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THEORIE ADDITIVE DES NOMBRES
PROBLEME DE WARING
ET THEOREME DE HILBERT!

par Frangois DRESS

1. INTRODUCTION HISTORIQUE

Depuis Pythagore, de trés nombreux mathématiciens se sont intéréssés
aux propriétés « magiques » des nombres entiers, en particulier des nombres
triangulaires, des nombres carrés, des nombres m-gonaux (les triangulaires
sont les entiers de la forme n (n+1)/2: nombre des éléments d’un triangle

de points de base n, .-.:. par exemple, les nombres carrés sont les carrés:

nombre d’éléments d’un carré de points, etc...).

C’est Bachet qui semble avoir remarqué le premier, en 1621, que tout
entier positif pouvait s’écrire comme somme de 4 carrés (certains étant
éventuellement nuls), encore qu’il y ait quelques raisons de penser que
Diophante connaissait déja ce résultat empirique. Ensuite Fermat a noté,
en 1636, que tout entier positif pouvait s’écrire comme somme de 3 nombres
triangulaires, de 4 carrés, de m nombres m-gonaux (on s’apercevra plus
tard que ce résultat général n’est pas le meilleur possible).

Ainsi, pour les nombres triangulaires:

12=104+14+1=64+6+0=6+3+3
13=104+34+0=6+6+1

I5=154+404+0=6+64+3
16 =15+1+0=10+6+0=10+4+3+3

oooooooooooo

12=9+14+1+1=4+4+4+0
13=94+440+0=4+4+4+1

; 1) Cet article reprend_ et compléte une partie de la conférence qu’a prononcée
F. Dress aux Journées Arithmétiques de 1971 (24 au 29 mai 1971, a Marseille).




— 176 —

14=9+44+1+0
I5=9+4+1+1
16=16+0+0+0=4+4+4+4

------------

Fermat avait ajouté, dans la lettre & Mersenne ou il indiquait cette
découverte, qu’il n’avait pas la place d’en donner la démonstration, mais
qu’il y consacrerait un livre entier. Le livre ne fut jamais publié... On peut
d’ailleurs douter que Fermat ait été en possession d’une démonstration
correcte car des efforts infructueux furent déployés pendant plus d’un siécle,
par Euler en particulier, pour tenter de résoudre ce probleme. Clest
finalement Lagrange, en 1770, qui en donna la premiére démonstration.

En méme temps d’autres théorémes empiriques, de nature additive
¢galement, étaient énoncés. Les deux plus célebres sont le probléme de
Goldbach, formulé en 1742 dans une lettre a Euler: tout entier pair est-il
somme de 2 nombres premiers ? et le probleme de Waring, formulé en 1770
dans un livre (avec addition du «etc...» dans I’édition de 1782!): tout
entier positif est-il somme de 9 cubes, de 19 bicarrés, etc... ?

On verra que ces questions sont, malgré la simplicité de leur énoncé,
extrémement ardues et que l'intervalle qui sépare 1’énoncé empirique de
sa démonstration se compte en dizaines d’années ou plus souvent en siecles
(phénomeéne assez courant en arithmétique!).

2. NOTIONS FONDAMENTALES EN THEORIE ADDITIVE DES NOMBRES

En donnant le premier résultat partiel intéressant dans le probléme de
Goldbach, Schnirelman esquissa, en 1930, un cadre général pour tous les
problémes additifs relatifs a des suites d’entiers.

Etant donné 2 suites croissantes d’entiers strictement positifs
A={a, <a, <.} et B={b <b,..}, on appelle somme de 4 et
B et on note 4 + B la suite croissante obtenue en réordonnant ’ensemble
Avu BuU {a; + b; I a;e A, b;e B} (on convient parfois que a, = 0€ 4,
b, = 0 € B, auquel cas on considére simplement I’ensemble {a; + 5;}).

