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THÉORIE ADDITIVE DES NOMBRES
PROBLÈME DE WARING

ET THÉORÈME DE HILBERT1

par François Dress

1. Introduction historique

Depuis Pythagore, de très nombreux mathématiciens se sont intéréssés

aux propriétés « magiques » des nombres entiers, en particulier des nombres

triangulaires, des nombres carrés, des nombres m-gonaux (les triangulaires
sont les entiers de la forme n (w +1)/2: nombre des éléments d'un triangle

de points de base n, par exemple, les nombres carrés sont les carrés :

nombre d'éléments d'un carré de points, etc...).
C'est Bachet qui semble avoir remarqué le premier, en 1621, que tout

entier positif pouvait s'écrire comme somme de 4 carrés (certains étant
éventuellement nuls), encore qu'il y ait quelques raisons de penser que
Diophante connaissait déjà ce résultat empirique. Ensuite Fermât a noté,
en 1636, que tout entier positif pouvait s'écrire comme somme de 3 nombres

triangulaires, de 4 carrés, de m nombres m-gonaux (on s'apercevra plus
tard que ce résultat général n'est pas le meilleur possible).

Ainsi, pour les nombres triangulaires :

12 =10 +1 + 1 6 + 6 + 0 6 + 3 + 3

13 10+ 3 + 0 6 + 6+1
14 10 + 3 + 1

15= 15+ 0 + 0 6 + 6 + 3

16 15+1+0 10 + 6 + 0= 10 + 3 + 3

et pour les carrés :

12 9+1 + 1 + 1= 4 + 4 + 4 + 0
13 9 + 4 + 0 + 0 4 + 4 + 4+1

0 Cet article reprend et complète une partie de la conférence qu'a prononcée
F. Dress aux Journées Arithmétiques de 1971 (24 au 29 mai 1971, à Marseille).
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14 9 + 4+1+0
15 9 + 4+1 + 1

16= 16 + 0 + 0 + 0 4 + 4 + 4 + 4

Fermât avait ajouté, dans la lettre à Mersenne où il indiquait cette

découverte, qu'il n'avait pas la place d'en donner la démonstration, mais

qu'il y consacrerait un livre entier. Le livre ne fut jamais publié... On peut
d'ailleurs douter que Fermât ait été en possession d'une démonstration
correcte car des efforts infructueux furent déployés pendant plus d'un siècle,

par Euler en particulier, pour tenter de résoudre ce problème. C'est
finalement Lagrange, en 1770, qui en donna la première démonstration.

En même temps d'autres théorèmes empiriques, de nature additive

également, étaient énoncés. Les deux plus célèbres sont le problème de

Goldbach, formulé en 1742 dans une lettre à Euler: tout entier pair est-il

somme de 2 nombres premiers et le problème de Waring, formulé en 1770

dans un livre (avec addition du «etc...» dans l'édition de 1782!): tout
entier positif est-il somme de 9 cubes, de 19 bicarrés, etc...

On verra que ces questions sont, malgré la simplicité de leur énoncé,
extrêmement ardues et que l'intervalle qui sépare l'énoncé empirique de

sa démonstration se compte en dizaines d'années ou plus souvent en siècles

(phénomène assez courant en arithmétique!).

2. Notions fondamentales en théorie additive des nombres

En donnant le premier résultat partiel intéressant dans le problème de

Goldbach, Schnirelman esquissa, en 1930, un cadre général pour tous les

problèmes additifs relatifs à des suites d'entiers.

Etant donné 2 suites croissantes d'entiers strictement positifs
A — {ax < a2 < ...} et B {b1 < b2 on appelle somme de A et

B et on note A + B la suite croissante obtenue en réordonnant l'ensemble

A u B u {at + bj | at e A, bj e B} (on convient parfois que a0 0 e A,
b0 — 0 e B, auquel cas on considère simplement l'ensemble {at + bj}).

