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1.4. Pour tout anneau intégre A de corps des fractions K, la propriété
(1) ci-dessous implique la propriété (ii):

(1) Pour tout couple de polyndmes P (X) et O (X) de K[X] tels que
P et QO soient étrangers entre eux, que deg (P) < deg (Q) et que Q (o) = 1,
st les coefficients du développement en série a ’origine de P (X)/Q (X) sont
dans A, alors les coefficients de Q (X) sont eux aussi dans A.

(i) Pour tout couple de polyndmes P (X) et QO (X) de 4 [X] tels que
P et Q soient étrangers entre eux, que Q soit primitif et que Q (o) soit
non nul, si les coefficients du développement en série a I’origine de
P(X)/Q (X) sont dans A, alors Q (o) est inversible dans A.

Notons en outre que Dress [5] a étendu a son tour la propriété (i) en
question aux anneaux factoriels.

Ce qui précede conduit a donner les définitions suivantes:

1.5. Etant donné un corps K, une fraction rationnelle P(X)/Q(X) a
coeflicients dans K est dite normalisée si (1) P et Q sont étrangers entre eux

(i) deg (P) < deg(Q) (i) O (o) = 1.

1.6. DEFINITION (Benzaghou [1]). Un anneau intégre A de corps des
fractions K est dit de Fatou lorsque les propriétés équivalentes suivantes sont
verifiées :

(i) Pout toute fraction rationnelle normalisée P (X)/Q (X) de K(X)
si les coefficients de son développement en série a 'origine sont dans A,
alors les coefficients de Q (X) sont eux aussi dans 4.

(i1) Si une suite (a,),.n 4 éléments de 4 vérifie une relation de récurrence
du type (1.2.1), ol les coeflicients g, appartiennent a K et ou I'ordre s de la
récurrence est le plus petit possible, alors les g, sont eux-mémes dans A.

2. SITUATION RECENTE

2.1. Un anneau intégre qui est intersection d’anneaux de valuation de
hauteur 1 est un anneau de Fatou [1].

Cette assertion donne en particulier tous les cas d’anneaux de Fatou
envisagés au paragraphe 1.

2.2. Un anneau de Fatou est complétement intégralement clos [1].



# a la fraction rationnelle
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2.3. Rappel. Un anneau intégre 4 de corps des fractions K est dit

_ complétement intégralement clos si: x€K, deAd — {o} et, \yneN,
¥ /x"c A implique x e A.

(Pour montrer I’assertion 2.2 il suffit d’appliquer la définition 1.6. (1)
! )
1 —xX

Ces deux résultats font poser la question: la classe des anneaux de

' Fatou est-elle distincte de la classe des anneaux qui sont intersection

- d’anneaux de valuation de hauteur 1 et de la classe des anneaux compléte-

. ment intégralement clos [1] ? A ce propos on notera que ’on trouve diffi-

cilement des exemples d’anneaux complétement intégralement clos qui ne
sont pas intersection d’anneaux de valuation de hauteur 1 (cf. exemple

 de Nakayama [7], cf. aussi [2], Algébre commutative, VI, § 4, exercice 6).

2.4. La classe des anneaux de Fatou est distincte de la classe des anneaux

qui sont intersection d’anneaux de valuation de hauteur 1 [4].

2.5. La propriété pour un anneau d’étre de Fatou passe a la fermeture

intégrale [1] et aux anneaux de polynémes [3], mais ne passe pas aux

localisés [4] (tout comme pour la propriété d’étre complétement intégrale-

- ment clos).

3. UN ANNEAU EST DE FATOU SI ET SEULEMENT SI IL EST COMPLETEMENT

INTEGRALEMENT CLOS

Etant donné Dassertion 2.2., il reste & montrer que la condition est

~ suffisante. Soit donc 4 un anneau completement intégralement clos de

- corps des fractions K et soit P (X)/Q (X) une fraction rationnelle normalisée

o]

~de K(X) dont le développement en série a Porigine ) a,X” est & coeffi-

n=0
cients dans A. Il s’agit de montrer que Q (X) appartient & A [X .
Comme Q (o) = 1, Q (X) est égal au produit [] (1—a;X) o ¢ est

0=i=
le degré de Q (X) et ou les «; sont les inverses des raciiles de O (X) dans
un corps de décomposition. Pour que les coefficients de Q (X ) soient dans
A il faut et il suffit que les «; soient entiers sur 4. Comme la fermeture
intégrale dans une extension de corps d’un anneau completement intégrale-
ment clos est aussi un anneau complétement intégralement clos ([2],
Algebre commutative, V, § 1, exercice 14), on peut supposer que les racines
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