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SUR LA REGULARITE DES FONCTIONS ADDITIVES

par Jean-Loup MAUCLAIRE

I
1 En remerciement a mon Professeur, M. Hubert Delange.

Soit f une fonction additive. On se propose de démontrer les résultats

‘ suivants: |

e 1. S’il existe 1€C tel que lim {f(Q2n+1) — f(n)} =1, alors

‘ n— -+ oo

g z

1 f(nh) = —— Logn ..

g f(n) Log2 -°8

[

f( 2. S’il existe M e R™ tel que, pour tout ne N*, | f(2n+1) — f(n) | < M,

, alors f (n) = C Logn + g (n), ot C est une constante et o1 g est une fonction L
’ | additive bornée.

1. DEMONSTRATION DE 1.

, 2*mk — 1 .
1.1. Soit m e N*. On notera S;(m) = T =1 pour k entier > 1.
m —

D’aprés notre hypothése, on a, pour k entier > 2:

F2*m n + S, (m)) — f(2* 'm*n+mS,_; (m)) = 1 +0(1), (n—>+0);

P e e
SRS L N i S Ok R

Y TP

E Or (2" 'm* " in4-S,_(m), m) = 1. Comme f est additive,
f* m* 4+ mS,_  (m)) = f(m) + (2 tm* " n+S,_, (m)),
et la relation précédente devient:

f(2*m*n 4 S, (m)) — f(2* *m* n +8S,_, (m)) — f(m)
=1l4+o0(l), (n—>+ o).

On obtient donc:

j; {f(@min+5;(m)) —f(Zj“lmj_ln—l-Sj_l(m)) — f(m)}
= (k=11 +0(1) (n—>+ ),
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c’est-a-dire: |
f(2"m"n—l—Sk(m)) —fCmn+1) —(k—1)f(m) = (k=114 o(1) ;
Or:
fCmn+1) — f(mn) =14+ 0(1) (n—> + ).
Notre relation peut donc s’écrire:

(A) ;
f(@mn + S, (m)) = f (mn) — (k=1).f () = kI +0(1) (1> +0e0). |

On pose alors n = S, (m).(2m S, (m) g + 1). D’abord:
2*mn 4 S, (m) = S, (m)[2*m* (2mS,(m)q +1) + 1].

Or
(Si(m), 2°m* (2mS, (m) g +1)+1) = (S, (m), 2*m* +1) = 1.
On a donc:
()  f(2m*n+S,(m)) = f(S,(m)) + f(Z*m* 2mS,(m)q+1)+1).
Ensuite, on remarque que mn = m S, (m) . 2mS, (m) g + 1) et que

(m, S, (m) = (2mS, (m)q+1, S,(m)) = 2mS,(m)q+1,m) = 1.

On obtient donc: e%

) f(mn) = f(m) + £(S(m) + f(2mS, (m) g +1) . i
En substituant les deux relations («) et (f) dans (A), on obtient:
(A')
f[2*m*(2mS, (m)q+1) +1] — kf(m) — f(2mS, (m) q +1)
=kl +0(1) (g~ + ).

Mais, d’aprés notre hypothese:
fI[2*m* (2mS, (m) g +1) +1] — f[2*"'m* (2mS, (m) g +1)]
=1l4+0(1) (g + ).
En remplagant dans (A’), on a:

f[2¥ " 'm* (2mS, (m) g +1)] — kf(m) — f(2mS,(m) q +1)
— (k=114 0(1) (g— + ).
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Comme
(2"‘1m", 2mS, (m) q + 1) =1,

on a
25 m* (2mS, (m) g +1)] = f(2*'m*) + f(2mS, (m) q +1)
et 'on obtient:
fQImY) —kf(m) = (k=11 +o0(1) (g—+ ),
c’est-a-dire:

F Iy — kf(m) = (k—1)1 + o(1).

Conclusion 1: st me N*, si ke N, k > 2, alors:
(D JQTImY) —kf(m) = (k—=1)1.
| 1.2. — a) Faisant m = 1 dans la formule (I), on a
FY = (k=1)] pour k>2.
En particulier, pour k£ = 2, f(2) = /. On en déduit immédiatement que
f(2Y = kf(2) = kI pour k>1.

— b) Soit maintenant p un nombre premier impair. Compte tenu de
a), en prenant m = p dans la formule (I) on obtient

f®) = kf(p).
Conclusion 2: f est completement additive.

1.3. Comme f est complétement additive, et que [ = f(2), notre
hypothese initiale prend la forme f(2n+1) — f(2n) = o (1), (n > + o0).
- On remarque alors que f[(2n+1)%] = f[2(2n*+2n) + 1], et donc que
‘Pon a:

| fl@n+1)*] — f(4n*+4n) = o(1) (n— + ©).
Or:
fl@n+1)*] = 2f@2n+1).
On obtient donc:

2f(2n+1) —f(4n2+4n) =0(1) (n— +00).

ti* L’Enseignement mathém,. t. XVIII, fasc. 2. 12
§
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Mais:

2f2n+1) — 2f(2n) = o(1) (n—> + ),
donc:

2f(2n) — f(4n* +4n) = o(1) (n— + ©).
Comme

2f(2n) = 2f(2) +2f(n), et f(4n*+4n) = 2£(2)
+f(m) +f(m+1),
on obtient:
f(n+1) —f(n) = o(1) (n—>+ ).

Grace a un théoréme bien connu d’Erdos [1], on en déduit:

f(n) = Clogn.