On peut en particulier effectuer les sommes A + A 2A,
A + A + A 3A, A + + A hA, On dit alors que la suite A

est une base (d'ordre < h) des entiers s'il existe h tel que hA N (A est

exactement d'ordre h si (h— 1) A p; N). On peut également définir la notion
de base relativement à une sous-suite de N (les entiers pairs dans le problème
de Goldbach, par exemple).
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Etant donné une suite A {ak}, on définit la fonction A (n) —

— ^ 1 nombre des ak compris entre 1 et n. On définit ensuite la

densité de Schnirelman de la suite A par:

A (n)
à {A) inf

n n

Cette définition appelle deux remarques. Primo, on a 1 e A dès que
d {A) > 0. Secundo, la notion de densité de Schnirelman est très différente

A (n)
de celle, classique, de densité asymptoptique, définie par lim inf

En particulier, d (^4) 1 équivaut à A — N, tandis que d. asympt. (A) 1

équivaut à « presque tous les entiers appartiennent à A ». Indiquons enfin

une notion intermédiaire, « tous les entiers assez grands appartiennent
à A », fréquemment utilisée en théorie additive (théorème de Vinogradov
sur les entiers impairs sommes de 3 nombres premiers, constantes G (k)
du problème de Waring).

3. Théorèmes de Schnirelman et de Mann

La densité de Schnirelman est un outil remarquable pour prouver que
certaines suites sont des bases. Il ne faut pas cependant en attendre plus
que des résultats d'existence, avec au mieux une majoration délirante de

l'ordre (2.1010 pour les nombres premiers, nettement pire dans le problème
de Waring par la méthode de Linnik et Khintchine, par exemple), en raison
de l'influence très pathologique des premiers termes de la suite (et comme
« premiers » n'est jamais que le contraire de « à l'infini », cela peut
entraîner fort loin...

Les principaux théorèmes en la matière sont les suivants:

Théorème (Schnirelman, 1930). d (A + B) > d{A) + d (B) - d {A) d (B).

La démonstration, que nous ne donnerons pas ici, est fort simple et
s'appuie, modulo la minoration \/n [A(n)^n d (A)], sur un dénombrement

très banal.

Lemme. d (A) + d (B) > 1 ==> A + B N.

Une simple affaire de tiroirs, tout aussi banale.
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Corollaire. Toute suite de densité de Schuirelman strictement positive
est une base.

En effet, l'inégalité de Schnirelman peut s'écrire |

i _ d (A + B)) < 1 - d 04)) 1 - d CB)). |
a

Il s'ensuit, en particulier, que (1 — d(hÄ)) < (1 — d(A))h < \ si |
d{A)> 0 et h > h0. Et le lemme précédent entraîne immédiatement |1

que 2h0A N. |j

Schnirelman a ainsi prouvé que la suite P {1} u {nombres premiers} |j

était une base en démontrant par une méthode de crible que d(2P) > 0. j:j

r:i
U

Théorème (Mann, 1942). d(A + B) > min (d(A) + d(B), 1). |
1.1

i;
La démonstration de ce théorème est assez ardue et il faut ajouter qu'il j;

représente en un sens le meilleur résultat possible. Si l'on a par exemple r
(k étant un entier > 2) |

A B (l,fc + l,2fc + l, !j

alors

A + B (l,2,fc + l,fc + 2,2fc + l,2fc + 2, j|

1 2
cependant que l'on a d (A) d (B) - et d (A + B) — ^ — d (A) + d (B).

k k

4. Généralités sur le problème de Waring

Nous en avons déjà vu l'énoncé: pour k 2,3,4,..., la suite des ;j
puissances k-ièmes est-elle une base? La réponse est affirmative, comme .M

nous le verrons, et l'on désigne traditionnellement par g (k) l'ordre de
:

cette base. Pour les premières valeurs de k, l'évidence empirique conduit :

à conjecturer les valeurs suivantes: [•;;

0(2) 4, 0(3) 9, 0(4) 19. t
ï

;

En exceptant le théorème des 4 carrés de Lagrange, la première v

démonstration d'existence, dans le cas particulier des bicarrés, est due à jg

Liouville, en 1859, avec la majoration g (4) < 53. Sa démonstration, fl
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que nous donnerons au paragraphe 6, utilise conjointement le théorème

des 4 carrés et une identité algébrique.
Puis on s'apercevra assez vite que, moyennant une identité algébrique

« convenable » (que l'on découvrira effectivement pour les petites valeurs

de k), l'existence de g (k) entraîne celle de g (2k), avec une majoration du

style g (2k) <akg (k) + bk.

