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CRITERES D’IRREDUCTIBILITE DE POLYNOMES
SUR UN CORPS DE NOMBRES

par Maurice MIGNOTTE

I. INTRODUCTION

Désignons par K un corps de nombres et par 4 ’anneau des entiers
de K. Nous ne considérerons que des polyndmes unitaires a coeflicients
dans A.

Un élément x de A4 sera dit irréductible s’il n’est pas inversible dans
A et s’il n’est pas égal au produit de deux éléments non inversibles de A.
Un polyndme unitaire P & coefficients dans A4 sera dit irréductible s’il n’est
pas constant et s’il n’est pas égal au produit de deux polyndmes non
constants et a coefficients dans 4. Du fait que ’'anneau A4 est intégralement
clos, un polyndme unitaire a coefficients dans A est irréductible dans A
si et seulement s’il est irréductible sur K. Dans toute la suite, il importera
de ne pas confondre le fait qu’'un polyndome P est irréductible et le fait,
qu’en un point x de A, la valeur P (x) est un élément irréductible de A.

Les deux critéres d’irréductibilité qui font 'objet de ce travail sont de
méme nature: si un polyndme unitaire et a coefficients dans 4 prend en
certains points de A suffisamment de valeurs qui sont des unités ou des
éléments irréductibles de A4, alors P est nécessairement irréductible.

Le point de départ consiste a remarquer que si P est le produit de deux
polyndmes P, et P, a coefficients dans A et si x est un point de A tel que
P (x) soit une unité ou un élément irréductible de A4, alors I'un au moins
des polynomes P; et P, prend au point x une valeur qui est une unité de
A. Ceci conduit a chercher des majorations du nombre de points x, contenus
dans certains domaines, ol un polynéome Q peut prendre des valeurs qui
sont des unités. Ces majorations font intervenir la hauteur des coefficients
de Q; pour les appliquer aux polyndmes P, et P, il est nécessaire de trouver
une majoration des hauteurs des polyndémes P; et P, en fonction de celle
du polyndme P.

Nous choisirons deux domaines différents pour les points x; dans le
premier cas les points considérés auront une hauteur bornée, dans le second
cas chacun de leurs conjugués sera assez grand. Dans le premier cas nous
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utiliserons le plongement logarithmique du corps K et le fait que I’'image
par ce plongement du groupe des unités est un réseau; il suffira de majorer
la norme des images de Q (x) pour des points x de hauteur bornée. Dans
le second cas, nous utiliserons simplement le fait que si x a tous ses

conjugués assez grands il en est de méme de Q (x) et donc que Q (x) ne
peut pas €tre une unité.

II. UNE REMARQUE PRELIMINAIRE

Soit P un polyndme unitaire a coefficients dans A qui soit le produit
de deux polyndmes P, et P, a coefficients dans 4. Les valeurs de ces poly-
nomes en un point x de A donnent liecu a des remarques évidentes: Si
P (x) est un élément irréductible de 4, I'un des deux éléments P, (x) et
P, (x) au moins est une unité; si P (x) est une unité, les deux éléments
P, (x) et P, (x) de 4 sont des unités; d’ou l'inégalité '):

LEMME 1:. En désignant, pour chaque partie E de A, et tout polynome Q
sur A, par u(Q, E) et i (R, E) le nombre d’éléments de E ou la valeur de
QO est une unité, respectivement un élément irréductible, on a [’inégalité

i(P,E) + 2u(P,E) =u(P,,E) + u(P,,E).

ITI. MAJORATION DES HAUTEURS DE P; ET P,

Considérons provisoirement un polyndome g a coefficients complexes et
qui ne s’annule pas a I’origine.
Posons

g =acX?+a, X7+ .. +a,.

Pour simplifier, nous supposerons g unitaire. Si g est le produit de deux
polyndmes unitaires g, et g,, nous cherchons & majorer les coefficients de
g et g,. Pour ceci, on utilisera le fait que les coefficients de g, sont certaines
fonctions des racines du polyndme g. Plus précisément, la somme des
coefficients de g, est égale & la somme de 2% (d, désigne le degré de g,)

1) Pour plus de détails, voir (1).
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produits de certaines racines de g affectés du coefficient + 11). Il est clair
que chacun de ces produits est majoré en module par le produit des modules
B des racines de g qui ont un module supérieur a 1. Pour majorer ce produit
¥ nous utiliserons un lemme classique de la théorie des fonctions analytiques.