On peut en particulier effectuer les sommes A + A4 = 24,
A+ A+ A=34,.., A+ ..+ A= hA,.. On dit alors que la suite 4
est une base (d’ordre <C 4) des entiers s’il existe 4 tel que ~4 = N (A4 est
exactement d’ordre A si (h—1) A ;:é N). On peut également définir la notion
de base relativement & une sous-suite de N (les entiers pairs dans le probleme
de Goldbach, par exemple).
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Etant donné une suite 4 = {@}, on définit la fonction A4 (n) =

= Y 1 = nombre des @, compris entre 1 et n. On définit ensuite la
1 <=ap=n

densité de Schnirelman de la suite 4 par:

i) = inf 2
n

n

Cette définition appelle deux remarques. Primo, on a 1€ A dés que
d (A4) > 0. Secundo, la notion de densité de Schnirelman est trés différente

. . A
de celle, classique, de densité asymptoptique, définie par lim inf pt
En particulier, d (4) = 1 équivaut & 4 = N, tandis que d. asympt. (4) = 1
équivaut a « presque tous les entiers appartiennent a 4 ». Indiquons enfin
~ une notion intermédiaire, « tous les entiers assez grands appartiennent
a A », fréquemment utilisée en théorie additive (théoréme de Vinogradov
sur les entiers impairs sommes de 3 nombres premiers, constantes G (k)

du probléme de Waring).

3. THEOREMES DE SCHNIRELMAN ET DE MANN

La densité de Schnirelman est un outil remarquable pour prouver que
certaines suites sont des bases. Il ne faut pas cependant en attendre plus
que des résultats d’existence, avec au mieux une majoration délirante de
~ Tordre (2.101° pour les nombres premiers, nettement pire dans le probléme
de Waring par la méthode de Linnik et Khintchine, par exemple), en raison
de I'influence trés pathologique des premiers termes de la suite (et comme
« premiers » n’est jamais que le contraire de «a linfini », cela peut
entrainer fort loin... !).

Les principaux théorémes en la matiére sont les suivants:
THEOREME (Schnirelman, 1930). d (A+B) > d (A) + d (B) — d (4) d (B).

La démonstration, que nous ne donnerons pas ici, est fort simple et

s’appuie, modulo la minoration \yn [4 (n) > n . d(4)], sur un dénombre-
ment tres banal.

LEMME. d(A) + d(B) >1 = A4 + B = N.

Une simple affaire de tiroirs, tout aussi banale.
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COROLLAIRE. Toute suite de densité de Schnirelman strictement positive
est une base.

En effet, I'inégalité de Schnirelman peut s’écrire

(1—-d(A4 +B)) < (1—-d(4)(1 —d(B)).

Il s’ensuit, en particulier, que (1 — d(hd)) < (I —d(A))" <1 si
d(A) >0 et h >h, Et le lemme précédent entraine immédiatement
que 2hyA = N.

Schnirelman a ainsi prouvé que la suite P = {1} U {nombres premiers}
€tait une base en démontrant par une méthode de crible que 4 (2P) > 0.

THEOREME (Mann, 1942). d(A+B) > min (d (A) + d (B), 1).

La démonstration de ce théoréme est assez ardue et il faut ajouter qu’il
représente en un sens le meilleur résultat possible. Si 'on a par exemple
(k étant un entier > 2)

A=B=(1,k+1,2k+1,..),
alors

A+B=(1,2,k+1,k+2,2k+1,2k+2,..),

1 2
cependant que 'on a d(4) = d(B) = T et d(A+B) = = d(4) + d(B).

4. GENERALITES SUR LE PROBLEME DE WARING

Nous en avons déja vu I’énoncé: pour k = 2, 3,4, ..., la suite des
puissances k-iémes est-elle une base ? La réponse est affirmative, comme
nous le verrons, et I’on désigne traditionnellement par g (k) 'ordre de
cette base. Pour les premicres valeurs de k, ’évidence empirique conduit
a conjecturer les valeurs suivantes:

g2 =4,903) =9,9( =19.