Par contre, les valeurs impaires de k posent des problèmes délicats,

car les identités ont alors une tendance fâcheuse à fournir des sommes de

puissances k-ièmes dont certaines sont négatives Enfin Maillet réussit,

en 1895, à démontrer l'existence dans le cas des cubes, et donne la

majoration g (3) <21.
De nouveaux cas sont résolus, les majorations sont petit à petit

améliorées, puis Hilbert, en 1909, démontre le théorème général d'existence

de g (k). Le théorème de Hilbert ne donnant aucune majoration explicite,
la course aux majorations continue donc, et continue toujours... mais

surtout pour une autre constante dont nous allons parler maintenant.
En 1909 également, Wieferich prouve que g(3) 9, cependant que

Landau montre qu'il existe N0 tel que tout entier supérieur à N0 soit

somme d'au plus 8 cubes. En d'autres termes, la valeur de g (3) dépend
d'un nombre fini d'entiers — en fait 23 et 239 — qui sont seuls à exiger
9 cubes, et ne réflète nullement les propriétés « à l'infini ». Plus généralement

on est amené à définir G (k) le minimum de p, tel que tout entier
suffisamment grand soit somme d'au plus p puissances k-ièmes. On
trivialement G (k) < g (k) et il est en outre bien clair que l'existence de

l'une quelconque des deux constantes entraîne celle de l'autre. La
disproportion entre les deux constantes est énorme: on sait actuellement

que g (k) est équivalent à 2k, tandis que l'on dispose pour G (k) de

majorations de l'ordre de k Log k.
Nous nous occuperons dans la suite de cet article de méthodes

élémentaires tournant autour des identités algébriques. Il importe néanmoins
de signaler que Hardy et Littlewood en 1920, puis Vinogradov en 1924,
ont introduit des méthodes analytiques extrêmement puissantes qui
permettent d'obtenir des résultats numériques remarquables. Et notons enfin
que Linnik a donné, en 1943, une démonstration du théorème de Hilbert
par la méthode de Schnirelman; mais les majorations explicites qu'il
obtient sont catastrophiques.



5. Sommes de carrés

Avant d'exposer, dans le cas des bicarrés et dans celui des cubes, le

principe des méthodes élémentaires, puis de donner une démonstration
simple du théorème de Hilbert, nous tenons à rappeler très brièvement
quelques résultats essentiels sur les sommes de carrés.

Le résultat essentiel sur les sommes de 2 carrés, énoncé en 1625 par
Girard puis un peu plus tard par Fermât, démontré en 1749 par Euler,
est le suivant: N est somme de 2 carrés si et seulement si les nombres

premiers de la forme An + 3 qui figurent dans sa décomposition y figurent
avec un exposant pair — en autres termes, si N est le produit d'un carré

par un entier composé uniquement avec des facteurs premiers 2 ou de la
forme An + 1. On notera que les sommes de 2 carrés forment une suite
de densité asymptotique nulle (la densité jusqu'à x est équivalente à

1/Log x).
Par souci d'ordre, énonçons le théorème de Lagrange: tout N (positif

ou nul) est somme de 4 carrés (positifs ou nuls). On en trouvera un peu
partout des démonstrations très nombreuses et plus ou moins variées...

Le problème de déterminer les sommes de 3 carrés est beaucoup plus
difficile que les précédents. Il est en liaison très étroite avec la théorie des

formes quadratiques binaires. Legendre, en 1798, puis Gauss, en 1801, ont
établi le résultat suivant: N est somme de 3 carrés si et seulement si il
n'est pas de la forme 4k (8n + 7).

On remarquera pour terminer que le résultat sur les nombres triangulaires

est un corollaire immédiat du théorème des 3 carrés. En effet

a (a + 1) b (b + 1) c (c + 1)
m -1

2 2 2

# 8m + 3 (la + l)2 + (2b + l)2 + (2c + l)2

et les entiers de la forme 8m + 3 sont bien sommes de 3 carrés (impairs,

pour de banales raisons de congruences modulo 8).

