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Etant donné une suite A {ak}, on définit la fonction A (n) —

— ^ 1 nombre des ak compris entre 1 et n. On définit ensuite la

densité de Schnirelman de la suite A par:

A (n)
à {A) inf

n n

Cette définition appelle deux remarques. Primo, on a 1 e A dès que
d {A) > 0. Secundo, la notion de densité de Schnirelman est très différente

A (n)
de celle, classique, de densité asymptoptique, définie par lim inf

En particulier, d (^4) 1 équivaut à A — N, tandis que d. asympt. (A) 1

équivaut à « presque tous les entiers appartiennent à A ». Indiquons enfin

une notion intermédiaire, « tous les entiers assez grands appartiennent
à A », fréquemment utilisée en théorie additive (théorème de Vinogradov
sur les entiers impairs sommes de 3 nombres premiers, constantes G (k)
du problème de Waring).

3. Théorèmes de Schnirelman et de Mann

La densité de Schnirelman est un outil remarquable pour prouver que
certaines suites sont des bases. Il ne faut pas cependant en attendre plus
que des résultats d'existence, avec au mieux une majoration délirante de

l'ordre (2.1010 pour les nombres premiers, nettement pire dans le problème
de Waring par la méthode de Linnik et Khintchine, par exemple), en raison
de l'influence très pathologique des premiers termes de la suite (et comme
« premiers » n'est jamais que le contraire de « à l'infini », cela peut
entraîner fort loin...

Les principaux théorèmes en la matière sont les suivants:

Théorème (Schnirelman, 1930). d (A + B) > d{A) + d (B) - d {A) d (B).

La démonstration, que nous ne donnerons pas ici, est fort simple et
s'appuie, modulo la minoration \/n [A(n)^n d (A)], sur un dénombrement

très banal.

Lemme. d (A) + d (B) > 1 ==> A + B N.

Une simple affaire de tiroirs, tout aussi banale.
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Corollaire. Toute suite de densité de Schuirelman strictement positive
est une base.

En effet, l'inégalité de Schnirelman peut s'écrire |

i _ d (A + B)) < 1 - d 04)) 1 - d CB)). |
a

Il s'ensuit, en particulier, que (1 — d(hÄ)) < (1 — d(A))h < \ si |
d{A)> 0 et h > h0. Et le lemme précédent entraîne immédiatement |1

que 2h0A N. |j

Schnirelman a ainsi prouvé que la suite P {1} u {nombres premiers} |j

était une base en démontrant par une méthode de crible que d(2P) > 0. j:j

r:i
U

Théorème (Mann, 1942). d(A + B) > min (d(A) + d(B), 1). |
1.1

i;
La démonstration de ce théorème est assez ardue et il faut ajouter qu'il j;

représente en un sens le meilleur résultat possible. Si l'on a par exemple r
(k étant un entier > 2) |

A B (l,fc + l,2fc + l, !j

alors

A + B (l,2,fc + l,fc + 2,2fc + l,2fc + 2, j|

1 2
cependant que l'on a d (A) d (B) - et d (A + B) — ^ — d (A) + d (B).

k k

4. Généralités sur le problème de Waring

Nous en avons déjà vu l'énoncé: pour k 2,3,4,..., la suite des ;j
puissances k-ièmes est-elle une base? La réponse est affirmative, comme .M

nous le verrons, et l'on désigne traditionnellement par g (k) l'ordre de
:

cette base. Pour les premières valeurs de k, l'évidence empirique conduit :

à conjecturer les valeurs suivantes: [•;;

0(2) 4, 0(3) 9, 0(4) 19. t
ï

;

En exceptant le théorème des 4 carrés de Lagrange, la première v

démonstration d'existence, dans le cas particulier des bicarrés, est due à jg

Liouville, en 1859, avec la majoration g (4) < 53. Sa démonstration, fl
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