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ON IDEAL-ADIC TOPOLOGIES FOR A COMMUTATIVE RING

by Robert Gilmer

Let R be a commutative ring and let A and B be ideals of R such that

B £ A. We wish to consider the relationship between the following two

conditions :

1) R is complete in the ^4-adic topology 1).

2) R is complete in the 2?-adic topology.

Several results in this direction are known; for example:

Theorem 1. ([4, Theorem 14, p. 275]) Assume that R is Noetherian

with identity, and that R is complete Hausdorff in its A-adic topology. Then

R is complete in its B-adic topology.

In [3], M. O'Malley proves the following theorem.

Theorem 2. If R has an identity, and if R is complete Hausdorff in its

A-adic topology, then R is complete in the (b)-adic topology for each

element b of A.

In [2, Theorem 2.1 and Corollary 2.2], O'Malley extends his results

in [3] to prove:

Theorem 3. If R contains an identity, if A (au an) is finitely
generated, and if R is Hausdorff in the A-adic topology, then R is complete
in its A-adic topology if and only if R is complete in its {affadie topology

for each i between 1 and n.

Corollary 1. If R contains an identity, and if R is a complete Hausdorff
space in its A-adic topology, then R is complete Hausdorff in its B-adic

topology for each finitely generated ideal B contained in A.

Moreover, O'Malley observes in [2] that Theorem 2, Theorem 3, and

Corollary 1 are true without the assumption that R contains an identity,
for the following result is valid.

x) i.e. the topology for which a fundamental system of neighbourhoods of 0 is
A, A2, A3,...
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Proposition 1. Assume that R is a commutative ring, and S is a ring
obtained by the canonical adjunction of an identity of characteristic zero to
R (see [1, p. 4]). Let A be an ideal of R. Then A is an ideal of S and

1) R is Hausdorjf in its A-adic topology if and only if S is Hausdorjf
in its A-adic topology ;

2) R is complete in its A-adic topology if and only if S is complete in
its A-adic topology.

O'Malley obtains the results we have cited from a much deeper theory
of the set of i?-endomorphisms of the power series ring R [ [X] ]. Our

purpose here is to obtain O'Malley's results from basic topological
considerations, independent of the theory of i?-endomorphisms of R [ [X] ].

Proposition 2. Assume that {A^ni=1 is a finite set of ideals of the
commutative ring R, and let A — Ay + + An. If R is complete in its Aradic
topology for each i between 1 and n, then R is complete in its A-adic topology.

Proof We note that the A-adic topology on R is the topology induced

by the sequence of ideals, where Bt A\ + + A\. This is true
because A1 2 Bt ^ Ani for each positive integer i. Thus, if {ct} o is a

Cauchy sequence in the A-adic topology, then by passage to a subsequence

°f {ci}o> we can assume that ct — ct_y eBt for each positive integer i.

If we write ct — c^y au + a2i + + anh where OjieA}, then for
each /,

ci — co + Yj~ 1 Yk= 1 ajk -

The series Yk=iajk converges in the Aj-adic topology; we let af —

lim (ßjy+aj2+ +djk) Then it is clear that the sequence {c^q
k

converges to c0 + Ynj=iaî ^"ac^c topology. Therefore R is

complete in its ^4-adic topology.
We remark that in Proposition 2, the ^4-adic topology on R need not

be Hausdorff, although the A radic topology is Hausdorff for each i. For
example, if k is a field, then k [ [X, T, Z]]/A, where A (Z(l — X— T)),
is complete Hausdorflf under its [(X) + A]/A-adic and [(7) + A\/A-adic
topologies, but is not Hausdorff under its [(X, 7) + A]/A-adic topology.

Theorem 4. Assume that R is a commutative ring, and that R is a

complete Hausdorjf space in its A-adic topology. If b e A, then R is complete

in its (b)-adic topology.
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Proof. The (è)-adic topology on R is equivalent to the topology induced

on R by the sequence of ideals, where Rb'. This is true
since (b') 2^ 2 (bi+1) for each i.Toprove that R is complete in its

(b)-adic topology, it suffices to show that each sequence {c;}?L 0, where

Cj - Cj.,£ Bt for each i, converges in the (b)-adic topology. Since be A,
the sequence {c;} converges to an element c* in the /t-adic topology. We

prove that ctconverges to c* in the (è)-adic topology. Thus if c; — c;_ 1 rf
for each positive integer i, then for positive integers k and n, we have

Ck+n-Ck bk+1[rk+1+rk+2b + .-.

Taking limits in the ^4-adic topology as n approaches infinity, and using
the fact that the ^4-adic topology is Hausdorff, we obtain

C* - Ckbk+1s*+1 where s*+1 y„°°=1 rfc+„h"_1.

It follows that c* — cke Bt for each k^t— 1, and {ct} converges to c*
in the (b)-adic topology, as asserted.

Theorem 4 fails if the assumption that R is Hausdorff in the ^4-adic

topology is dropped. For example, if R is idempotent, then R is complete
in its jR-adic topology, but R need not be complete in its (Z?)-adic topology
for each b in R. For a less trivial example, Z © Z is complete in its

(Z © (0))-adic topology, but not in its ((2) © (0))-adic topology.
Proposition 2 and Theorem 4 yield alternate proofs of Theorems 2 and

3 and Corollary 1 (dropping, in each case, the assumption that R has an
identity).

We remark that in general, R need not be complete in its iTadic topology
if R is complete Hausdorff in its ^4-adic topology, even if A is principal.
Thus let D be an integral domain with identity containing a prime ideal
C (cl9 c2, such that C is countably generated, but C is not the
radical of a finitely generated ideal. (For example, let D
where J is an integral domain with identity and let C ({Z^}^).) The
ring R D [ [ Y] ] is a complete Hausdorff space in its 7)-adic topology.
But if B ({cY I ceC}), then R is not complete in the B-adic topology,
for {c1Y> c1Y+clY2, ...} is a Cauchy sequence in the B-adic topology
which converges to in the (7)-adic topology. If this sequence
converges in the iTadic topology, it must converge to f But

for each positive integer, for if Y.n +1 c\Yl e B, then for some positive
integer k, X„+i c\Yl e (c1 Y,..., ckY), and cj e (cu for each + 1.
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It follows that C yj(cl9..., ck), contrary to our assumptions concerning
C v

Added in proof. Matthew O'Malley has pointed out to the author
that in the remark preceding Theorem 4, the ring k[[X, T5Z]]/^4 is

Hausdorff in its [ (X, Y) + A ] / ^4-adic topology.
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