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ARITHMÉTIQUE DANS DES EXTENSIONS FINIES

DU CORPS DES QUOTIENTS DE CERTAINS
ANNEAUX DE PRÜFER

par Nicole Moser

Dans cet article, nous cherchons à généraliser des résultats arithmétiques

connus pour les anneaux de Dedekind à certains anneaux de Prüfer. On

pourra trouver dans Bourbaki ([2], § 2, exercice 12) la définition des anneaux

de Prüfer. Donnons ici les deux caractérisations que nous utiliserons:

soit A un anneau intègre ; c'est un anneau de Prüfer s'il vérifie l'une des

deux propriétés équivalentes suivantes :

a — Pour tout idéal premier l'anneau local Ag> est un anneau de

valuation.

b — Tout idéal non nul et de type fini dans A est inversible.

Nous nous intéresserons par la suite à l'anneau des entiers A d'une
extension algébrique infinie K du corps des quotients d'un anneau de

Dedekind ; c'est un anneau de Prüfer, (caractérisation è), mais en général

ce n'est pas un anneau de Dedekind. Soit L une extension finie séparable
de X, d'anneau des entiers B.

Dans une première partie (§ I et II), nous généralisons le critère d'Artin
([1]), qui donne une condition nécessaire et suffisante pour que B soit un
T-module libre. Ensuite (§ IV), nous supposons que L/K est une extension

quadratique telle que A soit un anneau de Prüfer uniforme du type de

Dedekind (cf. Jaffard [7] et § III). D'après un article de Mann ([9]), nous
précisons le critère d'Artin. Puis, lorsque celui-ci est vérifié, nous obtenons

une condition suffisante d'existence d'une base normale entière.
Dans la plupart des démonstrations, nous travaillerons sur des sous-

corps de K qui sont corps des quotients d'un anneau de Dedekind. Nous
aurons donc besoin des quelques résultats classiques que nous rappelons
ci-dessous.

Soient D un anneau de Dedekind, de corps des quotients M, et N une
extension finie séparable de M; notons D'la fermeture intégrale de D dans
N. Comme P. Samuel [12], choisissons pour définition du discriminant la
caractérisation suivante:
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Définition.

On appelle discriminant de D' sur D Vidéal de D engendré par les

discriminants des bases de N/M qui sont contenues dans D'.
On démontre alors la

Proposition.

Pour qu'un idéal premier 0 de D se ramifie dans D\ il faut et il suffit
qu'il contienne l'idéal discriminant AD,/D. (cf. [12]).

Le discriminant est déterminé par sa décomposition en idéaux premiers
de D ; on peut étudier séparément la participation de chaque idéal premier,
grâce à deux résultats que l'on trouve dans « Corps locaux » de J.-P. Serre

([13]).

Proposition.

Soit S une partie multiplicative de D; localisons en S; alors

S 1
Ad'/D — As-lD'/S-lD

Proposition.

Soit p un idéal premier de D', et soit 0 — p n D. Soit A@ l'idéal du

complété D& engendré par le discriminant AD>/D, et soit A^ le discriminant

de Dp par rapport à D&. On a:

— EMp.
y\<?

Grâce aux groupes de ramification, E. Hecke dans [6] (chap. 5)

détermine complètement le discriminant lorsque M contient les racines

/>-ièmes de l'unité, et lorsque [N:M] p, pour un nombre premier p.
Alors M contient une racine primitive p-ième de l'unité, œ, et N s'écrit

N M (ot1/p), a élément de M\MP. Il obtient les résultats suivants:

Théorème.

Soit 0 un idéal maximal de D, ne divisant pas pD, et soit 0n la plus
haute puissance de divisant a. Alors N/M est ramifiée en 0 si et seulement

si p ne divise pas n. L'exposant de 0 dans AD,jD vaut alors p — 1.
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Théorème.

Soient 3P un idéal maximal de D, divisant pD, a l'exposant de 3P dans

(1— où) D, n l'exposant de 3P dans aD :

1) Si p Xn, N/M est ramifiée en et l'exposant de dans AD,,D vaut

(p-l)(ap+l).
Si p\n, on se ramène à n — 0.

2) Si la congruence a mod 3Pap est possible avec un Ç e D, alors

N/M est non ramifiée en PP.

