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P, oDANnA, o 4,.

Donc 2, se ramifie dans L /K,. Par « propagation de la non-ramification
vers le haut», il existe au moins un indice [ tel que pour tout o,
(I'y;e:l'y) > 1. Pour cette valeur de i, (I',,:I,) > 1, et & est ramifié
dans L/K.

I1. BASES ENTIERES.

1. Exemple
Q(j, ¢, ~/3
QYD . \\/) ;
PR ity T
Q)

0 —

Soit K le corps obtenu en adjoignant & Q, j et toutes les racines 5"-iémes
de I'unité; soit {, une racine primitive 5"-iéme de l'unité. Le corps K,
extension cyclotomique de Q, est une extension abélienne de Q. Mais
Q(/j, \3/_3-)/Q n’est pas abélienne; donc L = K(\3/-3) est une extension de
degré 3 de K.

Les extensions Q (/, \3/3, £)/Q (j, £,) sont des extensions de Kummer.
Les seuls idéaux qui peuvent se ramifier sont ceux qui divisent 3. La théorie
de Kummer (cf. Hecke [6]) permet de calculer leur participation au dis-
criminant de L, /K, ; on obtient: 4, = 3*4,. Mais comme Z [ j ] est principal,

Q (j, \??/_3)/Q (j) admet une base entiére, {4, u, v}, de discriminant 3*. Donc
L/K admet {, u, v} comme base entiére.

2. Caractérisation des A-modules B de type fini.

Proposition 3.

A et B étant définis au paragraphe précédent, les propositions suivantes
sont équivalentes :

a — B est un A-module de type fini.

N A R
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b —- Il existe une famille finie {1, ...,/T,} d’éléments de B, et un indice
a, € 1, tels que pour tout B = oy, {Aq, ..., A;} soit un systéme de générateurs
du Az-module By.

c — L’idéal discriminant A de L|K est de type fini.

a = b — Choisissons un systéme fini de générateurs de B, {14, ..., A;}.
D’aprés la condition (1), il existe un indice a, € I tel que les 4; appartiennent
tous a B, . Pour f§ = a,, considérons le 4;-module M, = Agh; + ... + Ayd,,
et montrons que M, = B;.

Le module M} est sans torsion, de rang n, sur ’anneau de Dedekind A,.
Utilisons un résultat démontré par Artin dans ([1]): étant donnés » éléments
I; de M, linéairement indépendants sur K, on peut trouver n idéaux
fractionnaires a; de A, tels que

Mp — alll @... @anln.
Cette écriture permet de vérifier I’égalité, pour y = f:
M}. M Bﬂ = MB .

On peut alors définir une injection de By/M, dans B /M, La famille
{B,/M,},~,, constitue un systéme inductif, de limite inductive 0. Donc,
pour o == o,

B, =M, = A + ... + A7, .

a

b = ¢ — Supposons B de type fini. Soit encore «, I’indice intervenant
dans la démonstration de @ = b. Choisissons un idéal premier 2 de 4, ,
et localisons en Z. (Nous surlignerons les localisés). Pour o = «,, B, et

B, possédent un systéme de générateurs commun, donc B, et B, ont

une base commune respectivement sur A, et 4, . Et

A =44,
Ceci étant vrai pour tout idéal premier 2 de Ay,
4, = 4, A, .

Comme on obtient une nouvelle famille d’indices vérifiant les conditions (1)
en ne considérant que les indices de I supérieurs & «,, on peut conclure
que

4 =4,4.

%o
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¢=b=a— Soit {04, ..., 6;} un systéme de générateurs de 4. Consi-
dérons un indice «, tel que A4, contienne tous les J;, et, pour o = «,,
0 %o i ’ 0>

posons

Comme a,4; = a; lorsque f=a, on a
aﬂ M Aa = aa .

La limite inductive du systéme inductif {4,/a,},~, est nulle, donc pour
o =0a4 4, =q, = 4,4,

Si {/;,..,1,} est un systtme de générateurs du A,-module B,,
considérons pour o = a,

M, = Al + ... + A,

p*

Gréce 4 Phypothése 4, = 4,,4,, on montre par localisation que M, = B,.
Comme K = U K,, on peut donc conclure que B est un A-module de

ael
a>a,

type fini.

Cette caractérisation va nous permettre de construire une extension
L/K ou B n’est pas un A-module de type fini.