En exceptant le théoréme des 4 carrés de Lagrange, la premicre
démonstration d’existence, dans le cas particulier des bicarrés, est due a %

Liouville, en 1859, avec la majoration g (4) < 53. Sa démonstration,
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- que nous donnerons au paragraphe 6, utilise conjointement le théoreme
~des 4 carrés et une identité algébrique.

| Puis on s’apercevra assez vite que, moyennant une identité algébrique
~ «convenable » (que I’'on découvrira effectivement pour les petites valeurs
~de k), l’existence de g (k) entraine celle de g (2k), avec une majoration du
style g (2k) < a, g (k) + b,.

Par contre, les valeurs impaires de k posent des problémes délicats,
car les identités ont alors une tendance ficheuse & fournir des sommes de
puissances k-iémes dont certaines sont négatives ! Enfin Maillet réussit,
en 1895, 4 démontrer l'existence dans le cas des cubes, et donne la
majoration g (3) < 21.

De nouveaux cas sont résolus, les majorations sont petit & petit amé-
liorées, puis Hilbert, en 1909, démontre le théoréme général d’existence
de g (k). Le théoréme de Hilbert ne donnant aucune majoration explicite,
la course aux majorations continue donc, et continue toujours... mais
surtout pour une autre constante dont nous allons parler maintenant.

En 1909 également, Wieferich prouve que g (3) = 9, cependant que
Landau montre qu’il existe N, tel que tout entier supérieur a N, soit
somme d’au plus 8 cubes. En d’autres termes, la valeur de g (3) dépend
d’un nombre fini d’entiers — en fait 23 et 239 — qui sont seuls a exiger
9 cubes, et ne réficte nullement les propriétés « a I'infini ». Plus générale-
ment on est amené a définir G (k) le minimum de p, tel que tout entier
suffisamment grand soit somme d’au plus p puissances k-iémes. On
trivialement G (k) < g (k) et il est en outre bien clair que [’existence de
'une quelconque des deux constantes entraine celle de l’autre. La dis-
proportion entre les deux constantes est énorme: on sait actuellement
~que g (k) est équivalent a 2%, tandis que I'on dispose pour G (k) de
majorations de I'ordre de k Log k.

Nous nous occuperons dans la suite de cet article de méthodes élé-
mentaires tournant autour des identités algébriques. Il importe néanmoins
de signaler que Hardy et Littlewood en 1920, puis Vinogradov en 1924,
ont introduit des méthodes analytiques extrémement puissantes qui per-
‘mettent d’obtenir des résultats numériques remarquables. Et notons enfin
‘que Linnik a donné, en 1943, une démonstration du théoréme de Hilbert
par la méthode de Schnirelman; mais les majorations explicites qu’il
~obtient sont catastrophiques.
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5. SOMMES DE CARRES

Avant d’exposer, dans le cas des bicarrés et dans celui des cubes, le
principe des méthodes élémentaires, puis de donner une démonstration
simple du théoréme de Hilbert, nous tenons a rappeler trés briévement
quelques résultats essentiels sur les sommes de carrés.

Le résultat essentiel sur les sommes de 2 carrés, énoncé en 1625 par
Girard puis un peu plus tard par Fermat, démontré en 1749 par Euler,
est le suivant: N est somme de 2 carrés si et seulement si les nombres
premiers de la forme 4n + 3 qui figurent dans sa décomposition y figurent
avec un exposant pair — en autres termes, si N est le produit d’un carré
par un entier compos€¢ uniquement avec des facteurs premiers 2 ou de la
forme 4n + 1. On notera que les sommes de 2 carrés forment une suite
de densité asymptotique nulle (la densité jusqu’a x est équivalente a
1/Log x).

