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ARITHMETIQUE DANS DES EXTENSIONS FINIES
DU CORPS DES QUOTIENTS DE CERTAINS
ANNEAUX DE PRUFER

par Nicole MOSER

Dans cet article, nous cherchons & généraliser des résultats arithmétiques
connus pour les anneaux de Dedekind & certains anneaux de Priifer. On
pourra trouver dans Bourbaki ([2], § 2, exercice 12) la définition des anneaux
de Priifer. Donnons ici les deux caractérisations que nous utiliserons:

soit 4 un anneau intégre; c’est un anneau de Priifer s’il vérifie I'une des
deux propriétés équivalentes suivantes:

a — Pour tout idéal premier 2, 'anneau local A, est un anneau de
valuation.

b — Tout idéal non nul et de type fini dans A4 est inversible.

Nous nous intéresserons par la suite a I’anneau des entiers 4 d’une
extension algébrique infinie K du corps des quotients d’un anneau de
Dedekind; c’est un anneau de Priifer, (caractérisation b), mais en général
ce n’est pas un anneau de Dedekind. Soit L une extension finie séparable
de K, d’anneau des entiers B. ‘

Dans une premiére partie (§ I et II), nous généralisons le critére d’Artin
([1], qui donne une condition nécessaire et suffisante pour que B soit un
A-module libre. Ensuite (§ 1V), nous supposons que L/K est une extension
quadratique telle que A soit un anneau de Priifer uniforme du type de
Dedekind (cf. Jaffard [7] et § II1). D’aprés un article de Mann ([9]), nous
précisons le critére d’Artin. Puis, lorsque celui-ci est vérifié, nous obtenons
une condition suffisante d’existence d’une base normale entiére.

Dans la plupart des démonstrations, nous travaillerons sur des sous-
corps de K qui sont corps des quotients d’un anneau de Dedekind. Nous
~aurons donc besoin des quelques résultats classiques que nous rappelons
“ci-dessous.

Soient D un anneau de Dedekind, de corps des quotients M, et N une
extension finie séparable de M ; notons D’ la fermeture intégrale de D dans

- N. Comme P. Samuel [12], choisissons pour définition du discriminant la
- caracterisation suivarite:
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Définition. ‘

On appelle discriminant de D’ sur D [’idéal de D engendré par les

discriminants des bases de N/M qui sont contenues dans D’.
On démontre alors la ‘

Proposition.

Pour qu’un idéal premier P de D se ramifie dans D', il faut et il suffit
gu’il contienne I’idéal discriminant Ay p. (cf. [12]).

Le discriminant est déterminé par sa décomposition en idéaux premiers
de D; on peut étudier séparément la participation de chaque idéal premier,
grace a deux résultats que I’on trouve dans « Corps locaux » de J.-P. Serre

([13D).

Proposition.
Soit S une partie multiplicative de D ; localisons en S, alors

-1
S Ap,p = As-1ps=1p -

Proposition.

Soit p un idéal premier de D', et soit ? = p n D. Soit AA@ l’idéal du
compllété 139, engendré par le discriminant Ay p, et soit Ap le discriminant
de Dp par rapport @ Dgy. On a:

AA.@ - H A:p.
p|?

Grace aux groupes de ramification, E. Hecke dans [6] (chap. 5)
détermine complétement le discriminant lorsque M contient les racines
p-iémes de l'unité, et lorsque [N:M] = p, pour un nombre premier p.
Alors M contient une racine primitive p-i€me de l'unité, w, et N s’écrit
N = M (a1/?), o élément de M\M?. Il obtient les résultats suivants:

THEOREME.

Soit P un idéal maximal de D, ne divisant pas pD, et soit ?" la plus
haute puissance de &P divisant a. Alors N/M est ramifiée en P si et seule-
ment si p ne divise pas n. L’exposant de & dans Ap.p vaut alors p — 1.
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THEOREME.

Soient @ un idéal maximal de D, divisant pD, a I’exposant de & dans
(1—w) D, n Pexposant de P dans aD :

1) Si p ¥ n, N/M est ramifiée en P, et I’exposant de P dans Ap/,p vaut
(p—1) (ap+1).
Sip | n, on se raméne a n = 0.