3) Si la congruence cc mod PPap est impossible avec un Ç e D, soit

m le plus grand entier tel que la congruence a Çp mod PPm soit possible

avec un ^ e D. Posons m — pu + v, avec 0 ^ v ^ p — 1, et O^u^a — 1.

.Si v 0, l'extension résiduelle {D'/PPD') / (D/PP) est purement

inséparable, et l'exposant de PP dans AD,jD est p (p—l) (a — u).

Si v 0, # se ramifie dans D\ et son exposant dans AD,jD vaut

0-1) [p(a-u) + 1 v].

D k

Soit D un anneau de Dedekind, de corps des quotients k. Considérons

une extension algébrique infinie K de k, et la famille {Ka}ae& des extensions
finies de k contenues dans K. Munissons l'ensemble d'indices de la relation

d'ordre

a ^ ß o Ka =d Kß

Nous désignerons par / un sous-ensemble de 3F possédant les propriétés
suivantes :
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(1)

K u4
ael

Si a et ß appartiennent à /, le corps composé Ka. Kß appartient
à l'ensemble {K]yeI.

Il existe toujours au moins un sous-ensemble /, #" lui-même. Lorsque D
est dénombrable, nous pouvons prendre N comme sous-ensemble /:

K u Kn
neN

les corps Kn étant emboîtés.

Soit L une extension finie séparable de K. Si 6 est un générateur de

L/K, posons La Ka (0). Nous ne considérerons par la suite que les

indices a pour lesquels [La: Ka] [L : K\ n.

Enfin les anneaux d'entiers de K, L, Ka et La seront notés respectivement
A, B, et ^a.

I. Discriminant et ramification.

1. Discriminant.

Définition 1.

Nous appellerons discriminant de /'extension L/K Vidéal A de A engendré \
\

par les discriminants des bases de L/K à éléments dans B.

Puisque LIK est séparable, A est un idéal entier non nul de A.

Proposition 1.

Soit I un sous-ensemble de possédant la propriété (1). Notons A le

discriminant de LjK, et Aa celui de LJKa. Alors

A u Aa
ael j

En effet, un élément de A est combinaison linéaire finie, à coefficients

dans A, de discriminants de bases de LIK à éléments dans B: c'est donc

un élément d'un Aa. j

Inversement, puisque [Lp.Ka] [L\K\ toute base de LJKa à coefficients L

dans Ba est une base de L/K à coefficients dans B, et A contient u Aa. |
ael I
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2. Ramification.

Remarquons que dans l'anneau A,tout idéal premier SP est maximal.

Le localisé A& est un anneau de valuation, donc, à SP, on peut associer

une valuation v sur K, de groupe des valeurs J\. Comme l'extension L/K
est finie, il n'existe dans B qu'un nombre fini d'idéaux premiers au-dessus

de SP,Pi, Pi (cf. Bourbaki [3] § 8). A chaque p; est associée une valuation

v,- de L qui prolonge v; le groupe fv. des valeurs de v; admet f comme

sous-groupe.

Définition 2.

Soit PP un idéal premier de A. Nous dirons que PP se ramifie dans Vextension

L/K si Vun des indices et (Fv. est strictement supérieur à 1.

i

Remarque: si fi [B/ppA/PP], l'inégalité Yteifi-~n est encore vraie-
1 1

(cf. Bourbaki [3]).

Proposition 2.

Pour qu'un idéal premier PP de A se ramifie dans l'extension L/K, il faut
et il suffit qu'il contienne l'idéal discriminant A.

La démonstration de cette proposition repose sur le principe bien connu
de la propagation de la non-ramification vers le haut. On peut énoncer ce

principe de la manière suivante :

soient k le corps des quotients d'un anneau de Dedekind, M et N
deux extensions algébriques finies séparables de k, linéairement disjointes
sur k. Si PP est un idéal premier de k non ramifié dans l'extension M/k,
tout idéal premier p de N qui divise PP est non ramifié dans l'extension
M. N/N.

Posons PPa PP n Aa, et notons va (resp v") la restriction de v (resp vf)
à Ka (resp LJ.

Supposons PP ramifié dans L/K: il existe un indice / e [1, /] tel que
(rv. :rv) >1. On ne peut trouver a0 e / tel que (rva0:rv««,) 1; sinon,
la « propagation de la non-ramification vers le haut », et l'égalité K u Kß

ßel
ß^aQ

permettraient de conclure que (Lv. :LV) 1. Donc pour tout aefi PPa est
ramifié dans LJKa : PPa contient le discriminant Aa de LJKa, et PP contient
A u Aa.

