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Etant donné une suite 4 = {@}, on définit la fonction A4 (n) =

= Y 1 = nombre des @, compris entre 1 et n. On définit ensuite la
1 <=ap=n

densité de Schnirelman de la suite 4 par:

i) = inf 2
n

n

Cette définition appelle deux remarques. Primo, on a 1€ A dés que
d (A4) > 0. Secundo, la notion de densité de Schnirelman est trés différente

. . A
de celle, classique, de densité asymptoptique, définie par lim inf pt
En particulier, d (4) = 1 équivaut & 4 = N, tandis que d. asympt. (4) = 1
équivaut a « presque tous les entiers appartiennent a 4 ». Indiquons enfin
~ une notion intermédiaire, « tous les entiers assez grands appartiennent
a A », fréquemment utilisée en théorie additive (théoréme de Vinogradov
sur les entiers impairs sommes de 3 nombres premiers, constantes G (k)

du probléme de Waring).

3. THEOREMES DE SCHNIRELMAN ET DE MANN

La densité de Schnirelman est un outil remarquable pour prouver que
certaines suites sont des bases. Il ne faut pas cependant en attendre plus
que des résultats d’existence, avec au mieux une majoration délirante de
~ Tordre (2.101° pour les nombres premiers, nettement pire dans le probléme
de Waring par la méthode de Linnik et Khintchine, par exemple), en raison
de I'influence trés pathologique des premiers termes de la suite (et comme
« premiers » n’est jamais que le contraire de «a linfini », cela peut
entrainer fort loin... !).

Les principaux théorémes en la matiére sont les suivants:
THEOREME (Schnirelman, 1930). d (A+B) > d (A) + d (B) — d (4) d (B).

La démonstration, que nous ne donnerons pas ici, est fort simple et

s’appuie, modulo la minoration \yn [4 (n) > n . d(4)], sur un dénombre-
ment tres banal.

LEMME. d(A) + d(B) >1 = A4 + B = N.

Une simple affaire de tiroirs, tout aussi banale.
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COROLLAIRE. Toute suite de densité de Schnirelman strictement positive
est une base.

En effet, I'inégalité de Schnirelman peut s’écrire

(1—-d(A4 +B)) < (1—-d(4)(1 —d(B)).

Il s’ensuit, en particulier, que (1 — d(hd)) < (I —d(A))" <1 si
d(A) >0 et h >h, Et le lemme précédent entraine immédiatement
que 2hyA = N.

Schnirelman a ainsi prouvé que la suite P = {1} U {nombres premiers}
€tait une base en démontrant par une méthode de crible que 4 (2P) > 0.

THEOREME (Mann, 1942). d(A+B) > min (d (A) + d (B), 1).

La démonstration de ce théoréme est assez ardue et il faut ajouter qu’il
représente en un sens le meilleur résultat possible. Si 'on a par exemple
(k étant un entier > 2)

A=B=(1,k+1,2k+1,..),
alors

A+B=(1,2,k+1,k+2,2k+1,2k+2,..),

1 2
cependant que 'on a d(4) = d(B) = T et d(A+B) = = d(4) + d(B).

4. GENERALITES SUR LE PROBLEME DE WARING

Nous en avons déja vu I’énoncé: pour k = 2, 3,4, ..., la suite des
puissances k-iémes est-elle une base ? La réponse est affirmative, comme
nous le verrons, et I’on désigne traditionnellement par g (k) 'ordre de
cette base. Pour les premicres valeurs de k, ’évidence empirique conduit
a conjecturer les valeurs suivantes:

g2 =4,903) =9,9( =19.

En exceptant le théoréme des 4 carrés de Lagrange, la premicre
démonstration d’existence, dans le cas particulier des bicarrés, est due a %

Liouville, en 1859, avec la majoration g (4) < 53. Sa démonstration,
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