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CRITÈRES D'IRRÉDUCTIBILITÉ DE POLYNOMES
SUR UN CORPS DE NOMBRES

par Maurice Mignotte

1. Introduction

Désignons par K un corps de nombres et par A l'anneau des entiers

de K. Nous ne considérerons que des polynômes unitaires à coefficients

dans A.
Un élément x de A sera dit irréductible s'il n'est pas inversible dans

A et s'il n'est pas égal au produit de deux éléments non inversibles de A.

Un polynôme unitaire P à coefficients dans A sera dit irréductible s'il n'est

pas constant et s'il n'est pas égal au produit de deux polynômes non
constants et à coefficients dans A. Du fait que l'anneau A est intégralement
clos, un polynôme unitaire à coefficients dans A est irréductible dans A
si et seulement s'il est irréductible sur K. Dans toute la suite, il importera
de ne pas confondre le fait qu'un polynôme P est irréductible et le fait,
qu'en un point x de A, la valeur P (x) est un élément irréductible de A.

Les deux critères d'irréductibilité qui font l'objet de ce travail sont de

même nature: si un polynôme unitaire et à coefficients dans A prend en
certains points de A suffisamment de valeurs qui sont des unités ou des

éléments irréductibles de A, alors P est nécessairement irréductible.
Le point de départ consiste à remarquer que si P est le produit de deux

polynômes Px et P2 à coefficients dans A et si x est un point de A tel que
P (x) soit une unité ou un élément irréductible de A, alors l'un au moins
des polynômes P1 et P2 prend au point x une valeur qui est une unité de

A. Ceci conduit à chercher des majorations du nombre de points x, contenus
dans certains domaines, où un polynôme Q peut prendre des valeurs qui
sont des unités. Ces majorations font intervenir la hauteur des coefficients
de Q \ pour les appliquer aux polynômes P1 et P2 il est nécessaire de trouver
une majoration des hauteurs des polynômes Pl et P2 en fonction de celle
du polynôme P.

Nous choisirons deux domaines différents pour les points x; dans le
premier cas les points considérés auront une hauteur bornée, dans le second
cas chacun de leurs conjugués sera assez grand. Dans le premier cas nous
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utiliserons le plongement logarithmique du corps K et le fait que l'image
par ce plongement du groupe des unités est un réseau; il suffira de majorer
la norme des images de Q (x) pour des points x de hauteur bornée. Dans
le second cas, nous utiliserons simplement le fait que si x a tous ses

conjugués assez grands il en est de même de Q (x) et donc que Q (x) ne

peut pas être une unité.

II. Une remarque préliminaire

Soit P un polynôme unitaire à coefficients dans A qui soit le produit
de deux polynômes P1 et P2 à coefficients dans A. Les valeurs de ces

polynômes en un point x de A donnent lieu à des remarques évidentes: Si

P (x) est un élément irréductible de A, l'un des deux éléments Pt (x) et

P2 (x) au moins est une unité ; si P (x) est une unité, les deux éléments

Pi (x) et P2 (x) de A sont des unités ; d'où l'inégalité *) :

Lemme 1 :. En désignant, pour chaque partie E de A, et tout polynôme Q

sur A, par u(Q,E) et i (P, E) le nombre d'éléments de E où la valeur de

Q est une unité, respectivement un élément irréductible, on a l'inégalité

i (P, E) + 2u (P, E) ^ u (P1? E) + u (P2, E).

III. Majoration des hauteurs de P1 et P2

Considérons provisoirement un polynôme g à coefficients complexes et

qui ne s'annule pas à l'origine.
Posons

g a0Xd + a±Xd 1 + + a^.

Pour simplifier, nous supposerons g unitaire. Si g est le produit de deux

polynômes unitaires gt et g2, nous cherchons à majorer les coefficients de

gi et g2- Pour ceci, on utilisera le fait que les coefficients de g1 sont certaines

fonctions des racines du polynôme g. Plus précisément, la somme des

coefficients de gt est égale à la somme de 2dl {d1 désigne le degré de gx)

Q Pour plus de détails, voir (1).
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produits de certaines racines de g affectés du coefficient ± 1 *). Il est clair

que chacun de ces produits est majoré en module par le produit des modules
des racines de g qui ont un module supérieur à 1. Pour majorer ce produit
nous utiliserons un lemme classique de la théorie des fonctions analytiques.