\ Inversement, si PP contient A, pour tout a e/, on a les inclusions:
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3 A n Aa => Aa

Donc se ramifie dans LJKa. Par « propagation de la non-ramification
vers le haut », il existe au moins un indice i tel que pour tout a,

(rv.a:rva) > 1. Pour cette valeur de z, (Tv. :LV) >1, et est ramifié
dans L/K.

II. Bases entières.

L — 3)

K

Soit le corps obtenu en adjoignant à Q, j et toutes les racines 5n-ièmes

de l'unité; soit Ç» une racine primitive 5n-ième de l'unité. Le corps K,
extension cyclotomique de Q, est une extension abélienne de Q. Mais

Q0;^3)/Q n'est pas abélienne; donc L est une extension de

degré 3 de K
Les extensions Q(/,^/3, C„)/Q (y, £„) sont des extensions de Kummer.

Les seuls idéaux qui peuvent se ramifier sont ceux qui divisent 3. La théorie
de Kummer (cf. Hecke [6]) permet de calculer leur participation au
discriminant deLJKn; on obtient: An 34An. Mais comme Z [y ] est principal,

Q 0? 3)/Q (j) admet une base entière, {À, /z, v}, de discriminant 34. Donc

L/K admet {2, ji, v} comme base entière.

2. Caractérisation des A-modules B de type fini.

Proposition 3.

A et B étant définis au paragraphe précédent, /es propositions suivantes

sont équivalentes:

a — B est un A-module de type fini.

1. Exemple

Q

_____
Q(j, 3)

QO',^3) y

\ QO'.Ü "
QO
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b — Il existe une famille finie {Xx, Xt} d'éléments de B, et un indice

oc0 e /, tels que pour tout ß ^ a0, {Xu Xt} soit un système de générateurs

du Aß-module Bß.

c — L'idéal discriminant A de L/K est de type fini.

a => b — Choisissons un système fini de générateurs de B, {Xu Xt}.

D'après la condition (1), il existe un indice a0 e / tel que les Xt appartiennent
tous à B^o. Pour ß ^ a0, considérons le ^-module Mß AßX1 4- + AßXh

et montrons que Mß — Bß.

Le module Mß est sans torsion, de rang n, sur l'anneau de Dedekind Aß.

Utilisons un résultat démontré par Artin dans ([1}): étant donnés n éléments

Ii de Mß linéairement indépendants sur Kß, on peut trouver n idéaux
fractionnaires cq de Aß tels que

Mß afii © ® ùnln.

Cette écriture permet de vérifier l'égalité, pour y ^ ß :

My n Bß Mß

On peut alors définir une injection de BßIMß dans By/My. La famille
{BJMoc](X^0q constitue un système inductif, de limite inductive 0. Donc,
pour oc cc0,

Ba 4*^1 + + AfXx

b => c — Supposons B de type fini. Soit encore a0 l'indice intervenant
dans la démonstration de a => b. Choisissons un idéal premier de Aao,
et localisons en (Nous surlignerons les localisés). Pour a ^ a0, Ba et

Bao possèdent un système de générateurs commun, donc Ba et Bao ont
une base commune respectivement sur Aa et Aao. Et

Ceci étant vrai pour tout idéal premier 0* de Aao,

^oc0^a '

Comme on obtient une nouvelle famille d'indices vérifiant les conditions (1)
en ne considérant que les indices de / supérieurs à a0, on peut conclure
que

A — Aa A
ao

L'Enseignement mathém,. t. XVIII, fasc. 2. 11
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c => b => a — Soit (<51? <5t} un système de générateurs de A.
Considérons un indice oc0 tel que Aao contienne tous les ôb et, pour oc ^ oc0,

posons

aa S1Aa + + ôtAa.

Comme aaAß — aß lorsque ß ^ oc, on a

û^4 aa.

La limite inductive du système inductif {A Jeta}a^ao est nulle, donc pour
a ^ oc0, Aa aa AaAa.

Si {/l5 /p} est un système de générateurs du ^-module i?ao,

considérons pour a ^ oc0

Mx 4A + ••• + y4aZp

Grâce à l'hypothèse Aa AaoAa, on montre par localisation que Ma Ba.