2) Si la congruence o = &% mod P est possible avec un £ € D, alors
N/M est non ramifiée en 2.

3) Si la congruence o = &P mod PP est impossible avec un £ € D, soit
m le plus grand entier tel que la congruence o = ¥ mod P™ soit possible
avecun £ € D. Posonsm = pu + v,avec0 =v=p — l,et0 =u =a — 1.

; . Si v=0, [Dextension résiduelle (D'|PD’)]|(D|P) est purement
~ inséparable, et I’exposant de P dans Ap.,p est p(p—1)(a—u).

. Si v£0, P se ramifie dans D', et son expos;mt dans Ap.p vaut
(p=Dipla—u) + 1-v}

Notations.

A i K _— Lo B
A X, / ) B,
D .o, k

Soit D un anneau de Dedekind, de corps des quotients k. Considérons
une extension algébrique infinie K de &, et la famille {K,},.» des extensions
- finies de k contenues dans K. Munissons I’ensemble d’indices & de la rela-
- tion d’ordre

a=f<K, > K.

~ Nous désignerons par I un sous-ensemble de & possédant les propriétés
| suivantes:
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[ K= UK,

aecl

()

. Si o et B appartiennent & 7, le corps composé K, . K; appartient
a 'ensemble {K},.;.

Il existe toujours au moins un sous-ensemble 7, & lui-méme. Lorsque D
est dénombrable, nous pouvons prendre N comme sous-ensemble I:
K = v K,
neN
les corps K, étant emboités.

Soit L une extension finie séparable de K. Si 0 est un générateur de
L/K, posons L, = K,(0). Nous ne considérerons par la suite que les
indices o pour lesquels [L,: K, = [L : K] = n.

Enfin les anneaux d’entiers de K, L, K, et L, seront notés respectivement
A, B, A, et B,.

I. DISCRIMINANT ET RAMIFICATION.

1. Discriminant.
Définition 1.

Nous appellerons discriminant de I’extension L/K [ idéal A de A engendré
par les discriminants des bases de L|K a éléments dans B.

Puisque L/K est séparable, 4 est un idéal entier non nul de A.

Proposition 1.

Soit I un sous-ensemble de F possédant la propriété (1). Notons A le
discriminant de LIK, et A, celui de L,/K,. Alors

A =uvd,.
ael
En effet, un élément de A4 est combinaison linéaire finie, a coefficients
dans A, de discriminants de bases de L/K a éléments dans B: c’est donc
un élément d’un 4,.
Inversement, puisque [L,:K,] = [L:K], toute base de L /K, & coefficients
dans B, est une base de L/K a coefficients dans B, et 4 contient U 4,,.

aecl

i
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2. Ramification.

Remarquons que dans I’anneau A, tout idéal premier & est maximal.
Le localisé A4, est un anneau de valuation, donc, a &2, on peut assocler
une valuation v sur K, de groupe des valeurs I',. Comme I’extension L/K
est finie, il n’existe dans B qu’un nombre fini d’idéaux premiers au-dessus
de 2, vy, ..., p; (cf. Bourbaki [3] § 8). A chaque p; est associée une valua-
tion v; de L qui prolonge v; le groupe I',. des valeurs de v; admet I' comme
sous-groupe.

Définition 2.
Soit P un idéal premier de A. Nous dirons que P se ramifie dans I’extension
L/K si I’un des indices e; = (I',,:T",) est strictement supérieur a 1.

1
Remarque: si f; = [B/p;:A/?], linégalité > e,f; = n est encore vraie.

i=1
(cf. Bourbaki [3]).

Proposition 2.

Pour qu’'un idéal premier P de A se ramifie dans I’extension L|K, il faut
et il suffit qu’il contienne I’idéal discriminant A.

La démonstration de cette proposition repose sur le principe bien connu
de la propagation de la non-ramification vers le haut. On peut énoncer ce
principe de la maniére suivante:

soient k le corps des quotients d’un anneau de Dedekind, M et N
deux extensions algébriques finies séparables de k, linéairement disjointes
sur k. Si & est un idéal premier de k non ramifié dans I'extension M/k,
tout idéal premier p de N qui divise £ est non ramifié dans I’extension
M . N/N.

