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Conclusion.

Théorème 1. Soit P un polynôme unitaire à coefficients entiers et qui

ne s'annule pas à l'origine. Pour tout a ^ 2, il existe une constante C

calculable explicitement et qui ne dépend que de degP, \P\2 et K, telle

que si P est réductible alors on a l'inégalité :

ifl(P) +2ufl(P)^C(Logfl)r.

(Où ia (P) désigne le nombre de points x de hauteur majorée par a et tels

que P (x) soit un élément irréductible de A).

Démonstration :

Soient P1 et P2 deux polynômes à coefficients dans A et de produit P.

D'après le lemme 1, nous avons l'inégalité

ifl(P) + 2ua(P)^ua(P1) +ua(P2).

Soit S le nombre 2d~1 | P |2; le lemme 4 montre que | Pi |i et | P2 |x sont

majorés par S.

Nous pouvons maintenant appliquer les lemmes 5 et 6 aux polynômes
P1 et P2. En tenant compte de l'inégalité (1), nous obtenons les majorations

»„(Pj) + m„(P2) ^ w C1(C0Loga)r((degP1),'+1 + (degP2)r + 1)

^ 2w C1(C0Loga)'(degP)r+1

Ceci achève la démonstration du théorème.

Remarque. L'inégalité a 2 n'a été introduite que pour éviter des

complications inutiles. Le théorème reste vrai pourvu que l'on suppose
a l&t a0 avec a0 fixé, a0 > 1, mais cette fois la constante C dépend de a0

Critère 1. S'il existe a ^2 tel que l'on ait l'inégalité

ia(P) +2utt(P) > C (Log a)r

alors le polynôme P est irréductible dans K [X].

V. Deuxième choix de E

Théorème 2. Soit P un polynôme unitaire réductible qui ne s'annule pas
à l'origine et à coefficients dans A. Désignons par S le nombre 2d~1 | P |2,
où d est le degré de P.
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Pour tout entier x, dont tous les conjugués sont strictement supérieurs à

S, l'élément P (x) est réductible dans A.

Démonstration :

D'après le lemme 4 nous savons que si Px désigne un diviseur de P,
alors | Pi \x est majoré par S. Soit alors un isomorphisme quelconque
de K dans C et soit x un entier dont tous les conjugués sont supérieurs
à S. Nous avons les inégalités suivantes

ki(Pl(X>(l ^ | <7f (*) f1 -(|Pi Ix - 1) |ffi(x) Idl_1

^ I *,(*) Idl_1 (I I + 1 - S"'"1 ^ 1

Ceci étant vrai pour tout i, la norme de P1 (x) a un module strictement

supérieur à 1 ; autrement dit P1 (x) n'est pas une unité. Si P est égal au

produit de P1 et d'un polynôme P2, la même démonstration montre que
P2 (x) n'est pas une unité. Dans ces conditions, il est clair que l'élément
P (x) est réductible dans l'anneau A.

Du théorème résultent immédiatement les deux critères suivants:

Critère 2. Soit P un polynôme unitaire à coefficients dans A et qui ne

s'annule pas en zéro et de degré d. S'il existe un élément x entier dont tous
les conjugués ont un module strictement supérieur à 2d~1 | P |2 et tel que
l'élément P (x) soit irréductible dans A, alors le polynôme P est irréductible

sur K.

Critère 2'. Avec les mêmes notations que ci-dessus, s'il existe un entier

rationnel x de module strictement supérieur à 2d~1 |P|2 et tel que P (x)
soit irréductible dans A, alors le polynôme P est irréductible dans K [X].
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