii), iv) et v) de 6.4 ne sont pas simples.




— 222 —

7. CLASSIFICATION DES FIBRES EN DROITES

Solent x et y deux points non séparés de X. On peut trouver dans X
un voisinage ouvert ¥ de { x,y} et un homéomorphisme, croissant ou
décroissant (cf. exemple 3.2), de V sur le branchement simple Z.

Dans I’arbre X associé & X ce voisinage V correspond a un sous-arbre ¥V
ayant 'un des deux aspects suivants:

Fi1G. 4

Par conséquent (proposition 2.1):

7.1 Proposition. Soit n un fibré en droites sur X. A tout couple ordonné

(o, p) d’arétes de X ayant méme origine ou méme extrémité on peut associer
un nombre [a, fl = + 1 de facon que [B, o] = — [a, B].

7.2 Définition. Une assignation sur [’arbre X est une correspondance <f

associant a tout couple ordonné (o, ) d’arétes de X ayant méme origine ou
méme extrémité un nombre Z (o, ) = + 1 de fagon que </ (B, o) =

— o (a, p).

On dit alors que D’assignation de la proposition 7.1 est 'assignation
associée au fibré 1.

Si &/ est une assignation sur AA’, et si f est un automorphisme de A;,
on désigne par — «f P’assignation («, f) - — & (a, ), et par f &/ assigna-
tion (2, ) > o (f ™ o, f 71 B).

Soient # et #’ deux fibrés en droites sur X, et soient o et &/’ les assigna-
tions correspondantes sur X. On a alors (théoreme 2.3):
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7.3 THEOREME. Si n et 3’ sont équivalents pour le groupe G* (resp.
pour le groupe G) on a oA’ = o (resp. &' = + ). Sin ety sont iso-
morphes pour le groupe G* (resp. pour le groupe G) il existe un automor-
phismef‘de X tel que ' =f&i (resp. o' = _—!_—]?sz).

De plus si X est simple ces conditions sont aussi suffisantes.

Inversement si o est une assignation sur X il existe un fibré en droites 7
sur X ayant &/ pour assignation (on construit # par récurrence en com-

mengant par oter un sommet extrémal de X ).

Soient &/’ une seconde assignation sur X et n" le fibré en droites sur X
correspondant & /', Si _]; est un automorphisme de X tel que ' = }; -4
il existe un isomorphisme (F, ) de % sur ' tel que f soit I'automorphisme de

X correspondant & ’homéomorphisme f.
Par conséquent:

7.4 THEOREME. Soit X une variété topologique de dimension 1 a base
dénombrable, simplement connexe, ayant un nombre fini de points de bran-
chement tous simples. La classification des fibrés en droites sur X est équiva-

lente a la classification des assignations sur [’arbre X associé a X.

7.5 Exemple. Dans le cas out X est la variété de I’exemple iii) de 6.4
il existe

a) en ce qui concerne les fibrés sur X:
4 classes d’équivalence pour le groupe G*;
2 classes d’équivalence pour le groupe G;
3 classes d’isomorphisme pour le groupe G*;

2 classes d’isomorphisme pour le groupe G;

b) en ce qui concerne les feuilletages du plan orienté ayant X pour
espace des feuilles (cf. § 5):

2 classes de conjugaison pour les feuilletages non orientés;
5 classes de conjugaison orientée pour les feuilletages non orientés;
5 classes de conjugaison pour les feuilletages orientés;

6 classes de conjugaison orientée pour les feuilletages orientés.
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