Posons 2, = # n A,, et notons v* (resp v;) la restriction de v (resp v;)
a K, (resp L,).

Supposons £ ramifié dans L/K: il existe un indice i€ [l, /] tel que
(I',,:I',) > 1. On ne peut trouver oy el tel que (Fvgo:Fvao) = 1; sinon,

la « propagation de la non-ramification vers le haut », et 'égalit¢ K = U Kj

Bel
B=a,

permettraient de conclure que (I',.:I',)) = 1. Donc pour tout a e, 2, est
ramifié¢ dans L /K, : 2, contient le discriminant 4, de L /K,, et 2 contient
4 =uv 4,

Inversement, si & contient 4, pour tout a«€l, on a les inclusions:
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P, oDANnA, o 4,.

Donc 2, se ramifie dans L /K,. Par « propagation de la non-ramification
vers le haut», il existe au moins un indice [ tel que pour tout o,
(I'y;e:l'y) > 1. Pour cette valeur de i, (I',,:I,) > 1, et & est ramifié
dans L/K.

I1. BASES ENTIERES.

1. Exemple
Q(j, ¢, ~/3
QYD . \\/) ;
PR ity T
Q)

0 —

Soit K le corps obtenu en adjoignant & Q, j et toutes les racines 5"-iémes
de I'unité; soit {, une racine primitive 5"-iéme de l'unité. Le corps K,
extension cyclotomique de Q, est une extension abélienne de Q. Mais
Q(/j, \3/_3-)/Q n’est pas abélienne; donc L = K(\3/-3) est une extension de
degré 3 de K.

Les extensions Q (/, \3/3, £)/Q (j, £,) sont des extensions de Kummer.
Les seuls idéaux qui peuvent se ramifier sont ceux qui divisent 3. La théorie
de Kummer (cf. Hecke [6]) permet de calculer leur participation au dis-
criminant de L, /K, ; on obtient: 4, = 3*4,. Mais comme Z [ j ] est principal,

Q (j, \??/_3)/Q (j) admet une base entiére, {4, u, v}, de discriminant 3*. Donc
L/K admet {, u, v} comme base entiére.

2. Caractérisation des A-modules B de type fini.

Proposition 3.

A et B étant définis au paragraphe précédent, les propositions suivantes
sont équivalentes :

a — B est un A-module de type fini.

N A R
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b —- Il existe une famille finie {1, ...,/T,} d’éléments de B, et un indice
a, € 1, tels que pour tout B = oy, {Aq, ..., A;} soit un systéme de générateurs
du Az-module By.

c — L’idéal discriminant A de L|K est de type fini.

a = b — Choisissons un systéme fini de générateurs de B, {14, ..., A;}.
D’aprés la condition (1), il existe un indice a, € I tel que les 4; appartiennent
tous a B, . Pour f§ = a,, considérons le 4;-module M, = Agh; + ... + Ayd,,
et montrons que M, = B;.

Le module M} est sans torsion, de rang n, sur ’anneau de Dedekind A,.
Utilisons un résultat démontré par Artin dans ([1]): étant donnés » éléments
I; de M, linéairement indépendants sur K, on peut trouver n idéaux
fractionnaires a; de A, tels que

Mp — alll @... @anln.
Cette écriture permet de vérifier I’égalité, pour y = f:
M}. M Bﬂ = MB .

On peut alors définir une injection de By/M, dans B /M, La famille
{B,/M,},~,, constitue un systéme inductif, de limite inductive 0. Donc,
pour o == o,

B, =M, = A + ... + A7, .

a

b = ¢ — Supposons B de type fini. Soit encore «, I’indice intervenant
dans la démonstration de @ = b. Choisissons un idéal premier 2 de 4, ,
et localisons en Z. (Nous surlignerons les localisés). Pour o = «,, B, et

B, possédent un systéme de générateurs commun, donc B, et B, ont

une base commune respectivement sur A, et 4, . Et

A =44,
Ceci étant vrai pour tout idéal premier 2 de Ay,
4, = 4, A, .

Comme on obtient une nouvelle famille d’indices vérifiant les conditions (1)
en ne considérant que les indices de I supérieurs & «,, on peut conclure
que

4 =4,4.