LEMME 2. Soit f(z) = Y b,z™ une fonction holomorphe dans le disque
0

’Zl =1 et telle que f(0) soit non nulle. Soient {,, ..., {, les racines de f
* dans le disque ]Z] < 1 (répétées chacune autant de fois que son ordre de
- multiplicité). On a l’inégalité :

wuq@gw%q;wwﬁ

Démonstration :

Posons

v o1 =7, ©
h) = @) T 2 = 3 eus

J z —{;

La fonction / est holomorphe dans le disque | z | = 1. De plus, les modules
~de fet de h coincident sur le cercle | z | = 1. D’olt I’égalité:

1 n i0y |2 __1 " i\ |2
thlf(e)l do -Etflh(e)l do .
0 0

En appliquant la formule de Parseval, on en déduit la relation

[e¢] o0
2lbul? =Y,
0 0

Mais on a I’égalité

wu=mwvwm(ﬂm@“.

‘En reportant cette valeur de | co | dans I’égalité précédente, on obtient
'immédiatement I’inégalité

| .
1) Sig, estdela forme ag X9t + oy X414 L 4 oy, et si G, Gy ooy €4y désignent
les zéros de g, (chaque racine figurant un nombre de fois €gal 4 son ordre multiplicité),
-on sait qu’au signe prés, chaque coefficient oy de g; est la somme de tous les produits
~de la forme ¢ ji+ Cjz OU les indices j,, ..., , sont tous distincts. Ainsi oy est la somme

‘de ZI) produits de cette forme. La somme des oy est donc égale 3 la somme de 24
produits du type (=1)* ¢;; ... ¢,
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Ceci acheve la démonstration du lemme.
Revenons au polyndme g. D’aprés le lemme 2, le produit des racines
de g situées dans le disque | z | = 1 a un inverse dont le module est majoré

par la quantité <Z | a; | > | ao |~ *. Puisque g est unitaire le produit de

toutes ses racines a pour module |a,|. Ceci montre que le produit de
racines de g situées & I'extérieur du disque |z | =1 a un module majoré

/d 1

par KZ | a; |2> . De cette majoration et des remarques qui précedent le
0

lemme 2, on déduit que la somme des modules des coefficients du poly-

d +
ndéme g; est majorée par 24 <Z | a; |2> . D’ou:
0

LEMME 3. Soit ¢ = agX’ + a, X*" ! + ... + a; un polynéme unitaire a
coefficients complexes qui ne s’annule pas a [’origine. Soit g{ un polynéme
unitaire de degré d, qui divise g. Alors, la somme des modules des coefficients

1

2

d
de g, est majorée par 2% (Z | a; |2> :
0

Cette majoration va nous permettre de majorer les hauteurs des poly-
ndmes P, et P, en fonction de celle de P. Auparavant, il nous faut introduire
plusieurs définitions.

Soit n le degré du corps de nombres K. On sait qu’il y a exactement #

isomorphismes distincts ¢; du corps K dans le corps des complexes.

i
i‘,‘
5
5

ST

Soit Q un polyndme unitaire a coeflicients dans K. Si Q est égal a

boX* + b X' + ... + b, on pose

01 = max ¥ oi(b) ], 101y = max (T lai(b) )

Soit P un polyndme unitaire a coefficients dans 4 et qui ne s’annule
pas a l'origine et soit P, un polyndme unitaire & coefficients dans 4 qui -
divise P. En appliquant le lemme 3 aux différents polyndémes o, P et o;P;

(notations évidentes !), on obtient la majoration suivante:

LEMME 4. Soit P un polynéme unitaire @ coefficients dans A qui ne s’annule
pas @ origine. Soit Py un polynéme unitaire a coefficients dans A et qui

divise P. On a [’inégalité :

255,
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]P1[1 é2d1|Pl2>

oil d, désigne le degré de P,.

1V. PREMIER CHOIX DE E

Si x est un élément de A4, on définit la hauteur de x par la formule

h(x) = max |o;(x)] .
i

Soit Q un polynéme unitaire & coeflicients dans A4 et qui ne s’annule
pas a l'origine. Nous nous proposons de majorer le nombre de points x
de 4 de hauteur au plus égale a a et tels que Q (x) soit une unite.

Nous allons utiliser le plongement logarithmique de K*. Il nous faut
encore introduire quelques définitions.

Soit r; le nombre des indices 7 tels que I'image de K par o; soit inclue

~ dans le corps des réels; alors les autres indices sont en nombre pair 2r,.

