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Lt

- A PROOF OF THE PRINCIPLE OF CIRCLE-TRANSFORMATION

BY THE USE OF A THEOREM ON UNIVALENT FUNCTIONS

by Hiroshi HARUKI

The following theorem is well-known (see [2, p. 305)):

THEOREM A. Suppose that f/ is a meromorphic function of a complex
variable z in | z| < + co. Then f is univalent if and only if f'is a linear

" rational function of z.

The purpose of this note is to give a proof of the “ only if ” part of the
following principle of circle-transformation of a linear rational function

~ (see [1]) by the use of Theorem A:

Suppose that /(£ const.) is a meromorphic function of zin"| z | < + co.
Then w = f(z) transforms circles in the z-plane onto circles in the w-plane,
including straight lines among circles, if and only if f is a linear rational
function of z.

We now give a proof of the “ only if ” part of the above principle.

Let the domain where f'is regular be D. We shall prove that f'is univalent
in|z| < + oo. The proof is by contradiction. Assume contrary. Then there
exist two distinct points @ and b belonging to D such that

(D) fla) = f(b).

Let ¢ be a point belonging to D such that ¢ = a, ¢ = b and /' (¢) £ 0.
Since f =% const., the existence of such c¢ is guaranteed. Since ¢ % a, ¢ #~ b

and /' (c) # 0, there exists a circular neighborhood N of ¢ satisfying the
following three conditions:

(2) The closure of N lies entirely in D.
(3) The two points a and b are both exterior points of N.
(4) fis univalent in N.

Let C be the circumference of N and let the symmetric points of the
two points a and b with respect to the circle C be a* and b*, respectively.
By (3) a* and b* belong to N. By hypothesis w = f(z) transforms circles in
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the z-plane onto circles in the w-plane. Hence, by (2) /(C) is not a straight
line but a circle. Hence, by the Reflection Principle of Analytic Functions
with respect to circles (see [2, p. 221]) the tvo points f (a), f (a*) and the
two points f(b), f (b*) are symmetric, respectively, with respect to the circle
f(C) in the w-plane. So, by (1) we see that f (a*) = f(b*). By (3) a* and b*
belong to N. Since a # b, we have a* #~ b*. So, by (4) we have f (a*)
# f (b*), getting a contradiction.

Hence f is univalent in | z| < + oo. Furthermore, by hypothesis f is
meromorphic in | z| < + oco. Hence, by Theorem A f is a linear rational
function of z.
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