Comme K — u Ka, on peut donc conclure que B est un ^[-module de
ael

a^(X0

type fini.

Cette caractérisation va nous permettre de construire une extension

L/K ou B n'est pas un A-module de type fini.

Considérons le corps Kn Q (3\/2) ; c'est une extension de degré 3"

de Q, dans laquelle 2 est totalement ramifié. Le corps K u Kn est une
extension réelle de Q, donc L K{i) est une extension de degré 2 de K.

Q(0 Q(i,y~2) Q 0\ 3\/2) L
I IlQ Q(^2) Q (3V2) K

L'indice de ramification de 2 dans Q (/)/Q vaut 2; dans Q (3\/2)/Q,
il vaut 3n. Donc SPn — (3\/2) est ramifié dans Q (/, 3"^/2)/Q (3"%/2). On

voit que l'entier maximum xn tel que la congruence

- 1 £ mod

admette une solution dans An est 3". La théorie de Kummer (cf. [6]) nous

donne donc comme valeur du discriminant An de Q (z, *ny/2)/Q (3"-N/2)

^ ^r+i-
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Soit m un indice supérieur à n.

MA gp^ n^-m ^ m

A4- œ>im + im-n
nn^ m ^ m

4 _ ^3m + ln m ^ m

Donc dès que m diffère de n, Am contient strictement AnAm, et Am

n'est jamais l'étendu d'un discriminant d'indice inférieur. La proposition 3

permet de conclure que B n'est pas un ^4-module de type fini.

3. Critère d'Artin.

Pour généraliser le critère d'Artin, nous utiliserons un théorème démontré

en 1952 par Kaplansky ([8]).

Théorème 1 (Kaplansky)

Soit R un domaine d'intégrité vérifiant les deux conditions suivantes :

tout idéal de type fini est inversible.

si a est un idéal non nul de type fini de R, R/a est un anneau dans lequel

tout idéal de type fini est principal.

Alors si M est un R-module sans torsion de type fini
a — M se représente comme somme directe d'idéaux de type fini,

Cli, •••5 ß/r

b — Le rang n de M, et la classe du produit ax x x a„ dans une

représentation de M comme somme directe d'idéaux constituent un système

complet d'invariants pour M.

On voit facilement que les anneaux A qui nous intéressent vérifient les

hypothèses du théorème 1. Si l'on suppose que B est de type fini sur A,
on peut trouver des idéaux cq de A tels que

B cq © © û„.

On peut donc conclure que pour que B soit un ^4-module libre, il faut et il
suffit que l'idéal ûj x x û„ soit principal.

Critère d'Artin.

Soit D le discriminant d'une base {fit} de L/K, et soit A l'idéal
discriminant de LjK. Les deux assertions suivantes sont équivalentes :
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a — B est un A-module libre.

b — A/(D) est le carré d'un idéal principal.

Soit {<^} une base de L\K. Supposons B de type fini sur A; d'après
le théorème 1, on peut écrire

B difi © 0 anÇn

où les et; sont des idéaux de type fini de A. Posons

a? ûj n Aa

Boc © © alÇn

pour tout indice a tel que La contienne les Utilisons les résultats d'Artin
([1]) pour LJKa :

da (aï)2 x x (a:)2D

Comme A — u Aaf A (ax x x an)2 D, et le critère est une consé-
ael

quence immédiate du théorème 1.

111. Arithmétique dans certains anneaux de Prüfer.

1. Anneaux et corps de type J.

Dans un article de 1952, P. Jaffard ([7]) construit une théorie de la

divisibilité pour des anneaux plus généraux que les anneaux de Dedekind.

Il procède de la manière suivante : soient A un anneau commutatif unitaire,
et J l'ensemble de ses idéaux. On peut munir J d'une relation d'équivalence :

les idéaux a et h sont équivalents, si tout idéal de /, étranger à l'un, est

étranger à l'autre.
On appelle « strie » une classe d'équivalence de J pour cette relation ;

une strie maximale est une strie qui contient un idéal maximal ; celui-ci est

d'ailleurs unique.

Théorème 2 (Jaffard).

Soit A un anneau commutatif unitaire, vérifiant les deux conditions

suivantes :

* L'intersection d'une infinité d'idéaux maximaux distincts se réduit

à l'idéal {0}.
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* tout idéal premier non nul et différent de A appartient à une strie

maximale.

