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ON IDEAL-ADIC TOPOLOGIES FOR A COMMUTATIVE RING

by Robert GILMER

Let R be a commutative ring and let 4 and B be ideals of R such that
B < A. We wish to consider the relationship between the following two
conditions:

1) Ris complete in the 4-adic topology b,
2) R is complete in the B-adic topology.

Several results in this direction are known; for example:

TueoreM 1. ([4, Theorem 14, p. 275]) Assume that R is Noetherian
with identity, and that R is complete Hausdorff in its A adic topology. Then
R is complete in its B-adic topology.

In [3], M. O’Malley proves the following theorem.

THEOREM 2. If R has an identity, and if R is complete Hausdorff in its

A-adic topology, then R is complete in the (b)-adic topology for each ele-
ment b of A.

In [2, Theorem 2.1 and Corollary 2.2], O’Malley extends his results
in [3] to prove:

THEOREM 3. If R contains an identity, if A = (ay, ..., a,) is finitely
generated, and if R is Hausdorff in the A-adic topology, then R is complete
in its A-adic topology if and only if R is complete in its (a;)-adic topology
" for each i between 1 and n.

COROLLARY 1. If R contains an identity, and if R is a complete Hausdorff
space in its A-adic topology, then R is complete Hausdorff in its B-adic
topology for each finitely generated ideal B contained in A.

Moreover, O’Malley observes in [2] that Theorem 2, Theorem 3, and
Corollary 1 are true without the assumption that R contains an identity,
for the following result is valid.

1) 1.e. the topology for which a fundamental system of neighbourhoods of 0 is
A, A2, A8, ...
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ProproSITION 1. Assume that R is a commutative ring, and S is a ring
obtained by the canonical adjunction of an identity of characteristic zero to
R (see [1, p. 4]). Let A be an ideal of R. Then A is an ideal of S and

1) R is Hausdorff in its A-adic topology if and only if S is Hausdorff
in its A-adic topology ;

2) R is complete in its A-adic topology if and only if S is complete in
its A-adic topology.

O’Malley obtains the results we have cited from a much deeper theory
of the set of R-endomorphisms of the power series ring R[[X]]. Our
purpose here is to obtain O’Malley’s results from basic topological con-
siderations, independent of the theory of R-endomorphisms of R[[X]].

PROPOSITION 2. Assume that {A;};-, is a finite set of ideals of the com-
mutative ring R, and let A = A, + ... + A,. If R is complete in its A;-adic
topology for each i between 1 and n, then R is complete in its A-adic topology.

Proof. We note that the A-adic topology on R is the topology induced
by the sequence {B;}{Z; of ideals, where B; = = A} . + A:. This is true
because 4' 2 B; = A" for each positive integer i. Thus, if {c;}o is a
Cauchy sequence in the A-adic topology, then by passage to a subsequence
of {c;}5, we can assume that ¢; — ¢;_; € B; for each positive integer i.
If we write ¢; — ¢;-y = ay; + ay; + ... + a,;, where a;; € A}, then for
each i,

¢ = Co + )=y }:;}:1 ajy -

The series Y ;ja; converges in the A;-adic topology; we let af =

lim (a;;+a;,+ ... +a;) Then it is clear that the sequence {c;}¢
k

converges to ¢, + 23?:161}" in the A-adic topology. Therefore R is
complete in its A-adic topology.

We remark that in Proposition 2, the A-adic topology on R need not
be Hausdorff, although the A;-adic topology is Hausdorff for each i. For
example, if £ 1s a field, then k [[X, Y, Z]]/A, where A = (Z(1-X-Y)),
is complete Hausdorff under its [(X) + A]/A-adic and [(Y) + A]/A-adic
topologies, but is not Hausdorff under its [(X, Y) 4+ A]/A4-adic topology.

THEOREM 4. Assume that R is a commutative ring, and that R is a
complete Hausdor]f space in its A-adic topology. If b € A, then R is complete
in its (b)-adic topology.
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Proof. The (b)-adic topology on R is equivalent to the topology induced
on R by the sequence {B;};2; of ideals, where B; = Rb'. This is true
since (b') 2 B; 2 (b'*1) for each i. To prove that R is complete in its
(b)-adic topology, it suffices to show that each sequence {c;}iZ,, where
¢; — ¢;_4 € B, for each i, converges in the (b)-adic topology. Since b € 4,
the sequence {c;} converges to an element c* in the A-adic topology. We
prove that ¢; converges to ¢* in the (b)-adic topology. Thusif ¢; — ¢;_; = r;b’
for each positive integer i, then for positive integers k and n, we have

Chan — & = D [y FTiaab + +reeab 1]

Taking limits in the A-adic topology as n approaches infinity, and using
the fact that the A-adic topology is Hausdorff, we obtain

o bk+1 *k

* . o) n—1
-, = Spr1 where  spaq = Dol Feend"

It follows that ¢* — ¢, € B, for each k =1¢ — 1, and {c;} converges to c*
in the (b)-adic topology, as asserted.

Theorem 4 fails if the assumption that R is Hausdorff in the A-adic
topology is dropped. For example, if R is idempotent, then R is complete
in its R-adic topology, but R need not be complete in its (b)-adic topology
for each 6 in R. For a less trivial example, Z @ Z is complete in its
(Z @ (0))-adic topology, but not in its ((2) @ (0))-adic topology.

Proposition 2 and Theorem 4 yield alternate proofs of Theorems 2 and
3 and Corollary 1 (dropping, in each case, the assumption that R has an
identity).

We remark that in general, R need not be complete in its B-adic topology
if R is complete Hausdorff in its 4-adic topology, even if A is principal.
Thus let D be an integral domain with identity containing a prime ideal
C = (cy, €3y -y Gy, -..) Such that C is countably generated, but C is not the
radical of a finitely generated ideal. (For example, let D = J [{X iti=1l,
where J is an integral domain with identity and let C = ({X,}{%,).) The
ring R = D[[Y]]is a complete Hausdorff space in its (¥)-adic topology.
But if B = ( {ch ce C}), then R is not complete in the B-adic topology,
for {¢;Y, ¢, Y+c5Y?, ...} 1s a Cauchy sequence in the B-adic topology
which converges to f = Ziochi in the (Y)-adic topology. If this sequence
converges in the B-adic topology, it must converge to f. But

f=CheY) =Y, c Y ¢B

for each positive integer, for if Y%, ¢;Y’e B, then for some positive
integer k, Y %y ;Y e (e Y, ..., ¢, Y), and cle (cy, ..., ¢,) foreach i >n + 1.




204 —

It follows that C = \/ (cy, ---5 C), contrary to our assumptions concerning
C. L

Added in proof. Matthew O’Malley has pointed out to the author
that in the remark preceding Theorem 4, the ring k[ [X, ¥,Z]]/A4 is
Hausdorff in its [ (X, Y) + 4]/ 4-adic topology.
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( Regu le 20 janvier 1972)
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