Par souci d’ordre, énongons le théoréme de Lagrange: tout N (positif
ou nul) est somme de 4 carrés (positifs ou nuls). On en trouvera un peu ¢
partout des démonstrations trés nombreuses et plus ou moins variées...

Le probléme de déterminer les sommes de 3 carrés est beaucoup plus
difficile que les précédents. Il est en liaison trés étroite avec la théorie des
formes quadratiques binaires. Legendre, en 1798, puis. Gauss, en 1801, ont
¢tabli le résultat suivant: N est somme de 3 carrés si et seulement si il
n’est pas de la forme 4* (8n+7).

On remarquera pour terminer que le résultat sur les nombres triangu-
laires est un corollaire immédiat du théoréme des 3 carrés. En effet

1 b(b+1 1
a(a+)+ (+)+C(C+)
2 2 2
< #£8m+3 =2a+1)* +2b+1)* + (2c+1)?

et les entiers de la forme 8m + 3 sont bien sommes de 3 carrés (impairs,
pour de banales raisons de congruences modulo 8).

6. SOMMES DE BICARRES

Nous allons rapporter la méthode de Liouville, puis nous indiquerons
ensuite trés sommairement comment la majoration obtenue peut étre
améliorée en conservant les méthodes €lémentaires.
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On considére l’identité

6(a 2 +a> +as* +a,?)? = Y [(a;+a)* + (a;—a)*] = By,,

1<J

en désignant par B, un entier qui est somme de g bicarrés (en fait, I'identité
que nous donnons ici est due & Lucas, mais celle qu’utilisait Liouville lui
est équivalente). Comme tout entier est somme de 4 carrés, on obtient ainsi

6a* = B,,, pout tout a,
puis
6m = 6 (a*+b*+c*+d*) = B,g, pour tout m,

et enfin, comme tout entier n est de la forme 6m + h.1* (avec
h=0,1,..,9),

n = Bs;, pour tout n, 1.e. g (4) <53,

ce qui est trés exactement le résultat donné par Liouville.

Pour améliorer cette majoration, on a utilisé essentiellement, outre
diverses petites astuces, deux remarques:

— certains entiers a peuvent s’écrire a = a,% + a,% + 2a,2, de sorte
qualors 6a* = B,;

— certains entiers m peuvent s’écrire comme sommes de 3 carrés.

Mais on peut faire un peu mieux. L’idée que nous exposerons pour les
sommes de cubes et surtout pour la démonstration générale du théoréme
de Hilbert nous a permis de « partir » de sommes de 2 carrés au lieu de
‘sommes de 3, et nous avons ainsi obtenu g (4) < 30. C’est la meilleure
‘majoration actuellement connue, mais il est vraisemblable que ce n’est pas
pour bien longtemps, des travaux sont en cours ou les méthodes analy-
tiques reprendraient leurs droits...

Signalons pour terminer ce paragraphe la majoration g (4) > 19. Des
tables numériques extrémement étendues ont été calculées qui laissent a
penser qu’il n’y a que 7 entiers qui nécessitent 19 bicarrés: 79, 159, 239,

319, 399, 479 et 559.
7. SOMMES DE CUBES

L’identité « historique » est

6x(x2+a12+a22+a32) = Z [(x +ai)3 +(x'—ai)3_-| = Cs,
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en désignant par C, un entier qui est somme de g cubes. Cette identité
permet de montrer qu’un nombre de la forme 6x (x> +m) est Cg sous deux
conditions. La premiére, mineure, est que m soit une somme de 3 carrés;
la seconde, beaucoup plus génante mais essentielle pour que les cubes soient
positifs, est que m ne soit pas trop grand (on devra imposer a priori
0 <m < x?). Toute la difficulté est alors de «raccrocher » un entier
quelconque 3 un nombre 6x (x*+m) convenable.