On peut numéroter les o; de sorte que 'image de o; soit contenue dans R
pour [ =r, et que o4, = 6’ pour ry + 1 =j=r, + r,.

Le plongement logarithmique de K* dans R"*" est P’application L
définie par la fléche

X = (Log | 04 (x) l: waag LOg | 0r1+r2 (x) l) g

Soient A* I’ensemble des entiers non nuls et U ’ensemble des unités
de A. On sait que le noyau de la restriction de L & A* est constitué par
les racines de 1'unité contenues dans K.

L’image L (U) est contenue dans I’hyperplan W d’équation

Fy ritrg
i=1 j=ri+1

Ceci ne fait que traduire le fait que x est une unité si et seulement si
sa norme a pour module 1.

On montre facilement que I'image L (U) est un sous-groupe discret
de W; son rang est donc majoré par r = r; + r, — 1. En fait le théoréme

de Dirichlet dit que le rang de L (U) est exactement r, mais cette majora-
tion nous suffira.

Revenons au polyndme Q et posons

u,(Q) = Card{x|xed, h(x) =a et Q(x)eU}
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Nous cherchons & majorer u, (Q).

Un polyndme de degré donné ne peut prendre une certaine valeur
qu'un nombre de fois au plus égal a4 son degré.

D’ou I'inégalité

u,(Q) =degQ .card({Q(x)[xed et h(x)=a}n U).

Désignons par w le nombre de racines de 1'unité contenues dans K.
D’aprés la caractérisation du noyau de L,y et 'inégalité précédente, on
obtient:

(1) u,(Q) =w.degQ .card(JNnR),
ou on a posé
J=L{0Kx)|xed et h(x)=u}), R = L(U).

Pour majorer le nombre d’éléments de J n R, nous procéderons en deux
étapes:
10 L’image J est contenue dans une certaine boule B de ’espace R"*"2,

20 On majore le nombre d’éléments de R contenus dans la boule B.

Premiere étape.

Soit § un réel =1 qui sera fixé ultérieurement. On suppose que le
polyndme satisfait a la condition

12l =S.

Désignons par || || la norme euclidienne de R™*".
Démontrons le résultat suivant:

LEMME 5. Soit a = 2. 1l existe une constante C, explicite, qui ne dépend
que de S et de K, telle que si x vérifie h(x) = a et si Q (x) est non nul
on ait ’inégalité :

| L(Qx)(|| =C,.Loga.degQ.

Démonstration :

Posons x’ = Q (x) pour un certain x de hauteur majorée par a et tel

que Q (x) soit non nul.
On a d’abord I'inégalité évidente

| LG") || = (ry +73) max (| Log |, (x) 1)

B I I T PR Pty

IS A SR TR e
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puis on le minore.

Pour majorer | Log | o; (x") | |, on majore Log | o; (x")
Autrement dit, on encadre | o; (x) [

— majoration des | o, (x") |.
Reprenons la notation
Q B bon + blxd—l + N + bd'

On a alors I'inégalité

061 = ¥ o)1

On en déduit facilement I'inégalité
lo;(x) | =Sa’.

— minoration des | o; (x')

Le procédé est classique. Du fait que x" est entier non nul, il a une norme
au moins égale a 1 en module. D’ou I'inégalité

los(x) ] =[] lo;(x) |77

JFi

Grace a la majoration précédente des | o; (x") |, on obtient I'inégalité

lo;(x) | =] Sa® '™ = Sa’ |7
- De cet encadrement des | o; (x") |, on déduit la majoration
| Log|o;(x) || =<n.Log(Sa%.
D’ou T'inégalité
| L(x") || =(ry +r)n.Log(Sa%).
Si on pose

Log S

A=1+ ,
Log?2

en tenant compte de I’hypothese a = 2, on voit que 'on a
Log(Sa?) = 1Loga.
" D’ou finalement Iinégalité

I|L(x")|| =degQ.C,.Loga
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ol on a posé
CO = I’l(l”l-l-l’z).l.
Cect achéve la démonstration du lemme.

Le lemme équivaut a dire que J est contenu dans la boule B de rayon
b=degQ.C,.Loga Remarquons que b est au moins égal a Log 2.

Deuxieme étape.

LeEMME 6. Soit b un réel au moins égal a Log 2. Il existe une constante
C, explicite, qui ne dépend que de K, telle que le nombre d’éléments du
réseau R contenus dans la boule B de rayon b soit majoré par Cb".