00

Lemme 2. Soit f(z) YPm2"1 une fonction holomorphe dans le disque
o

| z | ±= 1 et telle que /(O) soit non nulle. Soient £1? £v les racines de f
dans le disque | z | < 1 (répétées chacune autant de fois que son ordre de

multiplicité). On a l'inégalité:
V 00

I feo I n ICyl)."1^ S IM2)*.
j= 1 0

Démonstration :

Posons

v 1 — T. z 00

h (z) /(z) n Z cmz
j= 1 Z - 0 0

La fonction h est holomorphe dans le disque \ z \ ^ 1. De plus, les modules
de/et de h coïncident sur le cercle | z | 1. D'où l'égalité:

2ti 2n

d j \f(ew)\2d6 1 J \h(ew)\2dO.
0 o

En appliquant la formule de Parseval, on en déduit la relation

00 00

Z I brnI2Z I I2
0 o

Mais on a l'égalité

l'o I |A(0)| |6o|(n loi)"1-
En reportant cette valeur de | c0|dans l'égalité précédente, on obtient
immédiatement l'inégalité

1) Si ^ est de la forme + + <xdl et si Ç2,..., Z,dl désignent
Jes zeros de g1 (chaque racine figurant un nombre de fois égal à son ordre multiplicité)on sait qu'au signe près, chaque coefficient ak de gl est la somme de tous les produitst °rme jl °Ù leS indicesA' —»A sont tous distincts. Ainsi olr est la somme
de \k produits de cette forme. La somme des ak est donc égale à la somme de 2di
produits du type (-!)* Ç;i... ÇJk.
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iM(n Kji)" ^(çi'-i2)*-
Ceci achève la démonstration du lemme.

Revenons au polynôme g. D'après le lemme 2, le produit des racines
de g situées dans le disque | z | ^ 1 a un inverse dont le module est majoré

par la quantité | |2^ | a0 |_1. Puisque g est unitaire le produit de

toutes ses racines a pour module \ ad\. Ceci montre que le produit de

racines de g situées à l'extérieur du disque | z | ±= 1 a un module majoré

par Y, I cLi\ j • De cette majoration et des remarques qui précèdent le

lemme 2, on déduit que la somme des modules des coefficients du

polynôme gx est majorée par 2dl £ | at |2
V o

Lemme 3. Soit g a0Xd + a1Xd~i + + ad un polynôme unitaire à

coefficients complexes qui ne s'annule pas à l'origine. Soit gt un polynôme
unitaire de degré d1 qui divise g. Alors, la somme des modules des coefficients

/d
de gt est majorée par 2dl I ^ | at |2

V 0

Cette majoration va nous permettre de majorer les hauteurs des

polynômes Px et P2 en fonction de celle de P. Auparavant, il nous faut introduire
plusieurs définitions.

Soit n le degré du corps de nombres K. On sait qu'il y a exactement n

isomorphismes distincts ot du corps K dans le corps des complexes.
Soit Q un polynôme unitaire à coefficients dans K. Si Q est égal à

b0Xd + blLXd~1 + + bd, on pose

\Q\x max £ | at (bj) | | max (L Ki (bj) |2j
i 0 i \ 0 /

Soit P un polynôme unitaire à coefficients dans A et qui ne s'annule

pas à l'origine et soit Px un polynôme unitaire à coefficients dans A qui
divise P. En appliquant le lemme 3 aux différents polynômes otP et oiP1

(notations évidentes on obtient la majoration suivante:

Lemme 4. Soit P un polynôme unitaire à coefficients dans A qui ne s'annule

pas à l'origine. Soit Px un polynôme unitaire à coefficients dans A et qui
divise P. On a l'inégalité:

V. D'où:
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I Pi Ii ^dl\P\2,
où d1 désigne le degré de P1#

IV. Premier choix de ë

Si x est un élément de A, on définit la hauteur de x par la formule

h (x) max | (x) |

i

Soit Q un polynôme unitaire à coefficients dans A et qui ne s'annule

pas à l'origine. Nous nous proposons de majorer le nombre de points x
de A de hauteur au plus égale à a et tels que Q (x) soit une unité.

Nous allons utiliser le plongement logarithmique de K*. Il nous faut
encore introduire quelques définitions.

Soit r1 le nombre des indices i tels que l'image de K par at soit inclue
dans le corps des réels; alors les autres indices sont en nombre pair 2r2.
On peut numéroter les de sorte que l'image de soit contenue dans R

pour i ^ /q et que crj + r2
ôj pour rx + 1 ^ / ^ + r2.

