Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA RÉGULARITÉ DES FONCTIONS ADDITIVES

Autor: Mauclaire, Jean-Loup

Bibliographie

DOI: https://doi.org/10.5169/seals-45367

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

3. Remarques

- 3.1. Par des procédés tout à fait analogues à ceux que l'on vient d'employer, on pourrait démontrer que:
- 1) Si f est additive, et si $\lim_{n \to +\infty} \{f(2n+1) f(2n)\} = 0$, alors $f(n) = C \log n$, où C est une constante.
- 2) Si f est additive, s'il existe $M \in \mathbb{R}^+$ tel que $|f(2n+1) f(2n)| \leq M$ pour tout n, alors $f(n) = C \log n + g(n)$, où C est une constante et g une fonction additive bornée.
- 3.2. Le problème traité ici a été posé et résolu partiellement par I. KÁTAI et F. SKOF (voir [3] et [4]).

RÉFÉRENCES

- [1] P. Erdös, On the distribution function of additive functions. Ann. of Math., 47 (1946) pp. 4-20.
- [2] Wirsing. On a characterization of Log n as an additive function. Proceedings of the Rome conference of Number Theory, (1968).
- [3] I. Kátai, Some results and problems on the theory of additive functions. *Acta Sci. Math.* (Szeged), 30 (1969), Fasc. 3-4, pp. 305-312.
- [4] F. Skof. Sulle funzioni f(n) aritmetiche additive asintotiche a $C \log n$. Ist. Lombardo Accad. Sci. Lett. Rend. A. 103 (1969), pp. 931-938.

(Reçu le 20 décembre 1971)

Jean-Loup Mauclaire Université catholique de l'Ouest B.P. 858 49 - Angers - (France)