Démonstration :

Soit D le parallélotope fondamental de R.

Il est clair que le nombre m de points de R contenus dans la boule B
est majoré par le nombre de mailles de R qui rencontrent B. De plus toutes
les mailles qui rencontrent B sont contenues dans la boule B’ de rayon
b + S, ou S désigne le diamétre de D.

En comparant les volumes (calculés dans W), on obtient I'inégalité

m . vol (D) = vol B'.
Soit V le volume de la boule unité. L’inégalité précédente conduit a
m =V (b+S) (vol D)™ 1.

Comme b est au moins égal & Log 2, le nombre b + S est majoré par ub

ou u vaut 1 + .
a Log 2

D’ou I'inégalité
m = C,b",
ol on a posé

C, = Vu(vol D)™ 1.

On voit que connaissant K on peut calculer explicitement S et vol D, donc

C, est bien explicite. Ceci achéve la démonstration du lemme.

PPV
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Conclusion.

THEOREME 1. Soit P un polynéme unitaire a coefficients entiers et qui
ne s'annule pas a [’origine. Pour tout a =2, il existe une constante C
-~ calculable explicitement et qui ne dépend que de deg P, | P ]2 et K, telle
" que si P est réductible alors on a Dinégalité :

i(P) + 2u,(P) = C(Loga)".
(O i, (P) désigne le nombre de points x de hauteur majorée par a et tels

que P (x) soit un élément irréductible de A).

Démonstration :

Soient P, et P, deux polyndmes a coefficients dans A et de produit P.
D’aprés le lemme 1, nous avons I'inégalité

ig(P) + 2u, (P) =uy(Py) + uy(P2).

Soit S le nombre 247! | P|,; le lemme 4 montre que | P, |{ et | P, |, sont
majorés par S.

Nous pouvons maintenant appliquer les lemmes 5 et 6 aux polynomes
P, et P,. En tenant compte de I'inégalité (1), nous obtenons les majorations

Uy (Py) + u,(Py) =w Ci(CyLoga) ((degPy)™ ' + (degPy)"")
= 2w C,(C,Loga)" (degP)"*1.

Ceci achéve la démonstration du théoréme.

Remarque. L’inégalité a =2 n’a été introduite que pour éviter des
complications inutiles. Le théoréme reste vrai pourvu que 1’on suppose
a == o, avec o, fixe, ay > 1, mais cette fois la constante C dépend de «,

CRITERE 1. S’il existe a =72 tel que I’on ait I’inégalité
i,(P) + 2u,(P) > C(Loga)

alors le polynéme P est irréductible dans K [X].

V. DEUXIEME CHOIX DE E

THEOREME 2. Soit P un polynéme unitaire réductible qui ne s’annule pas

a lorigine et a coefficients dans A. Désignons par S le nombre 2%~ 1 lP | 2
ou d est le degré de P.
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Pour tout entier x, dont tous les conjugués sont strictement supérieurs a
S, [’élément P (x) est réductible dans A.

Démonstration :

D’aprés le lemme 4 nous savons que si P; désigne un diviseur de P,
alors [P1 I . est majoré par S. Soit alors ¢; un isomorphisme quelconque
de K dans C et soit x un entier dont tous les conjugués sont supérieurs
a S. Nous avons les inégalités suivantes

[ (PL (1 =10;() " = (I Pyl = Doy (x) [
=10, 1" (1o, ()| + 1 — §) > $471 =1,

Ceci étant vrai pour tout 7, la norme de P, (x) a un module strictement
supérieur a 1; autrement dit P; (x) n’est pas une unité. Si P est égal au
produit de P, et d’un polyndome P,, la méme démonstration montre que
P, (x) n’est pas une unité. Dans ces conditions, il est clair que I’élément
P (x) est réductible dans ’anneau A.

Du théoréme résultent immédiatement les deux critéres suivants:

CRITERE 2. Soit P un polynéme unitaire a coefficients dans A et qui ne
s’annule pas en zéro et de degré d. S’il existe un élément x entier dont tous
les conjugués ont un module strictement supérieur a 2°~' | P |, et tel que
[’élément P (x) soit irréductible dans A, alors le polynéme P est irréductible
sur K.

CRITERE 2'. Avec les mémes notations que ci-dessus, s’il existe un entier
rationnel x de module strictement supérieur @ 2°~* | P |, et tel que P (x)
soit irréductible dans A, alors le polynome P est irréductible dans K [X].
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