Alors tout idéal a de A se décompose de manière unique en un produit
d'idéaux, a1x...xan9 chaque at appartenant à une strie maximale.

Définition 3.

Soient A un anneau vérifiant les hypothèses du théorème 2, et m un
idéal maximal de A. Etant donné un idéal a de A, nous appellerons

composante de a relativement à m l'idéal de la strie de m qui intervient
dans la décomposition de a.

Nous dirons qu'une strie maximale est finie si l'idéal maximal qu'elle
contient est de type fini; tout idéal d'une strie finie est de type fini. Dans
le cas contraire, nous dirons qu'une strie maximale est non finie.

Pour être complètement renseigné sur la divisibilité des idéaux, il faut
supposer de plus que A est un anneau de Prüfer uniforme (c'est-à-dire un
anneau de Prüfer où deux idéaux premiers de /, différents de {0}, sont
toujours premiers entre eux). Pour ces anneaux, on peut définir une
décomposition des idéaux fractionnaires suivant les stries maximales, et
démontrer le

Théorème 3 (Jaffard).

Soit A un anneau de Prüfer uniforme, satisfaisant aux hypothèses du
théorème 2. Si a et h sont deux idéaux fractionnaires de A, les assertions
suivantes sont équivalentes :

a — il existe un idéal c tel que a bc.

b — pour tout idéal maximal m de A tel que la composante de a relative
à m soit finie, la composante de b relative à m est également finie.

Définition 4.

Soient D un anneau de Dedekind, et A la clôture intégrale de D dans
une extension algébrique infinie du corps des quotients de D. Nous dirons
que A est un anneau de type J si l'ensemble des idéaux premiers de A au-
dessus d'un idéal premier de D est fini.

Il est clair qu'un anneau de type J est un anneau de Prüfer uniforme,
qui vérifie les hypothèses du théorème 2,
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Un corps K est un corps de type J s'il est corps des quotients d'un
anneau de type J.

2. Exemple de corps de type J.

Soit k un corps de nombres. On dit que K est une T-extension de k
si Kjk est galoisienne, et si Gai {Kjk) est isomorphe à Zp. Les extensions

intermédiaires d'une jf-extension Kjk sont donc des extensions cycliques
de degré pn de k. Soit alors un idéal premier de k ; son corps de décomposition

est soit K, soit un corps de nombres.

Proposition 4.

Toute T-extension cyclotomique d'un corps de nombres est un corps de

type J.

Soit C„ une racine primitive /Aième de l'unité. Notons Ln le corps k ((„).
Par définition, la T-extension cyclotomique K d'un corps de nombres k,
associée au nombre premier p est la T-extension contenue dans L — U Ln.

n
00

Si k contient les racines ^-ièmes de l'unité, alors K — L. Sinon, K u Km
n — 2

Kn étant la sous-extension de degré pn~1 de Tn, et [Ln:Kn] divise p — 1.

Soit q un idéal premier de k ne divisant pas p. La théorie du corps
de classes [4] nous dit que q se décompose totalement dans l'extension

LJk si et seulement si q appartient au groupe d'Artin Hn de LJk. L'image
de q par l'automorphisme de Frobenius est l'élément o de Gai {LJk)
défini par:

«c. - c:.
Donc q est totalement décomposé dans LJk si et seulement si

N (q) 1 mod pn.
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Comme [Ln:Kn] divise p - 1, pour que q soit totalement décomposé dans

KJk, il faut et il suffit qu'il le soit dans LJk. Et l'on obtient que le corps
de décomposition de q dans Kjk est de degré fini sur k.

K kr

r k

Q

Supposons maintenant que divise p, et soit E la E-extension cyclo-

tomique de Q associée à p. On sait que p est totalement ramifié dans E/Q.
En utilisant la branche Q k K du diagramme, on obtient encore que le

corps de décomposition de est de degré fini sur k.