/
Pourn=2,f2)=Clog2 =1,donc C = — .
log 2

2. DEMONSTRATION DE 2.

2.1. Par des calculs semblables a ceux du § 1.1., ou les égalités avec
un second membre de la forme r/ + o (1) seront remplacées par des
inégalités portant sur les modules des premiers membres, on montre que,
pour tout m e N* et tout k entier > 2,

1) 1fQT MY — kf(m)| <(k+D M.

Ceci vaut évidemment encore pour k = 1.

2.1.1. Prenant m = 2¥=1 on voit que, pour k et k' >1,
fQ¥™H —kfR"H I <k+D M.
En échangeant k et k', on a:
fQ¥™H =KD I<K - M.
Il résulte de 1a que, quels que soient k£ et k' > 1,

[kfQR¥7H =k fRTDI<E+K+2) M,
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<l+1+2 M
S\t kKK

(21

c’est-a-dire:

2k'—1 2k—1
» } FQEY @Y

k'’ k

Ceci montre que la suite { } est une suite de Cauchy. Elle tend

donc vers une limite finie, soit A.

f(2") _f (2") k+1 . f(29
k

tend vers A quand

Comm , on voit que
kK k+ 1 k

k tend vers + oo.
Il est a noter que, si dans (a) on fait tendre k' vers + oo avec k fixe,

| on obtient:

f27h
k

'A-—-

k b

c’est-a-dire:

E o) F 1) — kA < M

2.1.2.  Si maintenant on prend m impair dans (I'), on obtient:
S +f(m") —kf(m) | <(k+1) M,

d’ou:

<(k+D M+ [f2H]

<(k+1)M +k|A| + M, daprés (b),

(e

kM’

|f(m") — kf(m) |

N

N

§ oh M =3M +|4).
En remplagant m par m* (k'>1), on obtient:
[f(m™) — kf(m*)| <kM’.
En intervertissant k£ et &', on a:
|f(m*) — k' f(m*) | <k'M’.

| Il résulte de 12 que, quel que soit m impair, et quels que solent k et
B < >1, on a:
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|kf(m") — k' f(m") | < (k+k) M,

<1+1M’
S\k K ‘

k
Cecit montre que, pour chaque m impair, la suite { p } est une

c’est-a-dire:

f(m*)  f(m"
k' k

(©

suite de Cauchy, et tend donc vers une limite finie.

f(m®)

2.2. On voit que, pour tout m e N*, 7 tend vers une limite finie

quand k£ tend vers + co.
On vient de le montrer dans le cas ol m est impair. Si maintenant m est
pair, on peut écrire:

m=2"m’, avec a>1 et m impair.

On a alors:
fomy @ mY) _FE%) fmhy _ f@%) fm"
kK kK  k k7 ka k-

Le dernier terme tend vers une limite finie quand k tend vers + oo
puisque m’ est impair. D’autre part, d’aprés ce que 'on a vu au §1.1.,
f(2")

ko

tend vers A.

2.3. Ceci dit, définissons les fonctions f* et g, sur N* par:

ey = fim 10

k— + w0 k

et gy (m) =f(m) —f*(m).

On a donc f(m) = f* (m) + g, (m).
On va montrer successivement que g; est bornée, puis que f* est
complétement additive, de sorte que g, est additive.

2.3.1. Tout d’abord, si m est impair, en prenant k = 1 dans (c), et
faisant tendre k' vers + oo, on obtient:

| £* (m) — f(m) | <M, Cest-a-dire | g; (m) | < M'.

Si maintenant m est pair, d’aprés ce que ’on a vu plus haut, en posant:

Sy e o .



— 173 —

m = 2°m’, avec o >1 et m’ impair, on a:

f*(m) = ad +f(m),

- d’ou:

g (m) = f(m) — ok — f*(m’)
= f(29 + f(m') — ad — f*(m)
=g, (m) +(f2) = (@+D2) + 4.

Compte tenu de ce que I'on vient de voir et de (b), ou k = a + 1,
on voit que:

g, (m) | < M' + M+ |4 (=4M+2|A)).

2.3.2. f* est additive car, si (m,n) = 1, on a pour k >1

f((mn))  f(m*n®)  f(m") T (n°)
kK k k k-’

ce qui donne en faisant tendre k vers + oo: f* (mn) = f* (m) + f* (n).

2.3.3. f* est complétement additive, car, quels que soient p premier
et o > 1,

F@) _ 1
k B ak

d’oui, par passage a la limite f* (p*) = af* (p).

24. Par le méme procédé que dans 1.3, on démontre que

fFm+]) = fF(m) =0(); utilisant alors un résultat de Wirsing [2],

on a:
f*(m) = Clog n+g,(n),
ou C est une constante et g, est une fonction additive bornée.
On a donc:
f(n) = Clogn +g,(n) +9,(n),

ce qui est bien le résultat cherché puisque g, + g, est une fonction additive
bornée,
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3. REMARQUES

3.1. Par des procédés tout a fait analogues a ceux que l’on vient
d’employer, on pourrait démontrer que:

1) Si f est additive, et si lim {f(Q2n+1) — f(@2n)} =0, alors

n—+ oo
f(n) = Clogn, ou C est une constante.

2) Sifest additive, s’il existe M € R tel que | f(2n+1) — f(2n) | < M
pour tout n, alors f(n) = Clogn + g (n), ou C est une constante et g une
fonction additive bornée.

3.2. Le probléme traité ici a été posé et résolu partiellement par
I. KATAI et F. SKoF (voir [3] et [4]).
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