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Mais:

2f(2n +1) — 2 f(2n) o (1) (n + oo)

donc :

2/(2ft) — /(4n2 + 4n) o (1) (n -> + oo).

Comme

2/(2n) 2/(2) + 2/(n) et /(4«2+4/j) 2/(2)
+ /(») +/(« +

on obtient:

/(n +1) — fin) o (1) (n-> + oo).

Grâce à un théorème bien connu d'Erdös [1], on en déduit:

fin) C log n

/
Pour 7i 2, f (2) C log 2 — 1, donc C

log 2

2. Démonstration de 2.

2.1. Par des calculs semblables à ceux du §1.1., où les égalités avec

un second membre de la forme rl + o (1) seront remplacées par des

inégalités portant sur les modules des premiers membres, on montre que,

pour tout m g N* et tout k entier > 2,

(T) 1/i2k~1mk) - kfim) | < (k 4-1) M

Ceci vaut évidemment encore pour k 1.

2.1.1. Prenant m 2k'~~1, on voit que, pour k et k' > 1,

1/(2«*'"x) - fe/(2t'"1) | < (fc + 1) M

En échangeant k et k', on a:

|/(2»'-*) - fe'/(2t_1) I <(fc' —1) M

Il résulte de là que, quels que soient et >1,
|/c/(2t'-1) - fc7(2&_1) | <(fc + fc' + 2)M
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c'est-à-dire :

(fl)
/(2 ~ fir-1)

V

Ceci montre que la suite

k

m"-1)
k

11 2
<;[_+_+ M.

le k'

donc vers une limite finie, soit

est une suite de Cauchy. Elle tend

f(2k)/(2k) /(2k) k + 1

Comme x on voit que tend vers A quand
k fc + 1 k k

k tend vers + oo.

Il est à noter que, si dans (a) on fait tendre k' vers + oo avec k fixe,

on obtient:

/(2

k <
M

I'
c'est-à-dire :

(à) l/(2*-1) ~kX\<M.
2.1.2. Si maintenant on prend m impair dans (I'), on obtient:

|/(2»-1) + f(mk) —kf(m)| < (fe -(-1) M

|/(m4) - fc/(m) | < (/c +1) M +1/(2*"*) |

< (fc + 1) M| A | + M d'après (b),

d'où:

</c\v1+vM+u
< kM',

où M' 3M + | 2 |.

En remplaçant m par mk' (/c'>]), on obtient:

|/(m**') - fc/(m*')| <
En intervertissant A: et k', on a:

|/(m**') - fc'/(m*) | <
Il résulte de là que, quel que soit m impair, et quels que soient k et

k' >1, on a:
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I kf(mk')- k'f(m*) I < + k') M'

c'est-à-dire :

(c)
f(mk')

k' k < -+— I M'.\k k'

rf(mky)
Ceci montre que, pour chaque m impair, la suite < > est une\ k

suite de Cauchy, et tend donc vers une limite finie.

/(m
2.2. On voit que, pour tout m e N*, tend vers une limite finie

k
quand k tend vers + oo.

On vient de le montrer dans le cas où m est impair. Si maintenant m est

pair, on peut écrire:

m 2*m', avec a > 1 et m'impair.

On a alors:

f(mk) f{2k«m'k) f (2koc) f(m'k) /(2fca) f{m'k)
1 a 1

k k k k koL k

Le dernier terme tend vers une limite finie quand k tend vers + oo

puisque m' est impair. D'autre part, d'après ce que l'on a vu au § 1.1.,

/(2*a)
ttend vers a.

ka

2.3. Ceci dit, définissons les fonctions /* et g1 sur N* par:

/ * (m) lim et (m) /(m) (m).
/c-> + oo k

On a donc f(m) f* (m) + g1 (m).
On va montrer successivement que gx est bornée, puis que /* est

complètement additive, de sorte que g1 est additive.

2.3.1. Tout d'abord, si m est impair, en prenant k 1 dans (c), et

faisant tendre k' vers + oo, on obtient:

|/* (m) | < M', c'est-à-dire | gl (m) | < M\
Si maintenant m est pair, d'après ce que l'on a vu plus haut, en posant:
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m 2am', avec a > 1 et m' impair, on a:

f*(m)aA+/(m'),
d'où:

0i O) fim)- «A - / * (m')

/(2a) +/(m') - al -/*(0
0i O') + (f(2a)- (a + 1) A) + A

Compte tenu de ce que l'on vient de voir et de (b), où k a + 1,

on voit que:

\g1(m)\ <M' + M + |A| 4M + 2|A|).

2.3.2. /* est additive car, si (m, n) 1, on a pour k > 1

/((m»)*)
_

f(mknk) /(mfe) f(nk)
k k k k

ce qui donne en faisant tendre k vers + oo: /* (mw) =/* (m) +/* (ri).

2.3.3. /* est complètement additive, car, quels que soient p premier
et a > 1,

f(pak)
— a

k ak

d'où, par passage à la limite /* (pa) a/* (p).

2.4. Par le même procédé que dans 1.3, on démontre que

f*(n+1) — f* (ri) 0(1); utilisant alors un résultat de Wirsing [2],

on a:

/*(n) C log n +

où C est une constante et g2 est une fonction additive bornée.

On a donc:

f{n) Clog n + g1(n) + (n)

ce qui est bien le résultat cherché puisque gx + g2 est une fonction additive
bornée.
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