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. Si o et B appartiennent & 7, le corps composé K, . K; appartient
a 'ensemble {K},.;.

Il existe toujours au moins un sous-ensemble 7, & lui-méme. Lorsque D
est dénombrable, nous pouvons prendre N comme sous-ensemble I:
K = v K,
neN
les corps K, étant emboités.

Soit L une extension finie séparable de K. Si 0 est un générateur de
L/K, posons L, = K,(0). Nous ne considérerons par la suite que les
indices o pour lesquels [L,: K, = [L : K] = n.

Enfin les anneaux d’entiers de K, L, K, et L, seront notés respectivement
A, B, A, et B,.

I. DISCRIMINANT ET RAMIFICATION.

1. Discriminant.
Définition 1.

Nous appellerons discriminant de I’extension L/K [ idéal A de A engendré
par les discriminants des bases de L|K a éléments dans B.

Puisque L/K est séparable, 4 est un idéal entier non nul de A.

Proposition 1.

Soit I un sous-ensemble de F possédant la propriété (1). Notons A le
discriminant de LIK, et A, celui de L,/K,. Alors

A =uvd,.
ael
En effet, un élément de A4 est combinaison linéaire finie, a coefficients
dans A, de discriminants de bases de L/K a éléments dans B: c’est donc
un élément d’un 4,.
Inversement, puisque [L,:K,] = [L:K], toute base de L /K, & coefficients
dans B, est une base de L/K a coefficients dans B, et 4 contient U 4,,.
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2. Ramification.

Remarquons que dans I’anneau A, tout idéal premier & est maximal.
Le localisé A4, est un anneau de valuation, donc, a &2, on peut assocler
une valuation v sur K, de groupe des valeurs I',. Comme I’extension L/K
est finie, il n’existe dans B qu’un nombre fini d’idéaux premiers au-dessus
de 2, vy, ..., p; (cf. Bourbaki [3] § 8). A chaque p; est associée une valua-
tion v; de L qui prolonge v; le groupe I',. des valeurs de v; admet I' comme
sous-groupe.

Définition 2.
Soit P un idéal premier de A. Nous dirons que P se ramifie dans I’extension
L/K si I’un des indices e; = (I',,:T",) est strictement supérieur a 1.

1
Remarque: si f; = [B/p;:A/?], linégalité > e,f; = n est encore vraie.

i=1
(cf. Bourbaki [3]).

Proposition 2.

Pour qu’'un idéal premier P de A se ramifie dans I’extension L|K, il faut
et il suffit qu’il contienne I’idéal discriminant A.

La démonstration de cette proposition repose sur le principe bien connu
de la propagation de la non-ramification vers le haut. On peut énoncer ce
principe de la maniére suivante:

soient k le corps des quotients d’un anneau de Dedekind, M et N
deux extensions algébriques finies séparables de k, linéairement disjointes
sur k. Si & est un idéal premier de k non ramifié dans I'extension M/k,
tout idéal premier p de N qui divise £ est non ramifié dans I’extension
M . N/N.

Posons 2, = # n A,, et notons v* (resp v;) la restriction de v (resp v;)
a K, (resp L,).

Supposons £ ramifié dans L/K: il existe un indice i€ [l, /] tel que
(I',,:I',) > 1. On ne peut trouver oy el tel que (Fvgo:Fvao) = 1; sinon,

la « propagation de la non-ramification vers le haut », et 'égalit¢ K = U Kj

Bel
B=a,

permettraient de conclure que (I',.:I',)) = 1. Donc pour tout a e, 2, est
ramifié¢ dans L /K, : 2, contient le discriminant 4, de L /K,, et 2 contient
4 =uv 4,

Inversement, si & contient 4, pour tout a«€l, on a les inclusions:
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P, oDANnA, o 4,.

Donc 2, se ramifie dans L /K,. Par « propagation de la non-ramification
vers le haut», il existe au moins un indice [ tel que pour tout o,
(I'y;e:l'y) > 1. Pour cette valeur de i, (I',,:I,) > 1, et & est ramifié
dans L/K.

I1. BASES ENTIERES.

1. Exemple
Q(j, ¢, ~/3
QYD . \\/) ;
PR ity T
Q)

0 —

Soit K le corps obtenu en adjoignant & Q, j et toutes les racines 5"-iémes
de I'unité; soit {, une racine primitive 5"-iéme de l'unité. Le corps K,
extension cyclotomique de Q, est une extension abélienne de Q. Mais
Q(/j, \3/_3-)/Q n’est pas abélienne; donc L = K(\3/-3) est une extension de
degré 3 de K.

Les extensions Q (/, \3/3, £)/Q (j, £,) sont des extensions de Kummer.
Les seuls idéaux qui peuvent se ramifier sont ceux qui divisent 3. La théorie
de Kummer (cf. Hecke [6]) permet de calculer leur participation au dis-
criminant de L, /K, ; on obtient: 4, = 3*4,. Mais comme Z [ j ] est principal,

Q (j, \??/_3)/Q (j) admet une base entiére, {4, u, v}, de discriminant 3*. Donc
L/K admet {, u, v} comme base entiére.

2. Caractérisation des A-modules B de type fini.

Proposition 3.

A et B étant définis au paragraphe précédent, les propositions suivantes
sont équivalentes :

a — B est un A-module de type fini.
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