6. Sommes de bicarrés

Nous allons rapporter la méthode de Liouville, puis nous indiquerons
ensuite très sommairement comment la majoration obtenue peut être

améliorée en conservant les méthodes élémentaires.
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On considère l'identité

6(a!2 + a22+a32+ a42)2 £ [(a;+a;)4 +(ai-nJ)4] B12
i<j

en désignant par Bq un entier qui est somme de q bicarrés (en fait, l'identité

que nous donnons ici est due à Lucas, mais celle qu'utilisait Liouville lui
est équivalente). Comme tout entier est somme de 4 carrés, on obtient ainsi

6a2 B12, pout tout a,

puis

6m 6 (a2 + b2 + c2 + d2) B48, pour tout m

et enfin, comme tout entier n est de la forme 6m + h. I4 (avec
h 0, 1, 5),

n B53, pour tout n, i.e. g (4) < 53

ce qui est très exactement le résultat donné par Liouville.
Pour améliorer cette majoration, on a utilisé essentiellement, outre

diverses petites astuces, deux remarques:
— certains entiers a peuvent s'écrire a ax2 + a22 + 2a32, de sorte

qu'alors 6a2 BX1;

— certains entiers m peuvent s'écrire comme sommes de 3 carrés.

Mais on peut faire un peu mieux. L'idée que nous exposerons pour les

sommes de cubes et surtout pour la démonstration générale du théorème
de Hilbert nous a permis de « partir » de sommes de 2 carrés au lieu de

sommes de 3, et nous avons ainsi obtenu g (4) < 30. C'est la meilleure
majoration actuellement connue, mais il est vraisemblable que ce n'est pas

pour bien longtemps, des travaux sont en cours où les méthodes analytiques

reprendraient leurs droits...
Signalons pour terminer ce paragraphe la majoration g (4) > 19. Des

tables numériques extrêmement étendues ont été calculées qui laissent à

penser qu'il n'y a que 7 entiers qui nécessitent 19 bicarrés: 79, 159, 239,
319, 399, 479 et 559.

7. Sommes de cubes

L'identité « historique » est

6x (x2 +a12 +a22+a32) £ [O+fl;)3 +(x-af)3J C6
i
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en désignant par Cq un entier qui est somme de q cubes. Cette identité

permet de montrer qu'un nombre de la forme 6x (x2 + m) est C6 sous deux
conditions. La première, mineure, est que m soit une somme de 3 carrés;
la seconde, beaucoup plus gênante mais essentielle pour que les cubes soient

positifs, est que m ne soit pas trop grand (on devra imposer a priori
0 < m < x2). Toute la difficulté est alors de « raccrocher » un entier

quelconque à un nombre 6x(x2 + m) convenable.

Nous allons exposer une manière de le faire, qui utilise des « cubes

arbitraires » et une seconde identité algébrique, dans l'esprit de notre
démonstration du théorème de Hilbert. Mais nous devrons tout d'abord
modifier la première identité en lui ajoutant 2 carrés:

lOx3 + ôx^cii2 +a22 +a32 +a42 +a52) £ [(x+a^)3 +(x-a/)3],
i

soit, de manière abrégée,

10x3 + 6x m C10

Moyennant certaines conditions de congruences modulo 8 et certaines

majorations sur m (que nous verrons plus tard), les 2 carrés a42 et a52

peuvent être choisis arbitrairement, ce qui revient encore à dire que les

deux cubes (x — a4)3 et (x — a5)3 peuvent être choisis arbitrairement. Nous
les prendrons alors égaux tous deux à t3 (nous verrons plus tard également

comment choisir t) et nous utiliserons l'identité

213 (* +1)3 + (*-l)3 - 6t.

Et, en négligeant les diverses conditions qui devront être satisfaites, on
obtient le résultat brut que non seulement les nombres 10x3 + 6xm, mais

aussi ceux 10x3 + 6xm + 6t sont C10. Pour simplifier la présentation,

nous commencerons par réécrire l'identité initiale en tenant compte de la
seconde:

10x3 + 6xm + 6t

— 10x3 + 6x(a12 +a22 +a32 +2(x — t)2) + 6t C10

Sous les deux conditions

m 3 ou 5 (mod. 8)

"

„ 2
17

22x < m < — x
8
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nous pourrons choisir t quelconque dans l'intervalle [l,-x\. Cette limitation

(qui ne peut guère être relâchée) ne permet pas de « couvrir la plage »

comprise entre deux valeurs acceptables consécutives de m et nous devrons

introduire un cube supplémentaire, qui permettra par la même occasion de

régler les questions de congruences modulo 6.

