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la condition de majoration sur n pouvant s'écrire (ici encore pour m assez

grand) :

n < Cm1/2k.

Il est clair qu'en général rx est trop grand pour pouvoir être « presque

annulé» par le terme - (ocn + ß), mais nous pouvons résoudre cette

difficulté de la même manière que nous l'avons fait pour les sommes de

cubes. On extraira donc la plus grande puissance 2k-ièmo inférieure ou égale

à ru puis on répétera ce processus:

rtzx2t + r2

f / m\(*-D/<navec 0 < r2 < k < kRM r c2m? 7 ——j—

z22k + r3 avec

rt_x zt^x2k + rt avec 0 < rt < ctmy

En prenant t tel que / soit supérieur à l/2k, il sera alors possible

(toujours pour m assez grand) de choisir n de telle façon que le reste final
r rt — (ccn + ß) vérifie

r < a

et nous avons ainsi obtenu le résultat cherché: pour A a, il existe toujours
r < A tel que m — r soit somme de T S + QR + t — 1 puissances
2/c-ièmes.

Appendice

Tableau des valeurs ou des meilleurs encadrements de G (k) et de g (k)
actuellement connus pour les petites valeurs de k:

k 2 3 4 5 6 7 8 9 10

G(k) 4 4-7 16 6-23 9-36 8-52 32-73 13-99 12-122

g(k) 4 9 19-30 37 73 143 279 548 1079
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