Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THÉORIE ADDITIVE DES NOMBRES PROBLÈME DE WARING ET

THÉORÈME DE HILBERT

Autor: Dress, François

Kapitel: 4. GÉNÉRALITÉS SUR LE PROBLÈME DE WARING

DOI: https://doi.org/10.5169/seals-45368

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

COROLLAIRE. Toute suite de densité de Schnirelman strictement positive est une base.

En effet, l'inégalité de Schnirelman peut s'écrire

$$(1-d(A+B)) \leq (1-d(A))(1-d(B)).$$

Il s'ensuit, en particulier, que $(1 - d(hA)) \le (1 - d(A))^h \le \frac{1}{2}$ si d(A) > 0 et $h \ge h_0$. Et le lemme précédent entraı̂ne immédiatement que $2h_0A = N$.

Schnirelman a ainsi prouvé que la suite $P = \{1\} \cup \{\text{nombres premiers}\}$ était une base en démontrant par une méthode de crible que d(2P) > 0.

Théorème (Mann, 1942).
$$d(A+B) \gg \min(d(A) + d(B), 1)$$
.

La démonstration de ce théorème est assez ardue et il faut ajouter qu'il représente en un sens le meilleur résultat possible. Si l'on a par exemple $(k \text{ étant un entier } \geqslant 2)$

$$A = B = (1, k+1, 2k+1, ...),$$

alors

$$A + B = (1, 2, k+1, k+2, 2k+1, 2k+2, ...),$$

cependant que l'on a
$$d(A) = d(B) = \frac{1}{k}$$
 et $d(A+B) = \frac{2}{k} = d(A) + d(B)$.

4. Généralités sur le problème de Waring

Nous en avons déjà vu l'énoncé: pour k=2,3,4,..., la suite des puissances k-ièmes est-elle une base? La réponse est affirmative, comme nous le verrons, et l'on désigne traditionnellement par g(k) l'ordre de cette base. Pour les premières valeurs de k, l'évidence empirique conduit à conjecturer les valeurs suivantes:

$$g(2) = 4$$
, $g(3) = 9$, $g(4) = 19$.

En exceptant le théorème des 4 carrés de Lagrange, la première démonstration d'existence, dans le cas particulier des bicarrés, est due à Liouville, en 1859, avec la majoration $g(4) \le 53$. Sa démonstration,

que nous donnerons au paragraphe 6, utilise conjointement le théorème des 4 carrés et une identité algébrique.

Puis on s'apercevra assez vite que, moyennant une identité algébrique « convenable » (que l'on découvrira effectivement pour les petites valeurs de k), l'existence de g(k) entraîne celle de g(2k), avec une majoration du style $g(2k) \le a_k g(k) + b_k$.

Par contre, les valeurs impaires de k posent des problèmes délicats, car les identités ont alors une tendance fâcheuse à fournir des sommes de puissances k-ièmes dont certaines sont négatives! Enfin Maillet réussit, en 1895, à démontrer l'existence dans le cas des cubes, et donne la majoration $g(3) \leq 21$.

De nouveaux cas sont résolus, les majorations sont petit à petit améliorées, puis Hilbert, en 1909, démontre le théorème général d'existence de g(k). Le théorème de Hilbert ne donnant aucune majoration explicite, la course aux majorations continue donc, et continue toujours... mais surtout pour une autre constante dont nous allons parler maintenant.

En 1909 également, Wieferich prouve que g(3) = 9, cependant que Landau montre qu'il existe N_0 tel que tout entier supérieur à N_0 soit somme d'au plus 8 cubes. En d'autres termes, la valeur de g(3) dépend d'un nombre fini d'entiers — en fait 23 et 239 — qui sont seuls à exiger 9 cubes, et ne réflète nullement les propriétés « à l'infini ». Plus généralement on est amené à définir G(k) le minimum de p, tel que tout entier suffisamment grand soit somme d'au plus p puissances k-ièmes. On trivialement $G(k) \leq g(k)$ et il est en outre bien clair que l'existence de l'une quelconque des deux constantes entraı̂ne celle de l'autre. La disproportion entre les deux constantes est énorme: on sait actuellement que g(k) est équivalent à 2^k , tandis que l'on dispose pour G(k) de majorations de l'ordre de k Log k.

Nous nous occuperons dans la suite de cet article de méthodes élémentaires tournant autour des identités algébriques. Il importe néanmoins de signaler que Hardy et Littlewood en 1920, puis Vinogradov en 1924, ont introduit des méthodes analytiques extrêmement puissantes qui permettent d'obtenir des résultats numériques remarquables. Et notons enfin que Linnik a donné, en 1943, une démonstration du théorème de Hilbert par la méthode de Schnirelman; mais les majorations explicites qu'il obtient sont catastrophiques.