En posant m 2x2 + n, on écrira un entier N comme somme de

11 cubes en suivant le processus suivant:

— on prend pour x le plus grand entier tel que

22x3 + 6 (Sx) + 125 <iV
(le terme 5x provient des conditions de congruences sur m: dans certains

cas, on ne pourra pas choisir n inférieur à 5; le terme 125 provient de la
condition de congruence modulo 6 — qu'on verra un peu plus loin — sur
le 11e cube: dans certains cas, on ne pourra pas le choisir inférieur à
53 125);

— on prend pour n le plus grand entier acceptable modulo 8 tel que

22x3 + 6xn + 125 <N,
et on a alors un reste défini par

N — 22x3 + 6xn H- r ;

— on choisit enfin h le plus grand entier congru à r modulo 6 et tel que

h3 < r.
Comme h3 =h (mod. 6), on a donc r h3 + 6t, avec les majorations

r < 6 (6x) + 125

6t < 3r2/3

et l'on constate que l'on obtient une valeur admissible pour t (i.e.

vérifiant t < ~x) dès que x > 10 375, ce qui sera le cas dès que

N > 2,4569.1013 > 22 (10 375)3. On remarquera qu'à cette valeur, il y a
belle lurette que les intervalles [22x3, 22fx3] se recouvrent (ces intervalles
correspondent à la condition d'encadrement donnée plus haut pour m).

Tout entier à partir de 2,4569.1013 étant donc somme de 11 cubes
(positifs) il reste, pour finir de prouver la majoration
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0(3) <11,
à montrer que tous les entiers inférieurs à cette limite sont également C11.

La vérification numérique se fait par une méthode de descente très simple,
en ôtant de chaque entier le plus grand cube inférieur ou égal (avec une
légère modification pour les deux dernières étapes): il suffit que tout entier
inférieur à 2,5355.109 soit C10, que tout entier inférieur à 5,578.106 soit

C9, que tout entier compris entre 240 et 94 758 soit C8, et enfin que tout
entier compris entre 455 et 6 665 soit C7. Cette dernière condition résulte
des tables connues (jusqu'à 40 000, 239 est le plus grand nombre qui
nécessite 9 cubes, 454 le plus grand qui en nécessite 8, tous ceux au-delà
étant C7).

8. Intermède: le problème facile de Waring

Alias « the easier problem of Waring ».

Ce problème nous sera utile non pas pour son énoncé et ses résultats mais

pour les identités qui interviennent dans sa résolution. Il s'agit d'écrire tout
entier sous la forme N ± yk ± y2k + ± ysk (les yj étant des entiers

positifs, mais cela n'a guère d'importance) et d'établir l'existence d'une

constante v (k) telle que l'on puisse toujours prendre s < v (k).
On utilise des identités valables pour les entiers dans certaines

progressions arithmétiques. Ainsi pour les cubes:

6n (n + l)3 + (n — l)3 — 2n3

6/1 + 3 (2n — 5)3 + n3 — (In — 4)3 — (n — 4)3

et pour les bicarrés:

4 080n (In — l)4 + (n + 8)4 — (2n + l)4 — (n — 8)4

L'existence de v (k) dans le cas général résulte de l'identité

nk - +, (n - if + Cl, (n~2)k - ...+(-1)^1 (n + 1)*

k n + ß

(ß entier indépendant de n)

(la démonstration est immédiate: calcul de la (k— l)-ième différence finie

du polynôme xk).
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Nous retiendrons cette identité sous la forme suivante:

Lemme. Pour tout entier positif k il existe des entiers positifs R — R (k),

S S (k), a, au aR, cu cs, et des entiers quelconques ß, bl9 bR,

d1$ ds, tels que Von ait Videntité

R S

X (atn + bi)2k£ -(a
i= 1 j=1

9. Théorème de Hilbert. L'identité fondamentale

La méthode de Hilbert pour démontrer l'existence de g (n) est fondée

sur la donnée, pour tout k, d'une identité de même forme que celle que

nous avons vue pour les sommes de bicarrés:

N

M (x^+x22 +...+x52)2=L mi(ailx1+ai2x2 +...+ai5x5)2k
i 1

Mais cette identité permet uniquement de démontrer l'existence de g (2k)
en supposant établie celle de g (k). Hilbert a donc dû, pour montrer l'existence

de g (n) pour les valeurs impaires de n, imaginer un raisonnement par
récurrence que nous trouvons personnellement assez compliqué. Après
Hilbert, de nombreux mathématiciens se sont efforcés de simplifier sa

démonstration mais les améliorations ont pratiquement toutes porté sur
l'établissement de l'identité fondamentale.