%o

L’Enseignement mathém,. t. XVIII, fasc. 2. 11
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¢=b=a— Soit {04, ..., 6;} un systéme de générateurs de 4. Consi-
dérons un indice «, tel que A4, contienne tous les J;, et, pour o = «,,
0 %o i ’ 0>

posons

Comme a,4; = a; lorsque f=a, on a
aﬂ M Aa = aa .

La limite inductive du systéme inductif {4,/a,},~, est nulle, donc pour
o =0a4 4, =q, = 4,4,

Si {/;,..,1,} est un systtme de générateurs du A,-module B,,
considérons pour o = a,

M, = Al + ... + A,

p*

Gréce 4 Phypothése 4, = 4,,4,, on montre par localisation que M, = B,.
Comme K = U K,, on peut donc conclure que B est un A-module de

ael
a>a,

type fini.

Cette caractérisation va nous permettre de construire une extension
L/K ou B n’est pas un A-module de type fini.

Considérons le corps K, = Q (3”\/ 2); c’est une extension de degré 3"
de Q, dans laquelle 2 est totalement ramifié. Le corps K = U K, est une
extension réelle de Q, donc L = K (i) est une extension de degré 2 de K.

Ql(i) e Q(i,l\%:) — QG 3‘"\/"2') — IL
Q —— QW2 — Q2 —— K

L’indice de ramification de 2 dans Q (i)/Q vaut 2; dans Q (3"\/ 5)/Q,

il vaut 3". Donc 2, = (3"\/ 5) est ramifié dans Q (i, 3”\/ ~2—)/Q (3"\/ 5). On
voit que I'entier maximum x, tel que la congruence

— 1 =& mod #'n

admette une solution dans 4, est 3". La théorie de Kummer (cf. [6]) nous
donne donc comme valeur du discriminant 4, de Q (i, 3"\/ 2)/Q (3"\/ 2)

_ 3ntg
A, = P31

n
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Soit m un indice supérieur a n.

PA =P
AA =pim+3m-r
A, = P3"HL,

Donc dés que m différe de n, 4,, contient strictement 4,4,, et 4,
n’est jamais ’étendu d’un discriminant d’indice inférieur. La proposition 3
permet de conclure que B n’est pas un A-module de type fini.

3. Critére d’Artin.

Pour généraliser le critére d’Artin, nous utiliserons un théoréme démontré
en 1952 par Kaplansky ([8]).

THFOREME 1 (Kaplansky)

Soit R un domaine d’intégrité vérifiant les deux conditions suivantes :

. tout idéal de type fini est inversible.

. si a est un idéal non nul de type fini de R, R/a est un anneau dans lequel
tout idéal de type fini est principal.

Alors si M est un R-module sans torsion de type fini

a — M se représente comme somme directe d’idéaux de type fini,

Qg ooy (e

b — Le rang n de M, et la classe du produit a; X ... X q, dans une
représentation de M comme somme directe d’idéaux constituent un systéme
complet d’invariants pour M.

On voit facilement que les anneaux A qui nous intéressent vérifient les
hypothéses du théoréme 1. Si 'on suppose que B est de type fini sur A4,
on peut trouver des idéaux a; de A tels que

B=a1®...@an.

- On peut donc conclure que pour que B soit un A-module libre, il faut et il
- suffit que I'idéal a; x ... x a, soit principal.

- Critére d’ Artin.

Soit D le discriminant d’une base {&;} de LIK, et soit A lidéal dis-

criminant de LK. Les deux assertions suivantes sont équivalentes :
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a — B est un A-miodule libre. |
b — A[/(D) est le carré d’un idéal principal.

Soit {¢;} une base de L/K. Supposons B de type fini sur 4; d’aprés
le théoréme 1, on peut écrire

B =0a;¢ ®... a8,
ou les a; sont des idéaux de type fini de 4. Posons
a =aqnA,.
B, = ai{; @ ... @ a¢,
pour tout indice « tel que L, contienne les &;. Utilisons les résultats d’Artin
([1]) pour L,/K,:
4, = (a5)?* x ... x (a9*D.

Comme 4 = U d, 4= (a; X ..x a,)? D, et le critére est une consé-

ael

quence immédiate du théoréme 1.

11I. ARITHMETIQUE DANS CERTAINS ANNEAUX DE PRUFER.