Nous allons exposer une maniére de le faire, qui utilise des « cubes
arbitraires » et une seconde identité algébrique, dans l’esprit de notre
démonstration du théoréme de Hilbert. Mais nous devrons tout d’abord
modifier la premiére identité en lui ajoutant 2 carrés:

10x> + 6x(a> +a,”> +as*> +a,”> +as®) = z [(x +a)® + (x_ai)3] )

soit, de maniére abrégée,
10x® + 6xm = C,,

Moyennant certaines conditions de congruences modulo 8 et certaines
majorations sur m (que nous verrons plus tard), les 2 carrés a,” et as?
peuvent étre choisis arbitrairement, ce qui revient encore a dire que les
deux cubes (x—a,)’ et (x—as)® peuvent étre choisis arbitrairement. Nous
les prendrons alors égaux tous deux & 7> (nous verrons plus tard également
comment choisir ¢) et nous utiliserons I’identité

28 = (t+1)° +(@—-1)7° —6¢.

Et, en négligeant les diverses conditions qui devront €tre satisfaites, on
obtient le résultat brut que non seulement les nombres 10x> + 6xm, mais
aussi ceux 10x° + 6xm + 6t sont C;,. Pour simplifier la présentation,
nous commencerons par réécrire ’identité initiale en tenant compte de la
seconde:

10x3 + 6xm + 6t
= 10x* + 6x(a,* +a,” +a;> +2(x —1)?) + 6t = Cy.
Sous les deux conditions
m = 3ou 5(mod. 8)

17
X2 <m < —8—x2
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1 .
nous pourrons choisir ¢ quelconque dans l'intervalle [1, Zx]. Cette limita-

* tion (qui ne peut guére €tre relachée) ne permet pas de « couvrir la plage »

comprise entre deux valeurs acceptables consécutives de m et nous devrons

' introduire un cube supplémentaire, qui permettra par la méme occasion de

' régler les questions de congruences modulo 6.

En posant m = 2x* 4+ n, on écrira un entier N comme somme de

~ 11 cubes en suivant le processus suivant:

— on prend pour x le plus grand entier tel que

22x3 4+ 6(5x) + 125 <N

- (le terme 5x provient des conditions de congruences sur m: dans certains

cas, on ne pourra pas choisir n inférieur a 5; le terme 125 provient de la
condition de congruence modulo 6 — qu’on verra un peu plus loin — sur

le 11¢ cube: dans certains cas, on ne pourra pas le choisir inférieur a
50 = 125);

— on prend pour 7 le plus grand entier acceptable modulo 8 tel que

22x3 + 6xn + 125 < N,

et on a alors un reste défini par

N = 22x> + 6xn + r;
— on choisit enfin /4 le plus grand entier congru & » modulo 6 et tel que
B <r.
Comme /#* = h (mod. 6), on a donc r = h* + 61, avec les majorations
r<{6(6x) + 125

6t < 3r2/3

et 'on constate que I'on obtient une valeur admissible pour ¢ (i.e.
S 1
vérifiant t<£—1x) dés que x >10375, ce qui sera le cas dés que

F N >2,4569.10'% > 22 (10 375)°. On remarquera qu’a cette valeur, il y a
belle lurette que les intervalles [22x3, 223x3%] se recouvrent (ces intervalles
f correspondent 4 la condition d’encadrement donnée plus haut pour m).

Tout entier & partir de 2,4569.10'3 étant donc somme de 11 cubes

§ (positifs) il reste, pour finir de prouver la majoration




T
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g3 <11,

a montrer que tous les entiers inférieurs a cette limite sont également C,;.
La vérification numérique se fait par une méthode de descente trés simple,
en Otant de chaque entier le plus grand cube inférieur ou égal (avec une
légére modification pour les deux derniéres étapes): il suffit que tout entier
inférieur a 2,5355.10° soit C,,, que tout entier inférieur a 5,578.10° soit
C,y, que tout entier compris entre 240 et 94 758 soit Cg, et enfin que tout
entier compris entre 455 et 6 665 soit C,. Cette derniére condition résulte
des tables connues (jusqu’a 40 000, 239 est le plus grand nombre qui
nécessite 9 cubes, 454 le plus grand qui en nécessite 8, tous ceux au-dela
étant C-).