Remarque: On pourrait chercher à généraliser la proposition 4 au cas

d'une E-extension quelconque d'un corps de nombres. En fait, ce résultat

est faux. Montrons-le à partir d'un exemple dû à Hasse et décrit par
B. Martel dans [10]. Soit k Q (yj — m) un corps quadratique imaginaire.
Définissons le groupe de congruences Hn modulo pn+i comme groupe
des idéaux principaux (x) de k, premiers à p, et tels qu'il existe un rationnel

r vérifiant x =r modulo pn+1. Si Ln est le corps de classes sur k associé

à Hn, et Kn la ^-extension maximale de k dans Ln, K u Kn est une
n

E-extension de k linéairement disjointe sur k de la E-extension cyclo-
tomique. F. Bertrandias nous a fait remarquer que si q est un nombre

premier rationnel inerte dans k/Q, et distinct de p, l'idéal (q) de k appartient
à Hn quel que soit n. Donc {q) est totalement décomposé dans K/k.

Plus généralement, tout corps de nombres qui contient une extension

quadratique imaginaire de Q admet une E-extension qui n'est pas de type J.

IV. Bases entières d'une extension quadratique.

1. Critère d'existence d'une base entière.

H. B. Mann précise dans [9] le critère d'Artin, lorsque LjK est une
extension quadratique du corps des quotients K d'un anneau de Dedekind,
Il énonce les deux théorèmes suivants:
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Théorème 4 (Mann).

Soit L une extension quadratique d'un corps K de caractéristique différente
de 2. Pour que B soit A-libre, ilfaut et il suffit que l'idéal ALjK soit principal,
et engendré par D tel que L K(D1/2).

Théorème 5 (Mann).

Soit L K(a112) une extension quadratique d'idéal discriminant A.

Posons {a) a2c et A d2c', ou c et c' sont des idéaux entiers sans facteur
carré. L'extension L/K admet une base entière si et seulement si c c 'et
a ~ <5 (modulo les idéaux principaux).

Le théorème 4 se généralise facilement au cas où K est une extension

infinie du corps des quotients d'un anneau de Dedekind, de caractéristique
différente de 2. Reprenons les notations du début. Supposons que L soit

une extension quadratique de K, de discriminant un idéal principal engendré

par l'entier Dv II existe un indice a0 tel que pour tout a ^ a0. D±

appartienne à Aa.

Supposons que L/K admette une base entière {2, p). Considérons un
indice a ^ a0, tel que Ba contienne 2 et p : {2, p) est une base entière de

LJKa, et le théorème 4 donne La 7Ta(Z)1/2), D étant un générateur du
discriminant. D'où L K(D112).

Inversement, si L K(D{/2), La Ka(D{/2). En appliquant le

théorème 4 aux extensions LJKa telles que a ^ a0, on obtient que LjK
admet une base entière.

Pour généraliser le théorème 5, il nous faut une théorie de la divisibilité.
C'est pourquoi nous supposerons, pour le reste de ce paragraphe, que K est

un corps de type J.

Lemme.

Soient p un entier, et a un idéal de K. a se décompose de manière unique

en produit

a V a'

h: idéal fractionnaire dont toutes les composantes non triviales sont dans

des stries finies.

c: idéal entier sans facteur puissance p-ième, dont toutes les composantes
non-triviales sont dans des stries finies.
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c' : idéal dont toutes les composantes non triviales sont dans des stries non

finies.

L'idéal a se décompose de manière unique en produit d'idéaux cq:

a cq x a2 x x et/

chaque cq appartenant à une strie maximale. Notons rrq l'idéal maximal

équivalent à cq, et ordonnons les indices de manière que rrq, mj soient

de type fini, et que rrq+1, rrtz ne le soient pas. Posons rrq n k
Puisque K est de type /, il n'existe dans K qu'un nombre fini d'idéaux

premiers au-dessus de Lorsque 1^1^.j, on peut donc trouver un
indice oq tel que l'idéal reste inerte dansÄ//^.. Posons alors x — K* i •••

j
c'est une extension finie de k. Et dans %, l'idéal (n«<) n x se décompose

i=i
de manière unique en:

FIa.)n y.

i= 1

cx idéal entier sans facteur puissance /?-ième. L'idéal cx reste inerte dans

K/x, donc son étendu est sans facteur puissance /Même.
On peut choisir alors comme idéaux b, c et c' : b hxA, c cxA et

c' aj+1 x x az.

L'unicité de cette décomposition provient de l'unicité de la décomposition

en produit d'idéaux appartenant à des stries maximales.
Nous pouvons maintenant énoncer un résultat analogue au théorème 5 :

Proposition 5.

