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3 A n Aa => Aa

Donc se ramifie dans LJKa. Par « propagation de la non-ramification
vers le haut », il existe au moins un indice i tel que pour tout a,

(rv.a:rva) > 1. Pour cette valeur de z, (Tv. :LV) >1, et est ramifié
dans L/K.

II. Bases entières.

L — 3)

K

Soit le corps obtenu en adjoignant à Q, j et toutes les racines 5n-ièmes

de l'unité; soit Ç» une racine primitive 5n-ième de l'unité. Le corps K,
extension cyclotomique de Q, est une extension abélienne de Q. Mais

Q0;^3)/Q n'est pas abélienne; donc L est une extension de

degré 3 de K
Les extensions Q(/,^/3, C„)/Q (y, £„) sont des extensions de Kummer.

Les seuls idéaux qui peuvent se ramifier sont ceux qui divisent 3. La théorie
de Kummer (cf. Hecke [6]) permet de calculer leur participation au
discriminant deLJKn; on obtient: An 34An. Mais comme Z [y ] est principal,

Q 0? 3)/Q (j) admet une base entière, {À, /z, v}, de discriminant 34. Donc

L/K admet {2, ji, v} comme base entière.

2. Caractérisation des A-modules B de type fini.

Proposition 3.

A et B étant définis au paragraphe précédent, /es propositions suivantes

sont équivalentes:

a — B est un A-module de type fini.

1. Exemple

Q

_____
Q(j, 3)

QO',^3) y

\ QO'.Ü "
QO
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b — Il existe une famille finie {Xx, Xt} d'éléments de B, et un indice

oc0 e /, tels que pour tout ß ^ a0, {Xu Xt} soit un système de générateurs

du Aß-module Bß.

c — L'idéal discriminant A de L/K est de type fini.

a => b — Choisissons un système fini de générateurs de B, {Xu Xt}.

D'après la condition (1), il existe un indice a0 e / tel que les Xt appartiennent
tous à B^o. Pour ß ^ a0, considérons le ^-module Mß AßX1 4- + AßXh

et montrons que Mß — Bß.

Le module Mß est sans torsion, de rang n, sur l'anneau de Dedekind Aß.

Utilisons un résultat démontré par Artin dans ([1}): étant donnés n éléments

Ii de Mß linéairement indépendants sur Kß, on peut trouver n idéaux
fractionnaires cq de Aß tels que

Mß afii © ® ùnln.

Cette écriture permet de vérifier l'égalité, pour y ^ ß :

My n Bß Mß

On peut alors définir une injection de BßIMß dans By/My. La famille
{BJMoc](X^0q constitue un système inductif, de limite inductive 0. Donc,
pour oc cc0,

Ba 4*^1 + + AfXx

b => c — Supposons B de type fini. Soit encore a0 l'indice intervenant
dans la démonstration de a => b. Choisissons un idéal premier de Aao,
et localisons en (Nous surlignerons les localisés). Pour a ^ a0, Ba et

Bao possèdent un système de générateurs commun, donc Ba et Bao ont
une base commune respectivement sur Aa et Aao. Et

Ceci étant vrai pour tout idéal premier 0* de Aao,

^oc0^a '

Comme on obtient une nouvelle famille d'indices vérifiant les conditions (1)
en ne considérant que les indices de / supérieurs à a0, on peut conclure
que

A — Aa A
ao

L'Enseignement mathém,. t. XVIII, fasc. 2. 11
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c => b => a — Soit (<51? <5t} un système de générateurs de A.
Considérons un indice oc0 tel que Aao contienne tous les ôb et, pour oc ^ oc0,

posons

aa S1Aa + + ôtAa.

Comme aaAß — aß lorsque ß ^ oc, on a

û^4 aa.

La limite inductive du système inductif {A Jeta}a^ao est nulle, donc pour
a ^ oc0, Aa aa AaAa.

Si {/l5 /p} est un système de générateurs du ^-module i?ao,

considérons pour a ^ oc0

Mx 4A + ••• + y4aZp

Grâce à l'hypothèse Aa AaoAa, on montre par localisation que Ma Ba.

Comme K — u Ka, on peut donc conclure que B est un ^[-module de
ael

a^(X0

type fini.

