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à Q, ainsi que son enveloppe convexe h (S). Puis on considère les sous-

ensembles T et T' constitués par les formes {alx1 + + a5x5)lk vérifiant

af + + a2 < 1, les at appartenant respectivement à Q et à R. On a

l'inclusion h (T) c= h (S), cependant que h (T) et h (T') ont même intérieur.

On étudie ensuite l'intégrale

Jy (u i^i T • • • T a5x5)2k da± da 5 / J y> da ± dci 5

9* étant l'hypersphère af + + a
2 < 1)

et on établit, à l'aide d'un banal changement de variables, qu'elle est égale

à c {xx2 + + X52/, avec

c t\2k dti dt5 I \ydt1... dt5) > 0

La forme / c{xl2 + + x52)k se trouve par conséquent à l'intérieur
de h (T'), donc de h (T), donc de h (S), ainsi d'ailleurs que toutes les formes
X f(yl réel g [0,1]). Et on peut conclure en choisissant X tel que Xc e Q.

Mais nous pouvons faire un peu mieux: en effet la forme/est à l'intérieur
de h (S) tandis que la forme g x52 est dans S donc dans la variété affine

support de S; ce qui permet d'en déduire qu'il existe fi0 réel > 0 tel que,

pour tout 11 réel g [0, fi0], la forme/ — ng se trouve dans h (S), ainsi d'ailleurs

que toutes les formes Xf — Xfig (X réel g [0, 1]). Nous choisissons alors
X et ji tels que Xc et X(i soient rationnels et, en utilisant les résultats rappelés
sur les ensembles convexes et les vecteurs à coordonnées rationnelles, nous
en déduisons l'identité cherchée.

10. Théorème de Hilbert. Fin de la démonstration

Théorème. Pour tout entier positifk il existe des entiers positifs A A (k)
et T T (k) tels que tout intervalle [m — A, m] contienne un nombre qui
soit somme de T puissances 2k-ièmes.

Corollaire (théorème de Hilbert). Pour tout entier positif n, g (n) est

fini.

On pourra remarquer que la recherche d'une majoration explicite de

g (2k) en utilisant notre démonstration dépend essentiellement des constantes
Met mt qui interviennent dans l'identité fondamentale, les autres constantes
(celles que l'on trouve dans l'identité relative au problème facile de Waring
comme celles qui interviendront dans la suite de la démonstration) étant
aisément estimables ou majorables.
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Nous allons donc montrer que, pour tout entier m, il existe r < A tel

que m — r soit somme de T puissances 2&-ièmes (rappelons que les diverses

constantes que nous allons rencontrer: R, M, ont déjà été définies, soit

au paragraphe 8 soit au paragraphe 9, et qu'elles dépendent toutes de k,
et de k seulement). Si lk est la plus grande puissance fc-ième inférieure ou

m
égale à nous pouvons tout d'abord écrire

1 m YM / m \1/fc
m R.Ml + avec -( < l <1

2 \rmJ

et 0 < r± < kRM
m \

{'RM
(fc-D/fc

(la constante - n'est pas essentielle; en toute rigueur, l'inégalité où elle

figure n'est vérifiée que pour m > m0 (/t), mais il nous semble inutile
d'alourdir notre démonstration avec de tels détails qui ne peuvent avoir

d'importance que dans la recherche éventuelle d'une majoration explicite
de g (2k)).

Nous pouvons maintenant, en utilisant le corollaire du lemme qui
énonce l'identité fondamentale, écrire

R QR

m£ Xi2k + Z uh2k + r1,
i=1 h=1

lfmles X; étant des entiers arbitraires inférieurs ou égaux à ——
J2\RM)

Il nous faut alors employer le lemme sur l'identité relative au problème
facile de Waring. Nous supposerons que l'on a | ß | < | a |, ce qui est

toujours possible par une translation sur n. Définissons

a max b max | bjai |

i i

1(1(my/2*)de sorte que pour tout n<—< —= > - nous pouvons toujours
a{^2\RMJ j

poser, pour tout i, xt - atn + bt. Ce qui permet d'écrire

s QR

mÉ yj2k+ E uh2k +rt -
j=1 h=1



la condition de majoration sur n pouvant s'écrire (ici encore pour m assez

grand) :

n < Cm1/2k.

Il est clair qu'en général rx est trop grand pour pouvoir être « presque

annulé» par le terme - (ocn + ß), mais nous pouvons résoudre cette

difficulté de la même manière que nous l'avons fait pour les sommes de

cubes. On extraira donc la plus grande puissance 2k-ièmo inférieure ou égale

à ru puis on répétera ce processus:

rtzx2t + r2

f / m\(*-D/<navec 0 < r2 < k < kRM r c2m? 7 ——j—

z22k + r3 avec

rt_x zt^x2k + rt avec 0 < rt < ctmy

En prenant t tel que / soit supérieur à l/2k, il sera alors possible

(toujours pour m assez grand) de choisir n de telle façon que le reste final
r rt — (ccn + ß) vérifie

r < a

et nous avons ainsi obtenu le résultat cherché: pour A a, il existe toujours
r < A tel que m — r soit somme de T S + QR + t — 1 puissances
2/c-ièmes.

Appendice

Tableau des valeurs ou des meilleurs encadrements de G (k) et de g (k)
actuellement connus pour les petites valeurs de k:

k 2 3 4 5 6 7 8 9 10

G(k) 4 4-7 16 6-23 9-36 8-52 32-73 13-99 12-122

g(k) 4 9 19-30 37 73 143 279 548 1079
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