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Comme [L,:K,] divise p — 1, pour que g soit totalement décomposé dans
" K, Jk, il faut et il suffit qu’il le soit dans L,/k. Et I'on obtient que le corps
" de décomposition de q dans K/k est de degré fini sur k.

K = kI’

/ ~
\Q/

r

. Supposons maintenant que 2 divise p, et soit I' la I'-extension cyclo-
tomique de Q associée & p. On sait que p est totalement ramifié dans I'/Q.
En utilisant la branche Q . k. K du diagramme, on obtient encore que le
corps de décomposition de £ est de degré fini sur k.

- Remarque: On pourrait chercher a généraliser la proposition 4 au cas
d’une I'-extension quelconque d’un corps de nombres. En fait, ce résultat
est faux. Montrons-le a partir d’'un exemple dii & Hasse et décrit par

- B. Martel dans [10]. Soit £k = Q (\/ — m) un corps quadratique imaginaire.
Définissons le groupe de congruences H, modulo p""! comme groupe
des idéaux principaux (x) de k, premiers a p, et tels qu’il existe un rationnel
r vérifiant x =r modulo p"*!. Si L, est le corps de classes sur k associé

a H, et K, la p-extension maximale de k£ dans L,, K = U K, est une

n

I'-extension de k linéairement disjointe sur k& de la I'-extension cyclo-
tomique. F. Bertrandias nous a fait remarquer que si ¢ est un nombre
premier rationnel inerte dans k/Q, et distinct de p, I'idéal (¢) de k appartient
a H, quel que soit n. Donc (g) est totalement décomposé dans K/k.

Plus généralement, tout corps de nombres qui contient une extension
quadratique imaginaire de Q admet une I'-extension qui n’est pas de type J.

IV. BASES ENTIERES D’UNE EXTENSION QUADRATIQUE.

1. Critere d’existence d’une base entiere.

H. B. Mann précise dans [9] le critere d’Artin, lorsque L/K est une
extension quadratique du corps des quotients K d’un anneau de Dedekind,
Il énonce les deux théorémes suivants:
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THEOREME 4 (Mann).

Soit L une extension quadratique d’un corps K de caractéristique différente
de 2. Pour que B soit A-libre, il faut et il suffit que I’idéal Ay soit principal,
et engendré par D tel que L = K (D'/?).

THEOREME 5 (Mann).

Soit L = K (a''?) une extension quadratique d’idéal discriminant A.
Posons (a) = a*c et A = 6%/, ou ¢ et ¢’ sont des idéaux entiers sans facteur
carré. L’extension L/K admet une base entiére si et seulement si ¢ = ¢’ et
a ~ 0 (modulo les idéaux principaux).

Le théoréme 4 se généralise facilement au cas ou K est une extension
infinie du corps des quotients d’'un anneau de Dedekind, de caractéristique
différente de 2. Reprenons les notations du début. Supposons que L soit
une extension quadratique de K, de discriminant un idéal principal engendré
par l’entier D;. Il existe un indice o, tel que pour tout o =a, D,
appartienne a A,.

Supposons que L/K admette une base enti¢re {4, u}. Considérons un
indice o = «,, tel que B, contienne A et u : {A, u} est une base enticre de
LK, et le théoréme 4 donne L, = K, (D'/%), D étant un générateur du
discriminant. D’ot L = K (D'/?). |

Inversement, si L = K(Di'?), L,= K,(D;’?. En appliquant Ie
théoréme 4 aux extensions L,/K, telles que o = «,, on obtient que L/K
admet une base enticre.

Pour généraliser le théoréme 5, il nous faut ure théorie de la divisibilité.
C’est pourquoi nous supposerons, pour le reste de ce paragraphe, que K est
un corps de type J.

Lemme.

Soient p un entier, et a un idéal de K. a se décompose de maniére unique
en produit

a = b? ¢

b: idéal fractionnaire dont toutes les composantes non triviales sont dans
des stries finies.

¢: idéal entier sans facteur puissance p-iéme, dont toutes les composantes
non-triviales sont dans des stries finies.
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¢+ idéal dont toutes les composantes non triviales sont dans des stries non
finies.