Le plongement logarithmique de K* dans R'*1"1"''2 est l'application L
définie par la flèche

x ->• (Log I ff! (x) I,Log I an + r2 (x) I

Soient A* l'ensemble des entiers non nuls et U l'ensemble des unités
de A. On sait que le noyau de la restriction de L à A* est constitué par
les racines de l'unité contenues dans K.

L'image L(U) est contenue dans l'hyperplan W d'équation

ri ri + r2

Z yt + 2 Z yj °-
1=1 j— r1 + l

Ceci ne fait que traduire le fait que x est une unité si et seulement si
sa norme a pour module 1.

On montre facilement que l'image L(U) est un sous-groupe discret
de W)son rang est donc majoré par r+ - 1. En fait le théorème
de Dirichlet dit que le rang de L(U)estexactement r, mais cette majoration

nous suffira.
Revenons au polynôme Q et posons

«a (6) Card {x | x e A, h(x)et Q(x)eU}
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Nous cherchons à majorer ua(Q).
Un polynôme de degré donné ne peut prendre une certaine valeur

qu'un nombre de fois au plus égal à son degré.
D'où l'inégalité

ua (Q) ^ deg Q card ({Q(x) \ x e A et h (x) ^ a } n U).

Désignons par w le nombre de racines de l'unité contenues dans K.

D'après la caractérisation du noyau de L\V et l'inégalité précédente, on
obtient :

(1) ua (g) ^ w deg Q card (JnR),

où on a posé

J L({Q(x)\xe A et h(x)^u}), R L(U).

Pour majorer le nombre d'éléments de J n R, nous procéderons en deux

étapes :

1° L'image J est contenue dans une certaine boule B de l'espace Rri+r2.

2° On majore le nombre d'éléments de R contenus dans la boule B.

Première étape.

Soit S un réel ^ 1 qui sera fixé ultérieurement. On suppose que le

polynôme satisfait à la condition

IQ Ii ^s.
Désignons par || || la norme euclidienne de Rri+r2.

Démontrons le résultat suivant:

Lemme 5. Soit a ^ 2. Il existe une constante C0 explicite, qui ne dépend

que de S et de K, telle que si x vérifie h(x) a et si Q (x) est non nul

on ait Vinégalité:

||L(Ô(x)(|| ^ C0.Logdeg

Démonstration :

Posons xr Q (x) pour un certain x de hauteur majorée par a et tel

que Q (x) soit non nul.
On a d'abord l'inégalité évidente

I lU*') 11 — Oi + ri) max (| Log | at (x') | |).
i
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Pour majorer | Log | at (x') | |, on majore Log | at (x') | puis on le minore.

Autrement dit, on encadre | (x') |.

— majoration des | at (x') |.

Reprenons la notation

Q b0Xd + b.X"'1 + + bd.

On a alors l'inégalité

kiOO I — Z \^i(bjX4~j) |

j=o

On en déduit facilement l'inégalité

| <7i(x') | S ad.

— minoration des | (x') |.

Le procédé est classique. Du fait que x' est entier non nul, il a une norme
au moins égale à 1 en module. D'où l'inégalité

kiOOi — n K-0or1-

Grâce à la majoration précédente des | a} (x') |, on obtient l'inégalité

|<r,(x')l ^ISaT^ISaT".
De cet encadrement des | oi (x') |, on déduit la majoration

| Log | at(*')| | ^ Log

D'où l'inégalité

11 L(x')11^ (r1 +r2.Log Sa*).

Si on pose

a-I+LÎI,
Log 2

en tenant compte de l'hypothèse a ^ 2, on voit que l'on a

Log(Sad) ^ X Log a

D'où finalement l'inégalité

Il L(x') H ^degQ C0 .Loga



où on a posé

C0 n{r1 +r2) À

Ceci achève la démonstration du lemme.
Le lemme équivaut à dire que J est contenu dans la boule B de rayon j

b deg Q C0 Log a. Remarquons que b est au moins égal à Log 2. |
[j

Deuxième étape. £j

I
Lemme 6. Soit b un réel au moins égal à Log 2. Il existe une constante [j

$
C± explicite, qui ne dépend que de K, telle que le nombre d'éléments du p

réseau R contenus dans la boule B de rayon b soit majoré par Cxbr. |
S

Démonstration :
[1

Soit D le parallélotope fondamental de R. jj

Il est clair que le nombre m de points de R contenus dans la boule B N

est majoré par le nombre de mailles de R qui rencontrent B. De plus toutes | j

les mailles qui rencontrent B sont contenues dans la boule B' de rayon j

b + S, où S désigne le diamètre de D.
En comparant les volumes (calculés dans W), on obtient l'inégalité ;

m vol (D) gS vol B'. I

Soit V le volume de la boule unité. L'inégalité précédente conduit à M

m ^ V{b + SJ (vol D)"1.