Soient K un corps de type /, de caractéristique différente de 2, et
L K(a1/2) une extension quadratique d'idéal discriminant A. Utilisons
le lemme pour écrire

(a) a2bb', A c2ôô'.

Le A-module B est libre si et seulement si l'on peut trouver oceK* tel que

c2ô' (a2) a2b; et b ö

En effet, si b <5 et c2(L (a2) a2b', A (a2) a2b'b (aa2). Le
discriminant de l'extension L/K est principal, de générateur 0a2, et
L K {{aa2)1'2). La généralisation du théorème 4 permet de conclure
que B est v4-libre.
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Inversement, si B est ^-libre, l'idéal A est principal; en vertu du même

théorème, il est engendré par D tel que L K(D1/2). Donc

a1/2 x + yD1/2 (x et y éléments de K).

Elevons au carré:

a x2 + y2D + 2xyD1/2

Nécessairement x 0 et a — y2D.

a2bbf. y2c2ôô'.

D'après le lemme

b 8 et a2b' (y2)c2ô*.

2. Détermination explicite d'une base entière.

Plaçons-nous dans le cas particulier où K est une extension infinie
de Q : K u Kn, avec [AT„:Q] < oo. Soit L K(^Ja) une extension

neN

quadratique de K. Supposons qu'elle admette une base entière {2, ji} : il
existe alors un indice n0 tel que pour n «0, {2, fi) soit une base entière
de Ln Kn{yJd)jKn. Nous sommes donc ramenés à la recherche d'une
base entière d'une extension quadratique d'un corps de nombres.

Ce problème a été résolu par Fröhlich (Discriminants of algebraic
number fields [5]). Il montre que lorsqu'on connait l'existence d'une base

entière, on peut trouver un générateur d de l'idéal discriminant, et un
entier ß tel que

d — ß2 0 modulo 4.

ß + Jd
Comme base entière, on trouve alors {1, }.

3. Une condition suffisante d'existence d'une base normale.

Proposition 6.

Soit L une extension quadratique d'un corps de nombres K. Pour que

l'anneau des entiers B de L admette une A-base normale, il suffit que B soit

A-libre, que B/A soit modérément ramifiée, et que 2 soit totalement décomposé

dans K/Q.
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Il est évidemment nécessaire qu'il existe une base entière. On sait aussi

que la condition « être modérément ramifiée » est nécessaire pour toute

extension finie d'un corps de nombres, (cf. J. Martinet [11]).

Supposons donc que LjK admette une base entière; d'après le

paragraphe précédent, nous pouvons la prendre de la forme {1,
ß + yjd

^
/> ou

d est un générateur de l'idéal discriminant, et ß un entier tel que
ß2 - d 0 (4).

Une condition nécessaire et suffisante pour que LjK admette une base

normale est qu'il existe deux éléments x et y de A tels que:

x + y

ß + yjd
2

ß - j!
x+ y

x + y

ß_^ß
2

ß + yjd
W)

2 "2
(y2 d(2x+yß)2) (d)

Comme x, y, d et ß sont des entiers, il faut et il suffit que y et 2x + yß
soient des unités de A.

En particulier, 2x + yß doit être une unité ^-adique pour tout idéal
dP divisant 2. Donc ß doit être une unité ^-adique. Comme d ß2 (4),

on obtient que d doit être une unité ^-adique pour tout \ 2. Cela équivaut
à la ramification modérée de B/A.

Supposons maintenant 2 totalement décomposé dans K/Q. Si est

un idéal premier de A divisant 2, AfgP est un corps à deux éléments.
Choissons un élément n dans 0>\0>2. Tout élément de AI&2 peut-être
représenté par

m e1 + s2n su e2 e { 0, 1 }

Si m est une unité ^-adique, 1. Alors

m2 1 + 2e27% + ein2 1 mod

Tous les carrés d'unités ^-adiques sont congrus à 1 mod ^2. En particulier

ß2 1 modulo 4.

i Comme valeur de ß, on peut choisir 1. Prenons alors x 0, y 1 : B

admet une T-base normale engendrée par —
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Corallaire.

Soit L — K(ai/2) une extension quadratique d'une extension infinie K
de Q, de type J. Pour que l'anneau des entiers B de L admette une A-base

normale, il suffit que

B soit ^4-libre

B/A soit modérément ramifiée

il existe dans K une extension finie k de Q telle que [k a1/2):k] 2,

que le discriminant de L/K soit l'étendu du discriminant de k{all2)jk, et

que 2 soit totalement décomposé dans k/Q.