L’idéal a se décompose de maniére unique en produit d’idéaux a;:
a=a1><a2><...><al

chaque a; appartenant & une stric maximale. Notons m; I'idéal maximal
équivalent 4 qa,, et ordonnons les indices de maniére que my, ..., m; soient
de type fini, et que m;, 4, ..., m, ne le soient pas. Posons m; Nk = 2.

Puisque K est de type J, il n’existe dans K qu’un nombre fini d’idéaux
premiers au-dessus de 2;. Lorsque 1 =i =j, on peut donc trouver un
indice «; tel que I'idéal 2; reste inerte dans K/K,, .. Posqns alors y = K ... Kaj;

J
c’est une extension finie de k. Et dans y, 'idéal ( [ ] a;) n x se décompose
i=1

de maniére unique en:

j
(Ul a) Ny = byPey

¢, idéal entier sans facteur puissance p-iéme. L’idéal ¢, reste inerte dans
K/y, donc son étendu est sans facteur puissance p-iéme.

On peut choisir alors comme idéaux b, cet ¢/ : b = b;4, ¢ = ¢, 4 et
¢ =a;41 X .o X Qg

L’unicité de cette décomposition provient de I'unicité de la décomposi-
tion en produit d’idéaux appartenant a des stries maximales.

Nous pouvons maintenant énoncer un résultat analogue au théoréme 5:

Proposition 5.

Soient K un corps de type J, de caractéristique différente de 2, et
L = K(a''?) une extension quadratique d’idéal discriminant A. Utilisons
le lemme pour écrire
(@) = a?bb’, A4 = 256"
Le A-module B est libre si et seulement si [’on peut trouver o € K* tel que
¢*6" = («*)a®h’ et b =39.

En effet, si b =20 et ¢*' = (¢®) a’b’, 4 = («?) a?0'b = (ax?). Le
discriminant de l'extension L/K est principal, de générateur ao?, et

L = K((ax*)'/?). La généralisation du théoréme 4 permet de conclure
que B est A-libre.
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Inversement, si B est A-libre, I’'idéal 4 est principal; en vertu du méme
théoréme, il est engendré par D tel que L = K (D'/?). Donc
a'’? = x + yD'? (x et y éléments de K).

Elevons au carré:

T R SRR IR A

4 = x* + y*D + 2xyD'/? .
Nécessairement x = 0 et a = y?D.
a’bb’ . = y*266’.
D’aprés le lemme ﬁ

b=6 et a’b = (y?)cd. .

2. Détermination explicite d’une base entiere.

Plagons-nous dans le cas particulier ol K est une extension infinie

de Q:K= UK, avec [K,:Q] < oo. Soit L = K(/a) une extension
neN
quadratique de K. Supposons qu’elle admette une base enti¢re {/, u}: il

existe alors un indice n, tel que pour n =:n,, {4, u} soit une base entiére
de L, = K, ({/a)/K,. Nous sommes donc ramenés & la recherche d’une
base entiére d’une extension quadratique d’un corps de nombres.

Ce probleme a été résolu par Frohlich (Discriminants of algebraic
number fields [5]). Il montre que lorsqu’on connait ’existence d’une base
entiére, on peut trouver un générateur d de l'idéal discriminant, et un
entier [ tel que

d — f* = O modulo 4.

B+ /d

}.

Comme base entiére, on trouve alors {1,

3.  Une condition suffisante d’existence d’une base normale.

Proposition 6.

Soit L une extension quadratique d’un corps de nombres K. Pour que
[’anneau des entiers B de L admette une A-base normale, il suffit que B soit |
A-libre, que BJA soit modérément ramifiée, et que 2 soit totalement décomposé -

dans K/Q. %
i
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Il est évidemment nécessaire qu’il existe une base entiére. On sait aussi

que la condition « étre modérément ramifiée » est nécessaire pour toute

A
R
i
ﬁ

‘admet une A-base normale engendrée par

extension finie d’un corps de nombres. (cf. J. Martinet [11]).
Supposons donc que L/K admette une base entiére; d’aprés le para-
B+d, .
graphe précédent, nous pouvons la prendre de la forme {1, —%/- }, ou
d est un générateur de Pidéal discriminant, et f un entier tel que
f* —d=0(®4).
Une condition nécessaire et suffisante pour que L/K admette une base
normale est qu’il existe deux éléments x et y de A4 tels que:

B+ ./d p—./d 5
Yy 7/ YTy

x-{-yﬁ—-_zil X +

(y*d(2x+yp)*) = (d).