Nous nous proposons ici de supprimer la seconde partie de la démonstration

de Hilbert et de prouver, sans aucune récurrence, que g (n) existe pour
tout n pair (d'où il s'ensuit trivialement que g (n) existe aussi pour tout n

impair). Outre l'utilisation déjà annoncée des identités du problème facile
de Waring, nous aurons besoin au préalable de préciser quelque peu
l'identité fondamentale de Hilbert.

Lemme. Pour tout entier positif k il existe des entiers positifs M,
N — (2fc+l) (2A;-fi5)/24, ml9 mN__l5 mN, avec M et mN strictement
positifs, et des entiers an,..., a.l5, a2U...,aN5, tels que Von ait Videntité

N- 1

M(xf + +x52)k £ mi(ailx1 + +ai5x5)2k + mNx52k
i i

(L'innovation par rapport à l'identité de Hilbert est: mN est strictement
positif).

L'Enseignement mathém,. t. XVIII, fasc. 2. 13
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Corollaire. Pour tout entier positif k il existe des entiers positifs

M — M (k) et Q Q (k) tels que, pour tout entier l et tout entier x < ^Jl
on ait

Mlk x2fc + f>,2fc
î

(iavec les uh e Z)

Ce corollaire est la généralisation du résultat que nous avions utilisé

pour disposer d'un « cube arbitraire ».

Pour la démonstration de notre identité, nous utiliserons la méthode de

Schmidt, reprise par Ellison, qui s'appuie sur les propriétés des ensembles

convexes (dans un espace vectoriel réel). Nous rappelons tout d'abord — sans

démonstration — les définitions et résultats dont nous aurons besoin:

— étant donné un ensemble S -c on appelle enveloppe convexe

(ou clôture convexe) de S et on note h (S) le plus petit ensemble convexe
qui contient S (i.e. l'intersection de tous les ensembles convexes qui
contiennent S);

— étant donné un ensemble S c= RN5 tout vecteur V e h (S) peut s'écrire
N N

sous la forme V— Yjmisb avec > 0 et ]T m* 1.

i 1 i 1

De plus, si tous les vecteurs de S sont à coordonnées rationnelles, et si V
est également à coordonnées rationnelles, les mt peuvent être choisis

rationnels ;

— le barycentre d'une masse continûment répartie dans un ensemble S

borné se trouve toujours à l'intérieur de h (S) (cet intérieur étant « pris »

dans la plus petite variété affine support de h (S) — munie de la topologie
ordinaire).

Nous allons maintenant donner la démonstration de l'identité- de

Hilbert telle qu'elle est exposée par Ellison. Il nous suffira ensuite d'un petit
complément pour obtenir la précision supplémentaire: mN est strictement

positif.
L'ensemble des formes homogènes de degré 2k en 5 variables et à

coefficients réels constitue un espace vectoriel sur R de dimension

N (2&+1) (2& + 5)/24 (N est le nombre de termes de la forme générale

de degré 2k en xl9 x5). On considère alors dans cet espace R^

l'ensemble S de toutes les formes (a1xl + + a5x5)2k, les at appartenant



— 187 —

à Q, ainsi que son enveloppe convexe h (S). Puis on considère les sous-

ensembles T et T' constitués par les formes {alx1 + + a5x5)lk vérifiant

af + + a2 < 1, les at appartenant respectivement à Q et à R. On a

l'inclusion h (T) c= h (S), cependant que h (T) et h (T') ont même intérieur.

On étudie ensuite l'intégrale

Jy (u i^i T • • • T a5x5)2k da± da 5 / J y> da ± dci 5

9* étant l'hypersphère af + + a
2 < 1)

et on établit, à l'aide d'un banal changement de variables, qu'elle est égale

à c {xx2 + + X52/, avec

c t\2k dti dt5 I \ydt1... dt5) > 0

La forme / c{xl2 + + x52)k se trouve par conséquent à l'intérieur
de h (T'), donc de h (T), donc de h (S), ainsi d'ailleurs que toutes les formes
X f(yl réel g [0,1]). Et on peut conclure en choisissant X tel que Xc e Q.