1. Anneaux et corps de type J.

Dans un article de 1952, P. Jaffard ([7]) construit une théorie de la
divisibilité pour des anneaux plus généraux que les anneaux de Dedekind.
Il procéde de la maniére suivante: soient 4 un anneau commutatif unitaire,
et J I’ensemble de ses idéaux. On peut munir J d’une relation d’équivalence:

les idéaux a et b sont équivalents, si tout idéal de J, étranger a I'un, est
étranger a lautre.

On appelle « strie » une classe d’équivalence de J pour cette relation;
une strie maximale est une strie qui contient un idéal maximal; celui-ci est
d’ailleurs unique.

THEOREME 2 (Jaffard).

Soit A un anneau commutatif unitaire, vérifiant les deux conditions
suivantes :

* Dintersection d’une infinité d’idéaux maximaux distincts se réduit
a lidéal {0}.
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* tout idéal premier non nul et différent de A appartient a une strie
maximale.

Alors tout idéal a de A se décompose de maniére unique en un produit
d’idéaux, a; % ...x a,, chaque a; appartenant @ une strie maximale.

Définition 3.

Soient 4 un anneau vérifiant les hypothéses du théoréme 2, et m un
idéal maximal de A. Etant donné un idéal a de A4, nous appellerons
composante de a relativement a m I'idéal de la strie de m qui intervient
dans la décomposition de a. |

Nous dirons qu’une strie maximale est finie si 'idéal maximal qu’elle
contient est de type fini; tout idéal d’une strie finie est de type fini. Dans
- le cas contraire, nous dirons qu’une strie maximale est non finie.
| Pour €tre complétement renseigné sur la divisibilité des idéaux, il faut
supposer de plus que A4 est un anneau de Priifer uniforme (c’est-a-dire un
~ anneau de Priifer ol deux idéaux premiers de J, différents de {0}, sont
toujours premiers entre eux). Pour ces anneaux, on peut définir une
décomposition des idéaux fractionnaires suivant les stries maximales, et
démontrer le

THEOREME 3 (Jaffard).

Soit A un anneau de Priifer uniforme, satisfaisant aux hypothéses du
théoreme 2. Si a et b sont deux idéaux fractionnaires de A, les assertions
suivantes sont équivalentes :

a — il existe un idéal ¢ tel que a = be.

b — pour tout idéal maximal m de A tel que la composante de a relative
a m soit finie, la composante de b relative & m est également finie.

Définition 4.

Soient D un anneau de Dedekind, et 4 la cloture intégrale de D dans
une extension algébrique infinie du corps des quotients de D. Nous dirons
que A est un anneau de type J si ’ensemble des idéaux premiers de 4 au-
dessus d’un idéal premier 2 de D est fini.

I est clair qu’un anneau de type J est un anneau de Priifer uniforme,
qui vérifie les hypothéses du théoréme 2,




— 158 —

Un corps K est un corps de type J s’il est corps des quotients d’un
anneau de type J.

2. Exemple de corps de type J.

Soit k un corps de nombres. On dit que K est une I'-extension de k
si K/k est galoisienne, et si Gal (K/k) est isomorphe a Z,. Les extensions
intermédiaires d’une I'-extension K/k sont donc des extensions cycliques
de degré p" de k. Soit alors 2 un idéal premier de k; son corps de décompo-
sition est soit K, soit un corps de nombres.

Proposition 4.

Toute I'-extension cyclotomique d’un corps de nombres est un corps de
type J.

Soit {, une racine primitive p"-iéme de I’unité. Notons L, le corps k ({,).
Par définition, la I'-extension cyclotomique K d’un corps de nombres k,
associée au nombre premier p est la I'-extension contenue dans L = U L,.

n
oo

Si k contient les racines p-iémes de 1'unité, alors K = L. Sinon, K = U K
nd
n=2

K, étant la sous-extension de degré p"~ ! de L,, et [L,:K,] divise p — 1.

\

L, =k(, K
| - K<~
k / n

L

. Soit q un idéal premier de k£ ne divisant pas p. La théorie du corps
de classes [4] nous dit que q se décompose totalement dans I’extension
L,/k si et seulement si q appartient au groupe d’Artin H, de L,/k. L’image

de g par P'automorphisme de Frobenius est I’élément ¢ de Gal (L,/k)
défini par:

oty = (3.

