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I SUR LA RÉGULARITÉ DES FONCTIONS ADDITIVES

| par Jean-Loup Mauclaire
V.

En remerciement à mon Professeur, M. Hubert Delange.

j Soit / une fonction additive. On se propose de démontrer les résultats
i'! suivants:

M 1. S'il existe le C tel que lim {/(2n +1 — f(n)} /, alors
: n-* + oo

il /
/0) ; ^ Log n

I

l Log 2

I 2. 5'il existe Me R+ te/pour tout n e N*, \f{2n + 1) — f(n) | < M,
alorsf{n) — C Log n + g (n), où C est une constante et où g est une fonction

i j additive bornée.

1. Démonstration de 1.

2kmk — 1
1.1. Soit me N*. On notera Sk(m) pour k entier > 1

2 m — 1

D'après notre hypothèse, on a, pour k entier >2:
f(2kmkn + Sk(m)) -f(2k~1mkn + mSk^l (m)) / +o(l), (n-> + oo);

Or (2k~ 1mk~ 1n + Sk_i(m), m) 1. Comme / est additive,

f{2k~imkn + mSk-1 (m)) /(m) +/(2fe"1mfc_1n + (m)),
et la relation précédente devient:

f(2kmkn+Sk(m)) -f(2k~1mk~1n + Sk_t (m)) - /(m)
l H- o (1), (n —> + oo).

On obtient donc:
i

£ {f(2JmJn+Sj(m)) (m)) -/(m)}
J. 2

{k — 1) / -f o (1) (w -> + oo)
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c'est-à-dire :

f(2kmkn + Sk (m)) - /(2 mn +1) - (Jfc - 1)/(m) (fc -1) / + o (1)

Or:

f(lmn + 1) — /(mn) / + o (1) (n -» + oo).

Notre relation peut donc s'écrire:

(A)

f(2kmkn + Sk (m)) — /(mn) — (h — 1)/(m)) kl + o (1) (n - + co).

On pose alors n Sk (m) (2m ^ (m) g + 1). D'abord:

2kmkn + Sk(m) Sk (m) \2kmk (2mSk (m) q + 1) + 1]

Or

{Sk (m), 2ftm/£ (2mSk (m) g + 1) + 1) (m), 2*m* + 1) 1.

On a donc:

(a) f(2kmkn + S* (m)) f(Sk (m)) + f(2kmk (2mSk (m) g + 1) + 1)

Ensuite, on remarque que mn m Sk (m) (2mSk (m) q + 1) et que

(m,Sk(m) (2mSk (m) g + 1, (m)) (2mSk (m) g + 1, m) 1.

On obtient donc:

(ß) f(mn)/(m) + /(St (m)) + f(2(m) g + 1).

En substituant les deux relations (a) et (ß) dans (A), on obtient:

(A')

f[2kmk (2mSk (m) q -f 1) +1] —kf(m) — f(2mSk(m) q + 1)

kl -f- o (1) (q —> + co)

Mais, d'après notre hypothèse:

f[2kmk(2mSk(m)q -f-1) +1] — f[2k~1mk (2mSk (m) q + 1)]

/ + o (1) {q —» + co)

En remplaçant dans (A'), on a:

f[2k~1mk(2mSk(m)q + Vj] —kf{m) — f(2mSk (m) q + 1)

— (fc — 1) / + o (1) (q —» -j- oo)



Comme

(2fc_1mfc, 2mSk(m) q + 1) 1,

on a

f[2k~1mk (2mSk(m) q+1)] =/(2*"1m'1) +f(2mSk(m)q + l)

et l'on obtient:

f(2k~1mk) — fc/(m) (fc — 1) l + o(l) (#-> + oo),

c'est-à-dire:

f(2k~1mk) — fc/(m) (fc - 1) / + o (1)

Conclusion 1 : si m g N*, si fc g N, k > 2, alors :

(I) / (2k~1mk) — kf(m)(fc-1)J.

1.2. — a) Faisant m 1 dans la formule (I), on a

/(2fc_1) (fc — 1) / pour fc> 2.

En particulier, pour k 2, /(2) /. On en déduit immédiatement que

/(2fc) fc/(2) fc/ pour fc > 1

— b) Soit maintenant p un nombre premier impair. Compte tenu de

a), en prenant m p dans la formule (I) on obtient

/(/) fc/QO.

Conclusion 2: / est complètement additive.

1.3. Comme / est complètement additive, et que / =/(2), notre
hypothèse initiale prend la forme /(2/î+I) — f {In) o (1), (/? - +oo).
On remarque alors que /[(2^+l)2] f[2 (2n2 + 2n) + 1], et donc que
l'on a:

/[(2n + l)2] — /(4n2 + 4n) o (1) (n -» + oo)

Or:

f[(2n + l)2] 2f(2n + 1)

On obtient donc:

] 2/(2n + 1) - /(4n2 + 4/i) o (1) (u -> + oo)
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Mais:

2f(2n +1) — 2 f(2n) o (1) (n + oo)

donc :

2/(2ft) — /(4n2 + 4n) o (1) (n -> + oo).

Comme

2/(2n) 2/(2) + 2/(n) et /(4«2+4/j) 2/(2)
+ /(») +/(« +

on obtient:

/(n +1) — fin) o (1) (n-> + oo).

Grâce à un théorème bien connu d'Erdös [1], on en déduit:

fin) C log n

/
Pour 7i 2, f (2) C log 2 — 1, donc C

log 2

2. Démonstration de 2.

2.1. Par des calculs semblables à ceux du §1.1., où les égalités avec

un second membre de la forme rl + o (1) seront remplacées par des

inégalités portant sur les modules des premiers membres, on montre que,

pour tout m g N* et tout k entier > 2,

(T) 1/i2k~1mk) - kfim) | < (k 4-1) M

Ceci vaut évidemment encore pour k 1.

2.1.1. Prenant m 2k'~~1, on voit que, pour k et k' > 1,

1/(2«*'"x) - fe/(2t'"1) | < (fc + 1) M

En échangeant k et k', on a:

|/(2»'-*) - fe'/(2t_1) I <(fc' —1) M

Il résulte de là que, quels que soient et >1,
|/c/(2t'-1) - fc7(2&_1) | <(fc + fc' + 2)M
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