8. INTERMEDE: LE PROBLEME FACILE DE WARING

Alias « the easier problem of Waring ».

Ce probléme nous sera utile non pas pour son énonceé et ses résultats mais
pour les identités qui interviennent dans sa résolution. Il s’agit d’écrire tout
entier sous la forme N = + y,* 4+ y,* + ... £ »,* (les y; étant des entiers
positifs, mais cela n’a gueére d’importance) et d’établir I’existence d’une
constante v (k) telle que I’on puisse toujours prendre s < v (k).

On utilise des identités valables pour les entiers dans certaines pro-
gressions arithmétiques. Ainsi pour les cubes:

6n = (n+1)°> + (n—1)° — 2n*
6n +3 = (2n—=5)° +n* — (2n—4)* — (n—4)°
et pour les bicarrés:

4080n = 2n—D* + (n+8)* — 2n+1)* — (n—8)*

L’existence de v (k) dans le cas général résulte de I'identité

= Gl (n—1D)F + Co (=2 — ... + (=Dt (m—k+1)
: =k!n+p

(B entier indépendant de »)

(la démonstration est immédiate: calcul de la (k—1)-iéme différence finie
du polyndme x*).

AR

|
i
L
L
|
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Nous retiendrons cette identité sous la forme suivante:

LEMME. Pour tout entier positif k il existe des entiers positifs R = R (k),
S = Sk), o, ay, ..., Ag, Cq, ..., Cs, €t des entiers quelconques B, by, ..., bg,
d, ..., ds, tels que I’on ait I’identité

R S

N (am+b)* =Y (¢;n+dp* — (an+p).

i=1 j=1

9. THEOREME DE HILBERT. L’IDENTITE FONDAMENTALE

La méthode de Hilbert pour démontrer I'existence de g (n) est fondée
sur la donnée, pour tout k, d’une identité de méme forme que celle que
nous avons vue pour les sommes de bicarrés:

N
M (x> +x2 4. +x5D)% = Y my(a; Xy +a;X, + ...+ a;sx5)°°.
i=1
~ Mais cette identité permet uniquement de démontrer I'existence de g (2k)
~ en supposant établie celle de g (k). Hilbert a donc dii, pour montrer Pexis-
' tence de g (n) pour les valeurs impaires de z, imaginer un raisonnement par
récurrence que nous trouvons personnellement assez compliqué. Apres
Hilbert, de nombreux mathématiciens se sont efforcés de simplifier sa
. démonstration mais les améliorations ont pratiquement toutes porté sur
’établissement de I'identité fondamentale. A
Nous nous proposons ici de supprimer la seconde partie de la démonstra-
tion de Hilbert et de prouver, sans aucune récurrence, que g (1) existe pour
tout n pair (d’ou il s’ensuit trivialement que g (n) existe aussi pour tout n
impair). Outre l'utilisation déja annoncée des identités du probléme facile
de Waring, nous aurons besoin au préalable de préciser quelque peu
I'identité fondamentale de Hilbert.

LEMME. Pour tout entier positif k il existe des entiers positifs M,
N = (2k+1) ... 2k+5)/24, my, ..., my_,, my, avec M et my sirictement
positifs, et des entiers Qqq, ...,01s, A1, ..., Ays, tels que ’on ait Iidentité

N-1
M (X% + .o +x55) = Y my(anxy +... +a;5x5)% + myxs2*.
i=1
(L’innovation par rapport a I'identité de Hilbert est: my est strictement
positif).

L'Enseignement mathém,. t. XVIII, fasc. 2. 13
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COROLLAIRE. Pour tout entier positif k il existe des entiers positifs

M = M (k) et Q = Q (k) tels que, pour tout entier | et tout entier x << \/ /
on ait

Q0
MIF = x% 4 Y
1
(avec les u, € 1)

Ce corollaire est la généralisation du résultat que nous avions utilisé
pour disposer d’un « cube arbitraire ».