Considérons le corps K, = Q (3”\/ 2); c’est une extension de degré 3"
de Q, dans laquelle 2 est totalement ramifié. Le corps K = U K, est une
extension réelle de Q, donc L = K (i) est une extension de degré 2 de K.

Ql(i) e Q(i,l\%:) — QG 3‘"\/"2') — IL
Q —— QW2 — Q2 —— K

L’indice de ramification de 2 dans Q (i)/Q vaut 2; dans Q (3"\/ 5)/Q,

il vaut 3". Donc 2, = (3"\/ 5) est ramifié dans Q (i, 3”\/ ~2—)/Q (3"\/ 5). On
voit que I'entier maximum x, tel que la congruence

— 1 =& mod #'n

admette une solution dans 4, est 3". La théorie de Kummer (cf. [6]) nous
donne donc comme valeur du discriminant 4, de Q (i, 3"\/ 2)/Q (3"\/ 2)

_ 3ntg
A, = P31

n
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Soit m un indice supérieur a n.

PA =P
AA =pim+3m-r
A, = P3"HL,

Donc dés que m différe de n, 4,, contient strictement 4,4,, et 4,
n’est jamais ’étendu d’un discriminant d’indice inférieur. La proposition 3
permet de conclure que B n’est pas un A-module de type fini.

3. Critére d’Artin.

Pour généraliser le critére d’Artin, nous utiliserons un théoréme démontré
en 1952 par Kaplansky ([8]).

THFOREME 1 (Kaplansky)

Soit R un domaine d’intégrité vérifiant les deux conditions suivantes :

. tout idéal de type fini est inversible.

. si a est un idéal non nul de type fini de R, R/a est un anneau dans lequel
tout idéal de type fini est principal.

Alors si M est un R-module sans torsion de type fini

a — M se représente comme somme directe d’idéaux de type fini,

Qg ooy (e

b — Le rang n de M, et la classe du produit a; X ... X q, dans une
représentation de M comme somme directe d’idéaux constituent un systéme
complet d’invariants pour M.

On voit facilement que les anneaux A qui nous intéressent vérifient les
hypothéses du théoréme 1. Si 'on suppose que B est de type fini sur A4,
on peut trouver des idéaux a; de A tels que

B=a1®...@an.

- On peut donc conclure que pour que B soit un A-module libre, il faut et il
- suffit que I'idéal a; x ... x a, soit principal.

- Critére d’ Artin.

Soit D le discriminant d’une base {&;} de LIK, et soit A lidéal dis-

criminant de LK. Les deux assertions suivantes sont équivalentes :
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a — B est un A-miodule libre. |
b — A[/(D) est le carré d’un idéal principal.

Soit {¢;} une base de L/K. Supposons B de type fini sur 4; d’aprés
le théoréme 1, on peut écrire

B =0a;¢ ®... a8,
ou les a; sont des idéaux de type fini de 4. Posons
a =aqnA,.
B, = ai{; @ ... @ a¢,
pour tout indice « tel que L, contienne les &;. Utilisons les résultats d’Artin
([1]) pour L,/K,:
4, = (a5)?* x ... x (a9*D.

Comme 4 = U d, 4= (a; X ..x a,)? D, et le critére est une consé-

ael

quence immédiate du théoréme 1.

11I. ARITHMETIQUE DANS CERTAINS ANNEAUX DE PRUFER.

1. Anneaux et corps de type J.

Dans un article de 1952, P. Jaffard ([7]) construit une théorie de la
divisibilité pour des anneaux plus généraux que les anneaux de Dedekind.
Il procéde de la maniére suivante: soient 4 un anneau commutatif unitaire,
et J I’ensemble de ses idéaux. On peut munir J d’une relation d’équivalence:

les idéaux a et b sont équivalents, si tout idéal de J, étranger a I'un, est
étranger a lautre.

On appelle « strie » une classe d’équivalence de J pour cette relation;
une strie maximale est une strie qui contient un idéal maximal; celui-ci est
d’ailleurs unique.

THEOREME 2 (Jaffard).

Soit A un anneau commutatif unitaire, vérifiant les deux conditions
suivantes :

* Dintersection d’une infinité d’idéaux maximaux distincts se réduit
a lidéal {0}.




	II. Bases entières.

