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CRITÈRES D'IRRÉDUCTIBILITÉ DE POLYNOMES
SUR UN CORPS DE NOMBRES

par Maurice Mignotte

1. Introduction

Désignons par K un corps de nombres et par A l'anneau des entiers

de K. Nous ne considérerons que des polynômes unitaires à coefficients

dans A.
Un élément x de A sera dit irréductible s'il n'est pas inversible dans

A et s'il n'est pas égal au produit de deux éléments non inversibles de A.

Un polynôme unitaire P à coefficients dans A sera dit irréductible s'il n'est

pas constant et s'il n'est pas égal au produit de deux polynômes non
constants et à coefficients dans A. Du fait que l'anneau A est intégralement
clos, un polynôme unitaire à coefficients dans A est irréductible dans A
si et seulement s'il est irréductible sur K. Dans toute la suite, il importera
de ne pas confondre le fait qu'un polynôme P est irréductible et le fait,
qu'en un point x de A, la valeur P (x) est un élément irréductible de A.

Les deux critères d'irréductibilité qui font l'objet de ce travail sont de

même nature: si un polynôme unitaire et à coefficients dans A prend en
certains points de A suffisamment de valeurs qui sont des unités ou des

éléments irréductibles de A, alors P est nécessairement irréductible.
Le point de départ consiste à remarquer que si P est le produit de deux

polynômes Px et P2 à coefficients dans A et si x est un point de A tel que
P (x) soit une unité ou un élément irréductible de A, alors l'un au moins
des polynômes P1 et P2 prend au point x une valeur qui est une unité de

A. Ceci conduit à chercher des majorations du nombre de points x, contenus
dans certains domaines, où un polynôme Q peut prendre des valeurs qui
sont des unités. Ces majorations font intervenir la hauteur des coefficients
de Q \ pour les appliquer aux polynômes P1 et P2 il est nécessaire de trouver
une majoration des hauteurs des polynômes Pl et P2 en fonction de celle
du polynôme P.

Nous choisirons deux domaines différents pour les points x; dans le
premier cas les points considérés auront une hauteur bornée, dans le second
cas chacun de leurs conjugués sera assez grand. Dans le premier cas nous
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utiliserons le plongement logarithmique du corps K et le fait que l'image
par ce plongement du groupe des unités est un réseau; il suffira de majorer
la norme des images de Q (x) pour des points x de hauteur bornée. Dans
le second cas, nous utiliserons simplement le fait que si x a tous ses

conjugués assez grands il en est de même de Q (x) et donc que Q (x) ne

peut pas être une unité.

II. Une remarque préliminaire

Soit P un polynôme unitaire à coefficients dans A qui soit le produit
de deux polynômes P1 et P2 à coefficients dans A. Les valeurs de ces

polynômes en un point x de A donnent lieu à des remarques évidentes: Si

P (x) est un élément irréductible de A, l'un des deux éléments Pt (x) et

P2 (x) au moins est une unité ; si P (x) est une unité, les deux éléments

Pi (x) et P2 (x) de A sont des unités ; d'où l'inégalité *) :

Lemme 1 :. En désignant, pour chaque partie E de A, et tout polynôme Q

sur A, par u(Q,E) et i (P, E) le nombre d'éléments de E où la valeur de

Q est une unité, respectivement un élément irréductible, on a l'inégalité

i (P, E) + 2u (P, E) ^ u (P1? E) + u (P2, E).

III. Majoration des hauteurs de P1 et P2

Considérons provisoirement un polynôme g à coefficients complexes et

qui ne s'annule pas à l'origine.
Posons

g a0Xd + a±Xd 1 + + a^.

Pour simplifier, nous supposerons g unitaire. Si g est le produit de deux

polynômes unitaires gt et g2, nous cherchons à majorer les coefficients de

gi et g2- Pour ceci, on utilisera le fait que les coefficients de g1 sont certaines

fonctions des racines du polynôme g. Plus précisément, la somme des

coefficients de gt est égale à la somme de 2dl {d1 désigne le degré de gx)

Q Pour plus de détails, voir (1).
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