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Conclusion.

THEOREME 1. Soit P un polynéme unitaire a coefficients entiers et qui
ne s'annule pas a [’origine. Pour tout a =2, il existe une constante C
-~ calculable explicitement et qui ne dépend que de deg P, | P ]2 et K, telle
" que si P est réductible alors on a Dinégalité :

i(P) + 2u,(P) = C(Loga)".
(O i, (P) désigne le nombre de points x de hauteur majorée par a et tels

que P (x) soit un élément irréductible de A).

Démonstration :

Soient P, et P, deux polyndmes a coefficients dans A et de produit P.
D’aprés le lemme 1, nous avons I'inégalité

ig(P) + 2u, (P) =uy(Py) + uy(P2).

Soit S le nombre 247! | P|,; le lemme 4 montre que | P, |{ et | P, |, sont
majorés par S.

Nous pouvons maintenant appliquer les lemmes 5 et 6 aux polynomes
P, et P,. En tenant compte de I'inégalité (1), nous obtenons les majorations

Uy (Py) + u,(Py) =w Ci(CyLoga) ((degPy)™ ' + (degPy)"")
= 2w C,(C,Loga)" (degP)"*1.

Ceci achéve la démonstration du théoréme.

Remarque. L’inégalité a =2 n’a été introduite que pour éviter des
complications inutiles. Le théoréme reste vrai pourvu que 1’on suppose
a == o, avec o, fixe, ay > 1, mais cette fois la constante C dépend de «,

CRITERE 1. S’il existe a =72 tel que I’on ait I’inégalité
i,(P) + 2u,(P) > C(Loga)

alors le polynéme P est irréductible dans K [X].
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THEOREME 2. Soit P un polynéme unitaire réductible qui ne s’annule pas

a lorigine et a coefficients dans A. Désignons par S le nombre 2%~ 1 lP | 2
ou d est le degré de P.




— 200 —

Pour tout entier x, dont tous les conjugués sont strictement supérieurs a
S, [’élément P (x) est réductible dans A.

Démonstration :

D’aprés le lemme 4 nous savons que si P; désigne un diviseur de P,
alors [P1 I . est majoré par S. Soit alors ¢; un isomorphisme quelconque
de K dans C et soit x un entier dont tous les conjugués sont supérieurs
a S. Nous avons les inégalités suivantes

[ (PL (1 =10;() " = (I Pyl = Doy (x) [
=10, 1" (1o, ()| + 1 — §) > $471 =1,

Ceci étant vrai pour tout 7, la norme de P, (x) a un module strictement
supérieur a 1; autrement dit P; (x) n’est pas une unité. Si P est égal au
produit de P, et d’un polyndome P,, la méme démonstration montre que
P, (x) n’est pas une unité. Dans ces conditions, il est clair que I’élément
P (x) est réductible dans ’anneau A.

Du théoréme résultent immédiatement les deux critéres suivants:

CRITERE 2. Soit P un polynéme unitaire a coefficients dans A et qui ne
s’annule pas en zéro et de degré d. S’il existe un élément x entier dont tous
les conjugués ont un module strictement supérieur a 2°~' | P |, et tel que
[’élément P (x) soit irréductible dans A, alors le polynéme P est irréductible
sur K.

CRITERE 2'. Avec les mémes notations que ci-dessus, s’il existe un entier
rationnel x de module strictement supérieur @ 2°~* | P |, et tel que P (x)
soit irréductible dans A, alors le polynome P est irréductible dans K [X].
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