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a — B est un A-miodule libre. |
b — A[/(D) est le carré d’un idéal principal.

Soit {¢;} une base de L/K. Supposons B de type fini sur 4; d’aprés
le théoréme 1, on peut écrire

B =0a;¢ ®... a8,
ou les a; sont des idéaux de type fini de 4. Posons
a =aqnA,.
B, = ai{; @ ... @ a¢,
pour tout indice « tel que L, contienne les &;. Utilisons les résultats d’Artin
([1]) pour L,/K,:
4, = (a5)?* x ... x (a9*D.

Comme 4 = U d, 4= (a; X ..x a,)? D, et le critére est une consé-

ael

quence immédiate du théoréme 1.

11I. ARITHMETIQUE DANS CERTAINS ANNEAUX DE PRUFER.

1. Anneaux et corps de type J.

Dans un article de 1952, P. Jaffard ([7]) construit une théorie de la
divisibilité pour des anneaux plus généraux que les anneaux de Dedekind.
Il procéde de la maniére suivante: soient 4 un anneau commutatif unitaire,
et J I’ensemble de ses idéaux. On peut munir J d’une relation d’équivalence:

les idéaux a et b sont équivalents, si tout idéal de J, étranger a I'un, est
étranger a lautre.

On appelle « strie » une classe d’équivalence de J pour cette relation;
une strie maximale est une strie qui contient un idéal maximal; celui-ci est
d’ailleurs unique.

THEOREME 2 (Jaffard).

Soit A un anneau commutatif unitaire, vérifiant les deux conditions
suivantes :

* Dintersection d’une infinité d’idéaux maximaux distincts se réduit
a lidéal {0}.
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* tout idéal premier non nul et différent de A appartient a une strie
maximale.

Alors tout idéal a de A se décompose de maniére unique en un produit
d’idéaux, a; % ...x a,, chaque a; appartenant @ une strie maximale.

Définition 3.

Soient 4 un anneau vérifiant les hypothéses du théoréme 2, et m un
idéal maximal de A. Etant donné un idéal a de A4, nous appellerons
composante de a relativement a m I'idéal de la strie de m qui intervient
dans la décomposition de a. |

Nous dirons qu’une strie maximale est finie si 'idéal maximal qu’elle
contient est de type fini; tout idéal d’une strie finie est de type fini. Dans
- le cas contraire, nous dirons qu’une strie maximale est non finie.
| Pour €tre complétement renseigné sur la divisibilité des idéaux, il faut
supposer de plus que A4 est un anneau de Priifer uniforme (c’est-a-dire un
~ anneau de Priifer ol deux idéaux premiers de J, différents de {0}, sont
toujours premiers entre eux). Pour ces anneaux, on peut définir une
décomposition des idéaux fractionnaires suivant les stries maximales, et
démontrer le

THEOREME 3 (Jaffard).

Soit A un anneau de Priifer uniforme, satisfaisant aux hypothéses du
théoreme 2. Si a et b sont deux idéaux fractionnaires de A, les assertions
suivantes sont équivalentes :

a — il existe un idéal ¢ tel que a = be.

b — pour tout idéal maximal m de A tel que la composante de a relative
a m soit finie, la composante de b relative & m est également finie.

Définition 4.

Soient D un anneau de Dedekind, et 4 la cloture intégrale de D dans
une extension algébrique infinie du corps des quotients de D. Nous dirons
que A est un anneau de type J si ’ensemble des idéaux premiers de 4 au-
dessus d’un idéal premier 2 de D est fini.

I est clair qu’un anneau de type J est un anneau de Priifer uniforme,
qui vérifie les hypothéses du théoréme 2,
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Un corps K est un corps de type J s’il est corps des quotients d’un
anneau de type J.

2. Exemple de corps de type J.

Soit k un corps de nombres. On dit que K est une I'-extension de k
si K/k est galoisienne, et si Gal (K/k) est isomorphe a Z,. Les extensions
intermédiaires d’une I'-extension K/k sont donc des extensions cycliques
de degré p" de k. Soit alors 2 un idéal premier de k; son corps de décompo-
sition est soit K, soit un corps de nombres.

Proposition 4.

Toute I'-extension cyclotomique d’un corps de nombres est un corps de
type J.

Soit {, une racine primitive p"-iéme de I’unité. Notons L, le corps k ({,).
Par définition, la I'-extension cyclotomique K d’un corps de nombres k,
associée au nombre premier p est la I'-extension contenue dans L = U L,.

n
oo

Si k contient les racines p-iémes de 1'unité, alors K = L. Sinon, K = U K
nd
n=2

K, étant la sous-extension de degré p"~ ! de L,, et [L,:K,] divise p — 1.

\

L, =k(, K
| - K<~
k / n

L

. Soit q un idéal premier de k£ ne divisant pas p. La théorie du corps
de classes [4] nous dit que q se décompose totalement dans I’extension
L,/k si et seulement si q appartient au groupe d’Artin H, de L,/k. L’image

de g par P'automorphisme de Frobenius est I’élément ¢ de Gal (L,/k)
défini par:

oty = (3.

Donc q est totalement décomposé dans L,/k si et seulement si

N(q) =1 mod p".
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Comme [L,:K,] divise p — 1, pour que g soit totalement décomposé dans
" K, Jk, il faut et il suffit qu’il le soit dans L,/k. Et I'on obtient que le corps
" de décomposition de q dans K/k est de degré fini sur k.

K = kI’

/ ~
\Q/

r

. Supposons maintenant que 2 divise p, et soit I' la I'-extension cyclo-
tomique de Q associée & p. On sait que p est totalement ramifié dans I'/Q.
En utilisant la branche Q . k. K du diagramme, on obtient encore que le
corps de décomposition de £ est de degré fini sur k.

- Remarque: On pourrait chercher a généraliser la proposition 4 au cas
d’une I'-extension quelconque d’un corps de nombres. En fait, ce résultat
est faux. Montrons-le a partir d’'un exemple dii & Hasse et décrit par

- B. Martel dans [10]. Soit £k = Q (\/ — m) un corps quadratique imaginaire.
Définissons le groupe de congruences H, modulo p""! comme groupe
des idéaux principaux (x) de k, premiers a p, et tels qu’il existe un rationnel
r vérifiant x =r modulo p"*!. Si L, est le corps de classes sur k associé

a H, et K, la p-extension maximale de k£ dans L,, K = U K, est une

n

I'-extension de k linéairement disjointe sur k& de la I'-extension cyclo-
tomique. F. Bertrandias nous a fait remarquer que si ¢ est un nombre
premier rationnel inerte dans k/Q, et distinct de p, I'idéal (¢) de k appartient
a H, quel que soit n. Donc (g) est totalement décomposé dans K/k.

Plus généralement, tout corps de nombres qui contient une extension
quadratique imaginaire de Q admet une I'-extension qui n’est pas de type J.

IV. BASES ENTIERES D’UNE EXTENSION QUADRATIQUE.

1. Critere d’existence d’une base entiere.

H. B. Mann précise dans [9] le critere d’Artin, lorsque L/K est une
extension quadratique du corps des quotients K d’un anneau de Dedekind,
Il énonce les deux théorémes suivants:
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