Donc q est totalement décomposé dans L,/k si et seulement si

N(q) =1 mod p".

"

i
i

b
o

4
4
2|
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il A"‘u‘_‘:_‘-.»;:f‘;wgrmﬁi

ST

T T
AR A NS B R SO DS



! — 159 —

Comme [L,:K,] divise p — 1, pour que g soit totalement décomposé dans
" K, Jk, il faut et il suffit qu’il le soit dans L,/k. Et I'on obtient que le corps
" de décomposition de q dans K/k est de degré fini sur k.

K = kI’

/ ~
\Q/

r

. Supposons maintenant que 2 divise p, et soit I' la I'-extension cyclo-
tomique de Q associée & p. On sait que p est totalement ramifié dans I'/Q.
En utilisant la branche Q . k. K du diagramme, on obtient encore que le
corps de décomposition de £ est de degré fini sur k.

- Remarque: On pourrait chercher a généraliser la proposition 4 au cas
d’une I'-extension quelconque d’un corps de nombres. En fait, ce résultat
est faux. Montrons-le a partir d’'un exemple dii & Hasse et décrit par

- B. Martel dans [10]. Soit £k = Q (\/ — m) un corps quadratique imaginaire.
Définissons le groupe de congruences H, modulo p""! comme groupe
des idéaux principaux (x) de k, premiers a p, et tels qu’il existe un rationnel
r vérifiant x =r modulo p"*!. Si L, est le corps de classes sur k associé

a H, et K, la p-extension maximale de k£ dans L,, K = U K, est une

n

I'-extension de k linéairement disjointe sur k& de la I'-extension cyclo-
tomique. F. Bertrandias nous a fait remarquer que si ¢ est un nombre
premier rationnel inerte dans k/Q, et distinct de p, I'idéal (¢) de k appartient
a H, quel que soit n. Donc (g) est totalement décomposé dans K/k.

Plus généralement, tout corps de nombres qui contient une extension
quadratique imaginaire de Q admet une I'-extension qui n’est pas de type J.

IV. BASES ENTIERES D’UNE EXTENSION QUADRATIQUE.

1. Critere d’existence d’une base entiere.

H. B. Mann précise dans [9] le critere d’Artin, lorsque L/K est une
extension quadratique du corps des quotients K d’un anneau de Dedekind,
Il énonce les deux théorémes suivants:
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THEOREME 4 (Mann).

Soit L une extension quadratique d’un corps K de caractéristique différente
de 2. Pour que B soit A-libre, il faut et il suffit que I’idéal Ay soit principal,
et engendré par D tel que L = K (D'/?).

THEOREME 5 (Mann).

Soit L = K (a''?) une extension quadratique d’idéal discriminant A.
Posons (a) = a*c et A = 6%/, ou ¢ et ¢’ sont des idéaux entiers sans facteur
carré. L’extension L/K admet une base entiére si et seulement si ¢ = ¢’ et
a ~ 0 (modulo les idéaux principaux).

Le théoréme 4 se généralise facilement au cas ou K est une extension
infinie du corps des quotients d’'un anneau de Dedekind, de caractéristique
différente de 2. Reprenons les notations du début. Supposons que L soit
une extension quadratique de K, de discriminant un idéal principal engendré
par l’entier D;. Il existe un indice o, tel que pour tout o =a, D,
appartienne a A,.

Supposons que L/K admette une base enti¢re {4, u}. Considérons un
indice o = «,, tel que B, contienne A et u : {A, u} est une base enticre de
LK, et le théoréme 4 donne L, = K, (D'/%), D étant un générateur du
discriminant. D’ot L = K (D'/?). |

Inversement, si L = K(Di'?), L,= K,(D;’?. En appliquant Ie
théoréme 4 aux extensions L,/K, telles que o = «,, on obtient que L/K
admet une base enticre.

Pour généraliser le théoréme 5, il nous faut ure théorie de la divisibilité.
C’est pourquoi nous supposerons, pour le reste de ce paragraphe, que K est
un corps de type J.

Lemme.