Pour démontrer ce corollaire, il suffit de voir que k vérifie les hypothèses
de la proposition 6. L'extension k (<a1/2)/k admet une base entière, grâce
à la proposition 5. Elle est modérément ramifiée: son discriminant est

premier à 2, comme celui de L/K. Enfin 2 est totalement décomposé dans

k/Q.

Exemple: Considérons le corps K uQ (->/ — 2, (n) où Çn est une racine
neN

V

primitive 3n-ième de l'unité. Si 9=1 + 4— 7, L K(9lfl) est une
extension quadratique de K.

Déterminons le discriminant de Q (01/2)/Q (>/— 7). L'idéal premier

(1+4^^7) se ramifie dans l'extension considérée; il figure donc avec

l'exposant 1 dans le discriminant. Les seuls idéaux distincts de (1+4^/— 7)

qui peuvent se ramifier dans Q (91/2)/Q J — 7) sont les idéaux au-dessus

de 2. Or, dans Q(sJ— 7),

(2) V

D'autre part

/ /1 +3^/~-^7\2
1

/1 +
1 +4v/-7 y- mod ' V

et

/— /i + V-7\2 A - v/-7X2
1+4A-7S V mod'
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D'après la théorie de Kummer, les idéaux au-dessus de 2 sont non ramifiés

dans l'extension Q (ô1/2)/Q (s/— 7); le discriminant de cette extension vaut

exactement (1+4^/— 7). Le théorème 5 permet d'affirmer que Q (01/2)/

Q {yj — 7) vérifie toutes les hypothèses de la proposition 6: cette extension

admet donc une base normale entière, engendrée par
* "** V 1

2

On vérifie aisément que le discriminant de LjK est l'étendu de celui de

Q ($1/2)/Q (\/~ 7)- Donc LjK admet aussi une base normale entière

A - 1 + \/1 + 4 y^7engendree par v

[6

BIBLIOGRAPHIE

[1] Artin, E. Questions de base minimale dans la théorie des nombres algébriques.
Coll. Int. CNRS, vol. 24 (1950), pp. 19-20.

Bourbaki, N. Algèbre commutative. Chap. 7, Hermann, Paris.
Algèbre commutative. Chap. 6, Hermann, Paris.

Chevalley, C. Sur la théorie du corps de classes dans les corps finis et les corps
locaux. Journal of the Fac. of Science, Tokyo, vol. 2, part. 9 (1933).

Fröhlich, A. Discriminants of algebric number fields. Math. Zeitschr. 74. pp 18-^8
(1960).

Hecke, E. Vorlesungen über die Theorie der algebraischen Zahlen. Leipzig (1923).
Réimpression: New York (1948).

Jaffard, P. Théorie arithmétique des anneaux du type de Dedekind. Bull. Soc.
Math, de France, vol. 80 (1952), pp. 61-94.

Kaplansky, J. Modules over Dedekind rings and valuation rings. Trans. A MS.
vol. 72 (1952), pp. 327-340.

Mann, H. B. On integral bases. Froc. AMS, vol. 9 (1958), pp. 167-172.
Martel, B. f-extensions d'un corps quadratique imaginaire. Séminaire Th. Nb,

Grenoble, fév. 1971.

Martinet, J. Sur l'arithmétique des extensions galoisiennes à groupe de Galois
diédral d'ordre 2p. Ann. Inst. Fourier, tome 19, fasc. 1 (1969), pp. 1-79.

Samuel, P. Théorie algébrique des nombres. Hermann, Paris 1967.
Serre, J.-P. Corps locaux. Hermann, Paris 1968.

[9

[10

[11

[12
[13

Reçu le 10 décembre 1971

Nicole Moser
Institut de Mathématiques Pures
B.P. 116
38 — St-Martin-d'Hères, France




	ARITHMÉTIQUE DANS DES EXTENSIONS FINIES DU CORPS DES QUOTIENTS DE CERTAINS ANNEAUX DE PRÜFER
	I. Discriminant et ramification.
	II. Bases entières.
	III. Arithmétique dans certains anneaux de Prüfer.
	IV. Bases entières d'une extension quadratique.
	...