Comme b est au moins égal à Log 2, le nombre b + S est majoré par fib M

S |!
OÙ LL vaut 1 + ;

Log 2 11

D'où l'inégalité

m ^ C16r, b

rj
où on a posé | j

Q V\x (vol D)-1. b

On voit que connaissant K on peut calculer explicitement S et vol D, donc g
Cx est bien explicite. Ceci achève la démonstration du lemme. R
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Conclusion.

Théorème 1. Soit P un polynôme unitaire à coefficients entiers et qui

ne s'annule pas à l'origine. Pour tout a ^ 2, il existe une constante C

calculable explicitement et qui ne dépend que de degP, \P\2 et K, telle

que si P est réductible alors on a l'inégalité :

ifl(P) +2ufl(P)^C(Logfl)r.

(Où ia (P) désigne le nombre de points x de hauteur majorée par a et tels

que P (x) soit un élément irréductible de A).

Démonstration :

Soient P1 et P2 deux polynômes à coefficients dans A et de produit P.

D'après le lemme 1, nous avons l'inégalité

ifl(P) + 2ua(P)^ua(P1) +ua(P2).

Soit S le nombre 2d~1 | P |2; le lemme 4 montre que | Pi |i et | P2 |x sont

majorés par S.

Nous pouvons maintenant appliquer les lemmes 5 et 6 aux polynômes
P1 et P2. En tenant compte de l'inégalité (1), nous obtenons les majorations

»„(Pj) + m„(P2) ^ w C1(C0Loga)r((degP1),'+1 + (degP2)r + 1)

^ 2w C1(C0Loga)'(degP)r+1

Ceci achève la démonstration du théorème.

Remarque. L'inégalité a 2 n'a été introduite que pour éviter des

complications inutiles. Le théorème reste vrai pourvu que l'on suppose
a l&t a0 avec a0 fixé, a0 > 1, mais cette fois la constante C dépend de a0

Critère 1. S'il existe a ^2 tel que l'on ait l'inégalité

ia(P) +2utt(P) > C (Log a)r

alors le polynôme P est irréductible dans K [X].

V. Deuxième choix de E

Théorème 2. Soit P un polynôme unitaire réductible qui ne s'annule pas
à l'origine et à coefficients dans A. Désignons par S le nombre 2d~1 | P |2,
où d est le degré de P.



— 200 —

Pour tout entier x, dont tous les conjugués sont strictement supérieurs à

S, l'élément P (x) est réductible dans A.

Démonstration :

D'après le lemme 4 nous savons que si Px désigne un diviseur de P,
alors | Pi \x est majoré par S. Soit alors un isomorphisme quelconque
de K dans C et soit x un entier dont tous les conjugués sont supérieurs
à S. Nous avons les inégalités suivantes

ki(Pl(X>(l ^ | <7f (*) f1 -(|Pi Ix - 1) |ffi(x) Idl_1

^ I *,(*) Idl_1 (I I + 1 - S"'"1 ^ 1

Ceci étant vrai pour tout i, la norme de P1 (x) a un module strictement

supérieur à 1 ; autrement dit P1 (x) n'est pas une unité. Si P est égal au

produit de P1 et d'un polynôme P2, la même démonstration montre que
P2 (x) n'est pas une unité. Dans ces conditions, il est clair que l'élément
P (x) est réductible dans l'anneau A.

Du théorème résultent immédiatement les deux critères suivants:

Critère 2. Soit P un polynôme unitaire à coefficients dans A et qui ne

s'annule pas en zéro et de degré d. S'il existe un élément x entier dont tous
les conjugués ont un module strictement supérieur à 2d~1 | P |2 et tel que
l'élément P (x) soit irréductible dans A, alors le polynôme P est irréductible

sur K.

Critère 2'. Avec les mêmes notations que ci-dessus, s'il existe un entier

rationnel x de module strictement supérieur à 2d~1 |P|2 et tel que P (x)
soit irréductible dans A, alors le polynôme P est irréductible dans K [X].
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