Pour la démonstration de notre identité, nous utiliserons la méthode de
Schmidt, reprise par Ellison, qui s’appuie sur les propriétés des ensembles
convexes (dans un espace vectoriel réel). Nous rappelons tout d’abord — sans
démonstration — les définitions et résultats dont nous aurons besoin:

— étant donné un ensemble S-<= RY, on appelle enveloppe convexe
(ou cloture convexe) de S et on note £ (S) le plus petit ensemble convexe
qui contient S (i.e. I'intersection de tous les ensembles convexes qui
contiennent S);

— étant donné un ensemble S = RY, tout vecteur V € h (S) peut s’écrire
N

N
sous la forme V = ) mys;, avec s;€S, m;eR, m; >0 et Y m; = 1.
=1 i=1

De plus, si tous les vecteurs de S sont a coordonnées rationnelles, et si V
est également a coordonnées rationnelles, les m; peuvent €tre choisis
rationnels;

— le barycentre d’une masse continiment répartie dans un ensemble .S
borné se trouve toujours a l'intérieur de A (S) (cet intérieur étant « pris »
dans la plus petite variété affine support de 4 (S) — munie de la topologie
ordinaire).

Nous allons maintenant donner la démonstration de [lidentité de
Hilbert telle qu’elle est exposée par Ellison. Il nous suffira ensuite d’un petit
complément pour obtenir la précision supplémentaire: my est strictement
positif.

L’ensemble des formes homogénes de degré 2k en 5 variables et a
coefficients réels constitue un espace vectoriel sur R de dimension
N = Qk+1)..(2k+5)/24 (N est le nombre de termes de la forme géné-
rale de degré 2k en xy, ..., xs). On considére alors dans cet espace R
I’ensemble S de toutes les formes (a;x, + ... + asxs)**, les a; appartenant
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a Q, ainsi que son enveloppv convexe 4 (S). Puis on considére les sous-
“ensembles T et T’ constitués par les formes (a,x; + ... + asxs)>* vérifiant
a,* + ... + as® < 1, les a; appartenant respectlvement aQetaR Ona
Pinclusion 4 (T) = h(S), cependant que 2 (T) et 7 (T') ont méme intérieur.
~ On étudie ensuite I'intégrale

[o(ayx, +...+asxs)*day ...das | Jyday ...das

( & étant I’hypersphére a,? + ... + as> < 1)
et on établit, & ’aide d’un banal changement de variables, qu’elle est égale
Ac(x? + .+ xsDE avec

= j(VtIdetl ...dts / jydtl ...dts) > 0.

La forme f = ¢ (x;* + ... + x5%)* se trouve par conséquent & lintérieur
de A (T"), donc de i (T), donc de i (), ainsi d’ailleurs que toutes les formes
A f(A réel € [0,1]). Et on peut conclure en choisissant 4 tel que Ac € Q.
Mais nous pouvons faire un peu mieux: en effet la forme fest a 'intérieur
~de & (S) tandis que la forme g = x5* est dans S donc dans la variété affine
support de S; ce qui permet d’en déduire qu’il existe pu, réel > 0O tel que,
pour tout uréel € [0, u,], la forme f — ug se trouve dans /4 (S), ainsi d’ailleurs
que toutes les formes Af — Aug (A réel € [0, 1]). Nous choisissons alors
A et p tels que Ac et Au soient rationnels et, en utilisant les résultats rappelés
sur les ensembles convexes et les vecteurs a coordonnées rationnelles, nous
en déduisons I'identité cherchée.

10. THEOREME DE HILBERT. FIN DE LA DEMONSTRATION

THEOREME. Pour tout entier positif k il existe des entiers positifs A = A (k)
et T = T (k) tels que tout intervalle [m — A, m] contienne un nombre qui
soit somme de T puissances 2k-iémes.