Soient p un entier, et a un idéal de K. a se décompose de maniére unique
en produit

a = b? ¢

b: idéal fractionnaire dont toutes les composantes non triviales sont dans
des stries finies.

¢: idéal entier sans facteur puissance p-iéme, dont toutes les composantes
non-triviales sont dans des stries finies.
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¢+ idéal dont toutes les composantes non triviales sont dans des stries non
finies.

L’idéal a se décompose de maniére unique en produit d’idéaux a;:
a=a1><a2><...><al

chaque a; appartenant & une stric maximale. Notons m; I'idéal maximal
équivalent 4 qa,, et ordonnons les indices de maniére que my, ..., m; soient
de type fini, et que m;, 4, ..., m, ne le soient pas. Posons m; Nk = 2.

Puisque K est de type J, il n’existe dans K qu’un nombre fini d’idéaux
premiers au-dessus de 2;. Lorsque 1 =i =j, on peut donc trouver un
indice «; tel que I'idéal 2; reste inerte dans K/K,, .. Posqns alors y = K ... Kaj;

J
c’est une extension finie de k. Et dans y, 'idéal ( [ ] a;) n x se décompose
i=1

de maniére unique en:

j
(Ul a) Ny = byPey

¢, idéal entier sans facteur puissance p-iéme. L’idéal ¢, reste inerte dans
K/y, donc son étendu est sans facteur puissance p-iéme.

On peut choisir alors comme idéaux b, cet ¢/ : b = b;4, ¢ = ¢, 4 et
¢ =a;41 X .o X Qg

L’unicité de cette décomposition provient de I'unicité de la décomposi-
tion en produit d’idéaux appartenant a des stries maximales.

Nous pouvons maintenant énoncer un résultat analogue au théoréme 5:

Proposition 5.

Soient K un corps de type J, de caractéristique différente de 2, et
L = K(a''?) une extension quadratique d’idéal discriminant A. Utilisons
le lemme pour écrire
(@) = a?bb’, A4 = 256"
Le A-module B est libre si et seulement si [’on peut trouver o € K* tel que
¢*6" = («*)a®h’ et b =39.

En effet, si b =20 et ¢*' = (¢®) a’b’, 4 = («?) a?0'b = (ax?). Le
discriminant de l'extension L/K est principal, de générateur ao?, et

L = K((ax*)'/?). La généralisation du théoréme 4 permet de conclure
que B est A-libre.
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Inversement, si B est A-libre, I’'idéal 4 est principal; en vertu du méme
théoréme, il est engendré par D tel que L = K (D'/?). Donc
a'’? = x + yD'? (x et y éléments de K).

Elevons au carré:

T R SRR IR A

4 = x* + y*D + 2xyD'/? .
Nécessairement x = 0 et a = y?D.
a’bb’ . = y*266’.
D’aprés le lemme ﬁ

b=6 et a’b = (y?)cd. .

2. Détermination explicite d’une base entiere.

Plagons-nous dans le cas particulier ol K est une extension infinie

de Q:K= UK, avec [K,:Q] < oo. Soit L = K(/a) une extension
neN
quadratique de K. Supposons qu’elle admette une base enti¢re {/, u}: il

existe alors un indice n, tel que pour n =:n,, {4, u} soit une base entiére
de L, = K, ({/a)/K,. Nous sommes donc ramenés & la recherche d’une
base entiére d’une extension quadratique d’un corps de nombres.

Ce probleme a été résolu par Frohlich (Discriminants of algebraic
number fields [5]). Il montre que lorsqu’on connait ’existence d’une base
entiére, on peut trouver un générateur d de l'idéal discriminant, et un
entier [ tel que

d — f* = O modulo 4.

B+ /d

}.

Comme base entiére, on trouve alors {1,

3.  Une condition suffisante d’existence d’une base normale.

Proposition 6.

