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TOPOLOGIES FAIBLES
ET TOPOLOGIES A GENERATION COMPACTE

par A. FROLICHER et M. ROULIN

Ayant d’excellentes propriétés, la catégorie des espaces a génération
compacte devient de plus en plus importante en topologie et en analyse
fonctionnelle: cf. [1], [2], [3]. Comme il y a encore peu d’exemples conve-
nables d’espaces topologiques séparés qui n’appartiennent pas a cette
catégorie, il nous a paru judicieux d’en donner un exemple simple et naturel.

Rappelons qu’un espace topologique séparé X est a génération compacte
si et seulement si toute application f: X — Y dont la restriction a tout
compact K de X est continue, est elle-méme continue.

Proposition 1. La topologie faible d’un espace de Hilbert séparable H
de dimension infinie n’est pas a génération compacte.

Dénotons par H, I'espace vectoriel sous-jacent de H, muni de la topo-
logie faible c’est-a-dire de la topologie induite par toutes les fonctions de
la forme x » < x,a > ou ae H. H, est un espace localement convexe
séparé. Les ensembles de la forme

B¢ va, = x€eH; | <x,a;,>] <e¢ pour i=1,...,n},

Ays » * >
oue>0,neNetay,...,a, e H, forment une base du filtre des voisinages
de zéro dans H.
Pour démontrer la Proposition, nous utilisons les résultats suivants:

(1) Les bornés de H et de H, sont les mémes.

(2) Une application linéaire 4 : H, — H est continue si et seulement si
A est dégénérée, ce qui signifie que Ker 4 est de codimension finie.

(3) La restriction de la topologie faible & un sous-ensemble borné B de
H est métrisable.

La partie intéressante de (1) est une forme du théoréme de Banach-
Steinhaus: tout borné de H, est un borné de H. La réciproque ne sera
pas utilisée et est triviale, car Iapplication idy : H > H ; est continue.

Du resultat (2) nous utilisons aussi la partie la plus intéressante qui
dit que 4 : H, —» H continue implique A4 dégénérée. En effet, de la conti-
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nuité de A résulte I’existence d’un voisinage U = B:, ..., a, de zéro dans
H; tel que A(U)c By ou B, = {xeH;||x]|| <1}. Alors si xe H
satisfait x L a; pour i = 1,...,n on déduit que Ax e U pour tout LeR,
donc 4. 4 (x) € B; pour tout 1€ R, et cela n’est possible que si 4 (x) = 0
c’est-a-dire si x € Ker 4. La codimension de Ker 4 est donc < n.

Pour démontrer (3) on peut, aprés avoir choisi une base {¢;} ;5 de H,
introduire la forme bilinéaire b suivante:

0

b(x,y) = > 1/n* <x,e,>.<y,e, >.

n=1

b étant évidemment symétrique et définie positive, on obtient sur H & part
la norme associée au produit scalaire donné une autre norme, celle associée
a b, et par suite une certaine métrique. On vérifie par quelques estimations
que pour tout born¢ B de H, la topologie faible sur B coincide avec la
topologie induite par cette métrique. Démontrons maintenant la Propo-
sition 1. Le résultat (2) montre qu’on peut choisir facilement un opérateur
compact 4 sur H tel que 4 : H; — H n’est pas continu. Soit K un sous-
ensemble compact de H,. Un compact d’un espace vectoriel topologique
est toujours borné. K est donc borné dans H, est d’aprés (1) aussi borné
dans H. Selon (3), K est donc métrisable. Or comme I'image d’une suite
faiblement convergente par 'opérateur compact A4 est une suite convergente
on a que la restriction 4 ]K : K — H est continue. Il en résulte que H,
n’est pas a génération compacte.

Proposition 2. L’espace vectoriel a génération compacte associé a H,
est un espace vectoriel topologique.

Le foncteur d’inclusion de la catégorie des espaces a génération compacte
dans celle des espaces séparés posseéde un adjoint que nous dénotons selon
[1] par k. Si E est un espace vectoriel topologique, la continuité de I’addition
E x E-X> E implique la continuité de k (ExE)—>kE. Or k(ExE) =
kE 7 kE, ou « m » dénote le produit de la catégorie des espaces a génération
compacte. Puisque la topologie de kE n kE est en général plus fine que la
topologie produit, c’est-a-dire celle de kKE x kE, il n’est pas vrai en

général que kE x kE > kE est continue. En effet, dans [3], U. Seip donne
un exemple d’un espace vectoriel F, muni d’une topologie a génération

compacte, dont seulement F 7 F—> F, mais pas F x F—> F est continue.
La réponse a la question non triviale de savoir si kH, est un espace
vectoriel topologique est donnée par un des résultats les plus profonds
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de la théorie des espaces vectoriels topologiques, le théoréme de Banach-
Dieudonné. D’aprés ce théoréme il résulte que la topologie de kH, est
1 celle de la convergence uniforme des produits scalaires x — < x,a > sur
les compacts de H.
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