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g3 <11,

a montrer que tous les entiers inférieurs a cette limite sont également C,;.
La vérification numérique se fait par une méthode de descente trés simple,
en Otant de chaque entier le plus grand cube inférieur ou égal (avec une
légére modification pour les deux derniéres étapes): il suffit que tout entier
inférieur a 2,5355.10° soit C,,, que tout entier inférieur a 5,578.10° soit
C,y, que tout entier compris entre 240 et 94 758 soit Cg, et enfin que tout
entier compris entre 455 et 6 665 soit C,. Cette derniére condition résulte
des tables connues (jusqu’a 40 000, 239 est le plus grand nombre qui
nécessite 9 cubes, 454 le plus grand qui en nécessite 8, tous ceux au-dela
étant C-).

8. INTERMEDE: LE PROBLEME FACILE DE WARING

Alias « the easier problem of Waring ».

Ce probléme nous sera utile non pas pour son énonceé et ses résultats mais
pour les identités qui interviennent dans sa résolution. Il s’agit d’écrire tout
entier sous la forme N = + y,* 4+ y,* + ... £ »,* (les y; étant des entiers
positifs, mais cela n’a gueére d’importance) et d’établir I’existence d’une
constante v (k) telle que I’on puisse toujours prendre s < v (k).

On utilise des identités valables pour les entiers dans certaines pro-
gressions arithmétiques. Ainsi pour les cubes:

6n = (n+1)°> + (n—1)° — 2n*
6n +3 = (2n—=5)° +n* — (2n—4)* — (n—4)°
et pour les bicarrés:

4080n = 2n—D* + (n+8)* — 2n+1)* — (n—8)*

L’existence de v (k) dans le cas général résulte de I'identité

= Gl (n—1D)F + Co (=2 — ... + (=Dt (m—k+1)
: =k!n+p

(B entier indépendant de »)

(la démonstration est immédiate: calcul de la (k—1)-iéme différence finie
du polyndme x*).
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Nous retiendrons cette identité sous la forme suivante:

LEMME. Pour tout entier positif k il existe des entiers positifs R = R (k),
S = Sk), o, ay, ..., Ag, Cq, ..., Cs, €t des entiers quelconques B, by, ..., bg,
d, ..., ds, tels que I’on ait I’identité

R S

N (am+b)* =Y (¢;n+dp* — (an+p).

i=1 j=1

9. THEOREME DE HILBERT. L’IDENTITE FONDAMENTALE

La méthode de Hilbert pour démontrer I'existence de g (n) est fondée
sur la donnée, pour tout k, d’une identité de méme forme que celle que
nous avons vue pour les sommes de bicarrés:

N
M (x> +x2 4. +x5D)% = Y my(a; Xy +a;X, + ...+ a;sx5)°°.
i=1
~ Mais cette identité permet uniquement de démontrer I'existence de g (2k)
~ en supposant établie celle de g (k). Hilbert a donc dii, pour montrer Pexis-
' tence de g (n) pour les valeurs impaires de z, imaginer un raisonnement par
récurrence que nous trouvons personnellement assez compliqué. Apres
Hilbert, de nombreux mathématiciens se sont efforcés de simplifier sa
. démonstration mais les améliorations ont pratiquement toutes porté sur
’établissement de I'identité fondamentale. A
Nous nous proposons ici de supprimer la seconde partie de la démonstra-
tion de Hilbert et de prouver, sans aucune récurrence, que g (1) existe pour
tout n pair (d’ou il s’ensuit trivialement que g (n) existe aussi pour tout n
impair). Outre l'utilisation déja annoncée des identités du probléme facile
de Waring, nous aurons besoin au préalable de préciser quelque peu
I'identité fondamentale de Hilbert.

LEMME. Pour tout entier positif k il existe des entiers positifs M,
N = (2k+1) ... 2k+5)/24, my, ..., my_,, my, avec M et my sirictement
positifs, et des entiers Qqq, ...,01s, A1, ..., Ays, tels que ’on ait Iidentité

N-1
M (X% + .o +x55) = Y my(anxy +... +a;5x5)% + myxs2*.
i=1
(L’innovation par rapport a I'identité de Hilbert est: my est strictement
positif).
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