Soit L une extension quadratique d’un corps de nombres K. Pour que
[’anneau des entiers B de L admette une A-base normale, il suffit que B soit |
A-libre, que BJA soit modérément ramifiée, et que 2 soit totalement décomposé -

dans K/Q. %
i
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Il est évidemment nécessaire qu’il existe une base entiére. On sait aussi

que la condition « étre modérément ramifiée » est nécessaire pour toute

A
R
i
ﬁ

‘admet une A-base normale engendrée par

extension finie d’un corps de nombres. (cf. J. Martinet [11]).
Supposons donc que L/K admette une base entiére; d’aprés le para-
B+d, .
graphe précédent, nous pouvons la prendre de la forme {1, —%/- }, ou
d est un générateur de Pidéal discriminant, et f un entier tel que
f* —d=0(®4).
Une condition nécessaire et suffisante pour que L/K admette une base
normale est qu’il existe deux éléments x et y de A4 tels que:

B+ ./d p—./d 5
Yy 7/ YTy

x-{-yﬁ—-_zil X +

(y*d(2x+yp)*) = (d).

Comme x, y, d et f§ sont des entiers, il faut et il suffit que y et 2x + yf
soient des unités de A.

En particulier, 2x + yf doit étre une unité £-adique pour tout idéal
2 divisant 2. Donc f doit étre une unité Z-adique. Comme d = % (4),
on obtient que d doit étre une unité Z-adique pour tout Z | 2. Cela équivaut
a la ramification modérée de B/A.

Supposons maintenant 2 totalement décomposé dans K/Q. Si Z est
un idéal premier de A divisant 2, 4/? est un corps & deux éléments.
Choissons un élément = dans 2\?%. Tout élément de A/?* peut-étre
représenté par

X + X +

d
y 'B—+2\/

m = g + &m €1,6,€{0,1}.
Si m est une unité #-adique, ¢; = 1. Alors

m? = 1 + 2¢,m + e57° = 1 mod 22.

Tous les carrés d’unités Z-adiques sont congrus & 1 mod 2. En particulier

B? =1 modulo 4.

- Comme valeur de f, on peut choisir 1. Prenons alors x =0, y = 1: B
!

1+ ./d
—
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Corallaire.

Soit L = K (a''?) une extension quadratique d’une extension infinie K |
de Q, de type J. Pour que I’anneau des entiers B de L admette une A-base
normale, il suffit que

. B soit A-libre
. B/A soit modérément ramifiée

. il existe dans K une extension finie k de Q telle que [k a'!?):k] = 2,

que le discriminant de L/K soit I’étendu du discriminant de k (a'/%)/k, et
que 2 soit totalement décomposé dans k/Q.

Pour démontrer ce corollaire, il suffit de voir que k vérifie les hypothéses
de la proposition 6. L’extension k (a'/?)/k admet une base entiére, grace
a la proposition 5. Elle est modérément ramifiée: son discriminant est
premier a 2, comme celui de L/K. Enfin 2 est totalement décomposé dans

k/Q.

Exemple: Considérons le corps K = U Q (\/j, {,) ou {, est une racine
neN

primitive 3"-iéme de l'unité. Si 0 = 1 + 4\/ — 7, L =K(0'?) est une
extension quadratique de K.

Déterminons le discriminant de Q (6'/%)/Q (\/j). L’idéal premier
(1—1—4\/ :-7) se ramifie dans 1’extension considérée; il figure donc avec
I’exposant 1 dans le discriminant. Les seuls idéaux distincts de (1 +4\/ ——_7)

qui peuvent se ramifier dans Q (0'/2)/Q (\/ — 7) sont les idéaux au-dessus
de 2. Or, dans Q (/- 7),

2 = <1+\2/——_7> <1—\2/f7>.

D’autre part

1447 = (1_+i¢_—_7> " (}_+_2J_—j>

2

et

— (14 =TV 1—/ =7\
FEVE BENE NS |
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D’aprés la théorie de Kummer, les idéaux au-dessus de 2 sont non ramifiés
dans l’extension Q (0%/%)/Q (\/ — 7); le discriminant de cette extension vaut
exactement (1+4./ — 7). Le théoréme 5 permet d’affirmer que Q (§/2)/
Q (\/——7) vérifie toutes les hypothéses de la proposition 6: cette extension

1 +~/1+4 /=7
> .

i~

On vérifie aisément que le discriminant de L/K est I’étendu de celui de
Q(Y»/Q(/—17). Donc L/K admet aussi une base normale entiére

1+\/1+4\/_——7.

2

admet donc une base normale enti¢re, engendrée par

engendrée par
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