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Si a et ß appartiennent à /, le corps composé Ka. Kß appartient
à l'ensemble {K]yeI.

Il existe toujours au moins un sous-ensemble /, #" lui-même. Lorsque D
est dénombrable, nous pouvons prendre N comme sous-ensemble /:

K u Kn
neN

les corps Kn étant emboîtés.

Soit L une extension finie séparable de K. Si 6 est un générateur de

L/K, posons La Ka (0). Nous ne considérerons par la suite que les

indices a pour lesquels [La: Ka] [L : K\ n.

Enfin les anneaux d'entiers de K, L, Ka et La seront notés respectivement
A, B, et ^a.

I. Discriminant et ramification.

1. Discriminant.

Définition 1.

Nous appellerons discriminant de /'extension L/K Vidéal A de A engendré \
\

par les discriminants des bases de L/K à éléments dans B.

Puisque LIK est séparable, A est un idéal entier non nul de A.

Proposition 1.

Soit I un sous-ensemble de possédant la propriété (1). Notons A le

discriminant de LjK, et Aa celui de LJKa. Alors

A u Aa
ael j

En effet, un élément de A est combinaison linéaire finie, à coefficients

dans A, de discriminants de bases de LIK à éléments dans B: c'est donc

un élément d'un Aa. j

Inversement, puisque [Lp.Ka] [L\K\ toute base de LJKa à coefficients L

dans Ba est une base de L/K à coefficients dans B, et A contient u Aa. |
ael I
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2. Ramification.

Remarquons que dans l'anneau A,tout idéal premier SP est maximal.

Le localisé A& est un anneau de valuation, donc, à SP, on peut associer

une valuation v sur K, de groupe des valeurs J\. Comme l'extension L/K
est finie, il n'existe dans B qu'un nombre fini d'idéaux premiers au-dessus

de SP,Pi, Pi (cf. Bourbaki [3] § 8). A chaque p; est associée une valuation

v,- de L qui prolonge v; le groupe fv. des valeurs de v; admet f comme

sous-groupe.

Définition 2.

Soit PP un idéal premier de A. Nous dirons que PP se ramifie dans Vextension

L/K si Vun des indices et (Fv. est strictement supérieur à 1.

i

Remarque: si fi [B/ppA/PP], l'inégalité Yteifi-~n est encore vraie-
1 1

(cf. Bourbaki [3]).

Proposition 2.

Pour qu'un idéal premier PP de A se ramifie dans l'extension L/K, il faut
et il suffit qu'il contienne l'idéal discriminant A.

La démonstration de cette proposition repose sur le principe bien connu
de la propagation de la non-ramification vers le haut. On peut énoncer ce

principe de la manière suivante :

soient k le corps des quotients d'un anneau de Dedekind, M et N
deux extensions algébriques finies séparables de k, linéairement disjointes
sur k. Si PP est un idéal premier de k non ramifié dans l'extension M/k,
tout idéal premier p de N qui divise PP est non ramifié dans l'extension
M. N/N.

Posons PPa PP n Aa, et notons va (resp v") la restriction de v (resp vf)
à Ka (resp LJ.

Supposons PP ramifié dans L/K: il existe un indice / e [1, /] tel que
(rv. :rv) >1. On ne peut trouver a0 e / tel que (rva0:rv««,) 1; sinon,
la « propagation de la non-ramification vers le haut », et l'égalité K u Kß

ßel
ß^aQ

permettraient de conclure que (Lv. :LV) 1. Donc pour tout aefi PPa est
ramifié dans LJKa : PPa contient le discriminant Aa de LJKa, et PP contient
A u Aa.

\ Inversement, si PP contient A, pour tout a e/, on a les inclusions:
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3 A n Aa => Aa

Donc se ramifie dans LJKa. Par « propagation de la non-ramification
vers le haut », il existe au moins un indice i tel que pour tout a,

(rv.a:rva) > 1. Pour cette valeur de z, (Tv. :LV) >1, et est ramifié
dans L/K.

II. Bases entières.

L — 3)

K

Soit le corps obtenu en adjoignant à Q, j et toutes les racines 5n-ièmes

de l'unité; soit Ç» une racine primitive 5n-ième de l'unité. Le corps K,
extension cyclotomique de Q, est une extension abélienne de Q. Mais

Q0;^3)/Q n'est pas abélienne; donc L est une extension de

degré 3 de K
Les extensions Q(/,^/3, C„)/Q (y, £„) sont des extensions de Kummer.

Les seuls idéaux qui peuvent se ramifier sont ceux qui divisent 3. La théorie
de Kummer (cf. Hecke [6]) permet de calculer leur participation au
discriminant deLJKn; on obtient: An 34An. Mais comme Z [y ] est principal,

Q 0? 3)/Q (j) admet une base entière, {À, /z, v}, de discriminant 34. Donc

L/K admet {2, ji, v} comme base entière.

2. Caractérisation des A-modules B de type fini.

Proposition 3.

A et B étant définis au paragraphe précédent, /es propositions suivantes

sont équivalentes:

a — B est un A-module de type fini.

1. Exemple

Q

_____
Q(j, 3)

QO',^3) y

\ QO'.Ü "
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