CoroLLAIRE (théoréme de Hilbert). Pour tout entier positif n, g (n) est
fini.
- On pourra remarquer que la recherche d’une majoration explicite de
g (2k) en utilisant notre démonstration dépend essentiellement des constantes
M et m; qui interviennent dans I'identité fondamentale, les autres constantes
(celles que I’on trouve dans 'identité relative au probléme facile de Waring

comme celles qui interviendront dans la suite de la démonstration) étant
alsément estimables ou majorables.
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Nous allons donc montrer que, pour tout entier m, il existe r < A tel
que m — r soit somme de 7 puissances 2k-iémes (rappelons que les diverses
constantes que nous allons rencontrer: R, M, ... ont déja été définies, soit
au paragraphe 8 soit au paragraphe 9, et qu’elles dépendent toutes de k,
et de k seulement). Si /* est la plus grande puissance k-i€éme inférieure ou

m :
égale a T nous pouvons tout d’abord écrire

) 1/ m \1/*
m = RMI +r, avec — — <
2\RM

/

A
o
g

(k—1)/k

1 . : . . x 2
(la constante 3 n’est pas essentielle; en toute rigueur, I'inégalité ou elle

figure n’est vérifiée que pour m > m, (k), mais il nous semble inutile
d’alourdir notre démonstration avec de tels détails qui ne peuvent avoir
d’importance que dans la recherche éventuelle d’une majoration explicite
de g (2k)).

Nous pouvons maintenant, en utilisant le corollaire du lemme qui
énonce l'identité fondamentale, écrire

QR
2k 2k
m = Z Xi + u, + i,
i=1 h=1

e 1 [ m /%
les x; étant des entiers arbitraires inférieurs ou égaux a 7(?]\2) :
2

Il nous faut alors employer le lemme sur I'identité relative au probléme
facile de Waring. Nous supposerons que l'on a || < ||, ce qui est
toujours possible par une translation sur n. Définissons

a = maxa;, b = max | b;/a; |

i 2

1 1 m 1/2k
de sorte que pour tout n < < —={|—— — b, nous pouvons toujours
poser, pour tout i, x; = a;n + b;. Ce qui permet d’écrire

OR
m=>y>*+ Y u*+r —(mn+p),
h=1

e
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" la condition de majoration sur n pouvant s’écrire (ici encore pour 72 assez
- grand):

n < Cm*/?*.

Il est clair qu’en général r, est trop grand pour pouvoir étre « presque
“annulé» par le terme — (an+pB), mais nous pouvons résoudre cette
~difficulté de la méme maniére que nous ’avons fait pour les sommes de

cubes. On extraira donc la plus grande puissance 2k-iéme inférieure ou égale
a ry, puis on répétera ce processus:

ry =z, + 1y

m (k—1)/k (k—-1)/k 0 k_l
avec 0<r, < k{kRM(-) } = c,m’ <),=__>

3
r, =z, +ry;  avec  0<ry <cym?

--------------------------------

-
i
-
I
N
|
—
N
at
+
-

t
avec 0<r < cm?

En prenant ¢ tel que y* soit supérieur a 1/2k, il sera alors possible
- (toujours pour m assez grand) de choisir z de telle fagon que le reste final
r=r, — (an+p) vérifie

r<oa,

et nous avons ainsi obtenu le résultat cherché: pour 4 = «, il existe toujours
r<A tel que m — r soit somme de "= S + QR + t — 1 puissances
2k-iemes.

APPENDICE

Tableau des valeurs ou des meilleurs encadrements de G (k) et de g (k)
actuellement connus pour les petites valeurs de k:

G (k) 4 147 16 |6-23|9-36 | 8-52|32-73 | 13-99 | 12-122

g (k) 419 11930 37 | 73 | 143 | 279 | 548 1079
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