Comme x, y, d et f§ sont des entiers, il faut et il suffit que y et 2x + yf
soient des unités de A.

En particulier, 2x + yf doit étre une unité £-adique pour tout idéal
2 divisant 2. Donc f doit étre une unité Z-adique. Comme d = % (4),
on obtient que d doit étre une unité Z-adique pour tout Z | 2. Cela équivaut
a la ramification modérée de B/A.

Supposons maintenant 2 totalement décomposé dans K/Q. Si Z est
un idéal premier de A divisant 2, 4/? est un corps & deux éléments.
Choissons un élément = dans 2\?%. Tout élément de A/?* peut-étre
représenté par

X + X +

d
y 'B—+2\/

m = g + &m €1,6,€{0,1}.
Si m est une unité #-adique, ¢; = 1. Alors

m? = 1 + 2¢,m + e57° = 1 mod 22.

Tous les carrés d’unités Z-adiques sont congrus & 1 mod 2. En particulier

B? =1 modulo 4.

- Comme valeur de f, on peut choisir 1. Prenons alors x =0, y = 1: B
!

1+ ./d
—
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Corallaire.

Soit L = K (a''?) une extension quadratique d’une extension infinie K |
de Q, de type J. Pour que I’anneau des entiers B de L admette une A-base
normale, il suffit que

. B soit A-libre
. B/A soit modérément ramifiée

. il existe dans K une extension finie k de Q telle que [k a'!?):k] = 2,

que le discriminant de L/K soit I’étendu du discriminant de k (a'/%)/k, et
que 2 soit totalement décomposé dans k/Q.

Pour démontrer ce corollaire, il suffit de voir que k vérifie les hypothéses
de la proposition 6. L’extension k (a'/?)/k admet une base entiére, grace
a la proposition 5. Elle est modérément ramifiée: son discriminant est
premier a 2, comme celui de L/K. Enfin 2 est totalement décomposé dans

k/Q.

Exemple: Considérons le corps K = U Q (\/j, {,) ou {, est une racine
neN

primitive 3"-iéme de l'unité. Si 0 = 1 + 4\/ — 7, L =K(0'?) est une
extension quadratique de K.

Déterminons le discriminant de Q (6'/%)/Q (\/j). L’idéal premier
(1—1—4\/ :-7) se ramifie dans 1’extension considérée; il figure donc avec
I’exposant 1 dans le discriminant. Les seuls idéaux distincts de (1 +4\/ ——_7)

qui peuvent se ramifier dans Q (0'/2)/Q (\/ — 7) sont les idéaux au-dessus
de 2. Or, dans Q (/- 7),

2 = <1+\2/——_7> <1—\2/f7>.

D’autre part

1447 = (1_+i¢_—_7> " (}_+_2J_—j>

2

et

— (14 =TV 1—/ =7\
FEVE BENE NS |
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D’aprés la théorie de Kummer, les idéaux au-dessus de 2 sont non ramifiés
dans l’extension Q (0%/%)/Q (\/ — 7); le discriminant de cette extension vaut
exactement (1+4./ — 7). Le théoréme 5 permet d’affirmer que Q (§/2)/
Q (\/——7) vérifie toutes les hypothéses de la proposition 6: cette extension

1 +~/1+4 /=7
> .

i~

On vérifie aisément que le discriminant de L/K est I’étendu de celui de
Q(Y»/Q(/—17). Donc L/K admet aussi une base normale entiére

1+\/1+4\/_——7.

2

admet donc une base normale enti¢re, engendrée par

engendrée par
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