Mais nous pouvons faire un peu mieux: en effet la forme/est à l'intérieur
de h (S) tandis que la forme g x52 est dans S donc dans la variété affine

support de S; ce qui permet d'en déduire qu'il existe fi0 réel > 0 tel que,

pour tout 11 réel g [0, fi0], la forme/ — ng se trouve dans h (S), ainsi d'ailleurs

que toutes les formes Xf — Xfig (X réel g [0, 1]). Nous choisissons alors
X et ji tels que Xc et X(i soient rationnels et, en utilisant les résultats rappelés
sur les ensembles convexes et les vecteurs à coordonnées rationnelles, nous
en déduisons l'identité cherchée.

10. Théorème de Hilbert. Fin de la démonstration

Théorème. Pour tout entier positifk il existe des entiers positifs A A (k)
et T T (k) tels que tout intervalle [m — A, m] contienne un nombre qui
soit somme de T puissances 2k-ièmes.

Corollaire (théorème de Hilbert). Pour tout entier positif n, g (n) est

fini.

On pourra remarquer que la recherche d'une majoration explicite de

g (2k) en utilisant notre démonstration dépend essentiellement des constantes
Met mt qui interviennent dans l'identité fondamentale, les autres constantes
(celles que l'on trouve dans l'identité relative au problème facile de Waring
comme celles qui interviendront dans la suite de la démonstration) étant
aisément estimables ou majorables.
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Nous allons donc montrer que, pour tout entier m, il existe r < A tel

que m — r soit somme de T puissances 2&-ièmes (rappelons que les diverses

constantes que nous allons rencontrer: R, M, ont déjà été définies, soit

au paragraphe 8 soit au paragraphe 9, et qu'elles dépendent toutes de k,
et de k seulement). Si lk est la plus grande puissance fc-ième inférieure ou

m
égale à nous pouvons tout d'abord écrire

1 m YM / m \1/fc
m R.Ml + avec -( < l <1

2 \rmJ

et 0 < r± < kRM
m \

{'RM
(fc-D/fc

(la constante - n'est pas essentielle; en toute rigueur, l'inégalité où elle

figure n'est vérifiée que pour m > m0 (/t), mais il nous semble inutile
d'alourdir notre démonstration avec de tels détails qui ne peuvent avoir

d'importance que dans la recherche éventuelle d'une majoration explicite
de g (2k)).

Nous pouvons maintenant, en utilisant le corollaire du lemme qui
énonce l'identité fondamentale, écrire

R QR

m£ Xi2k + Z uh2k + r1,
i=1 h=1

lfmles X; étant des entiers arbitraires inférieurs ou égaux à ——
J2\RM)

Il nous faut alors employer le lemme sur l'identité relative au problème
facile de Waring. Nous supposerons que l'on a | ß | < | a |, ce qui est

toujours possible par une translation sur n. Définissons

a max b max | bjai |

i i

1(1(my/2*)de sorte que pour tout n<—< —= > - nous pouvons toujours
a{^2\RMJ j

poser, pour tout i, xt - atn + bt. Ce qui permet d'écrire

s QR

mÉ yj2k+ E uh2k +rt -
j=1 h=1



la condition de majoration sur n pouvant s'écrire (ici encore pour m assez

grand) :

n < Cm1/2k.

Il est clair qu'en général rx est trop grand pour pouvoir être « presque

annulé» par le terme - (ocn + ß), mais nous pouvons résoudre cette

difficulté de la même manière que nous l'avons fait pour les sommes de

cubes. On extraira donc la plus grande puissance 2k-ièmo inférieure ou égale

à ru puis on répétera ce processus:

rtzx2t + r2

f / m\(*-D/<navec 0 < r2 < k < kRM r c2m? 7 ——j—

z22k + r3 avec

rt_x zt^x2k + rt avec 0 < rt < ctmy

En prenant t tel que / soit supérieur à l/2k, il sera alors possible

(toujours pour m assez grand) de choisir n de telle façon que le reste final
r rt — (ccn + ß) vérifie

r < a

et nous avons ainsi obtenu le résultat cherché: pour A a, il existe toujours
r < A tel que m — r soit somme de T S + QR + t — 1 puissances
2/c-ièmes.

Appendice

Tableau des valeurs ou des meilleurs encadrements de G (k) et de g (k)
actuellement connus pour les petites valeurs de k:

k 2 3 4 5 6 7 8 9 10

G(k) 4 4-7 16 6-23 9-36 8-52 32-73 13-99 12-122

g(k) 4 9 19-30 37 73 143 279 548 1079
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