Cette caractérisation va nous permettre de construire une extension

L/K ou B n'est pas un A-module de type fini.

Considérons le corps Kn Q (3\/2) ; c'est une extension de degré 3"

de Q, dans laquelle 2 est totalement ramifié. Le corps K u Kn est une
extension réelle de Q, donc L K{i) est une extension de degré 2 de K.

Q(0 Q(i,y~2) Q 0\ 3\/2) L
I IlQ Q(^2) Q (3V2) K

L'indice de ramification de 2 dans Q (/)/Q vaut 2; dans Q (3\/2)/Q,
il vaut 3n. Donc SPn — (3\/2) est ramifié dans Q (/, 3"^/2)/Q (3"%/2). On

voit que l'entier maximum xn tel que la congruence

- 1 £ mod

admette une solution dans An est 3". La théorie de Kummer (cf. [6]) nous

donne donc comme valeur du discriminant An de Q (z, *ny/2)/Q (3"-N/2)

^ ^r+i-
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Soit m un indice supérieur à n.

MA gp^ n^-m ^ m

A4- œ>im + im-n
nn^ m ^ m

4 _ ^3m + ln m ^ m

Donc dès que m diffère de n, Am contient strictement AnAm, et Am

n'est jamais l'étendu d'un discriminant d'indice inférieur. La proposition 3

permet de conclure que B n'est pas un ^4-module de type fini.

3. Critère d'Artin.

Pour généraliser le critère d'Artin, nous utiliserons un théorème démontré

en 1952 par Kaplansky ([8]).

Théorème 1 (Kaplansky)

Soit R un domaine d'intégrité vérifiant les deux conditions suivantes :

tout idéal de type fini est inversible.

si a est un idéal non nul de type fini de R, R/a est un anneau dans lequel

tout idéal de type fini est principal.

Alors si M est un R-module sans torsion de type fini
a — M se représente comme somme directe d'idéaux de type fini,

Cli, •••5 ß/r

b — Le rang n de M, et la classe du produit ax x x a„ dans une

représentation de M comme somme directe d'idéaux constituent un système

complet d'invariants pour M.

On voit facilement que les anneaux A qui nous intéressent vérifient les

hypothèses du théorème 1. Si l'on suppose que B est de type fini sur A,
on peut trouver des idéaux cq de A tels que

B cq © © û„.

On peut donc conclure que pour que B soit un ^4-module libre, il faut et il
suffit que l'idéal ûj x x û„ soit principal.

Critère d'Artin.

Soit D le discriminant d'une base {fit} de L/K, et soit A l'idéal
discriminant de LjK. Les deux assertions suivantes sont équivalentes :
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a — B est un A-module libre.

b — A/(D) est le carré d'un idéal principal.

Soit {<^} une base de L\K. Supposons B de type fini sur A; d'après
le théorème 1, on peut écrire

B difi © 0 anÇn

où les et; sont des idéaux de type fini de A. Posons

a? ûj n Aa

Boc © © alÇn

pour tout indice a tel que La contienne les Utilisons les résultats d'Artin
([1]) pour LJKa :

da (aï)2 x x (a:)2D

Comme A — u Aaf A (ax x x an)2 D, et le critère est une consé-
ael

quence immédiate du théorème 1.

111. Arithmétique dans certains anneaux de Prüfer.

1. Anneaux et corps de type J.

Dans un article de 1952, P. Jaffard ([7]) construit une théorie de la

divisibilité pour des anneaux plus généraux que les anneaux de Dedekind.

Il procède de la manière suivante : soient A un anneau commutatif unitaire,
et J l'ensemble de ses idéaux. On peut munir J d'une relation d'équivalence :

les idéaux a et h sont équivalents, si tout idéal de /, étranger à l'un, est

étranger à l'autre.
On appelle « strie » une classe d'équivalence de J pour cette relation ;

une strie maximale est une strie qui contient un idéal maximal ; celui-ci est

d'ailleurs unique.

Théorème 2 (Jaffard).

Soit A un anneau commutatif unitaire, vérifiant les deux conditions

suivantes :

* L'intersection d'une infinité d'idéaux maximaux distincts se réduit

à l'idéal {0}.
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