Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ANNEAUX DE FATOU

Autor: Chabert, Jean-Luc

Kapitel: 1. Historique

DOI: https://doi.org/10.5169/seals-45364

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ANNEAUX DE FATOU

par Jean-Luc Chabert

1. HISTORIQUE

Fatou [6] a donné une propriété de l'anneau Z des entiers rationnels, résultat repris par Polya [9] et connu sous le nom de:

1.1 Lemme de Fatou. Soient P(X) et Q(X) des polynômes à coefficients entiers rationnels tels que P et Q soient étrangers entre eux, que Q soit primitif et que Q(o) soit non nul. Si les coefficients a_n du développement en série à l'origine de la fraction $P(X)/Q(X) = \sum_{n=0}^{\infty} a_n X^n$ sont des entiers, alors Q(o) = 1.

Mais cette propriété de Z est encore vraie pour d'autres anneaux. Ainsi Pisot [8] l'a démontrée pour les anneaux d'entiers d'un corps de nombres:

1.2. PROPOSITION. Soit a_n le terme général d'une suite d'entiers d'un corps de nombres K. Supposons qu'il existe entre les éléments a_n une relation de récurrence d'ordre s:

$$(1.2.1) a_{n+s} + q_1 a_{n+s-1} + \dots + q_s a_n = 0$$

et qu'il n'en existe aucune d'ordre s-1. Alors $q_1, q_2, ..., q_s$ sont des entiers de K.

C'est bien une généralisation du lemme de Fatou, car:

1.3. Etant donné un corps K, pour que la série $\Sigma a_n X^n$ où les a_n sont des éléments de K représente une fraction rationnelle P(X)/Q(X) de K(X) il faut et il suffit que, pour n assez grand, les éléments a_n vérifient une relation de récurrence de la forme (1.2.1) ([2], Algèbre, IV, § 5, exercice 3). Lorsque ceci est réalisé et que l'ordre s de la relation est le plus petit possible, il existe une représentation de la fraction rationnelle correspondante avec des polynômes P(X) et Q(X) de K[X] étrangers entre eux et

$$Q(X) = 1 + q_1 X + ... + q_s X^s$$
.

Si de plus le degré de P est strictement inférieur à celui de Q, alors la récurrence (1.2.1) commence à n = o.

- 1.4. Pour tout anneau intègre A de corps des fractions K, la propriété (i) ci-dessous implique la propriété (ii):
- (i) Pour tout couple de polynômes P(X) et Q(X) de K[X] tels que P et Q soient étrangers entre eux, que deg $(P) < \deg(Q)$ et que Q(o) = 1, si les coefficients du développement en série à l'origine de P(X)/Q(X) sont dans A, alors les coefficients de Q(X) sont eux aussi dans A.
- (ii) Pour tout couple de polynômes P(X) et Q(X) de A[X] tels que P et Q soient étrangers entre eux, que Q soit primitif et que Q(o) soit non nul, si les coefficients du développement en série à l'origine de P(X)/Q(X) sont dans A, alors Q(o) est inversible dans A.

Notons en outre que Dress [5] a étendu à son tour la propriété (i) en question aux anneaux factoriels.

Ce qui précède conduit à donner les définitions suivantes:

- 1.5. Etant donné un corps K, une fraction rationnelle P(X)/Q(X) à coefficients dans K est dite normalisée si (i) P et Q sont étrangers entre eux (ii) $\deg(P) < \deg(Q)$ (iii) Q(o) = 1.
- 1.6. Définition (Benzaghou [1]). Un anneau intègre A de corps des fractions K est dit de Fatou lorsque les propriétés équivalentes suivantes sont vérifiées :
- (i) Pout toute fraction rationnelle normalisée P(X)/Q(X) de K(X) si les coefficients de son développement en série à l'origine sont dans A, alors les coefficients de Q(X) sont eux aussi dans A.
- (ii) Si une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A vérifie une relation de récurrence du type (1.2.1), où les coefficients q_k appartiennent à K et où l'ordre s de la récurrence est le plus petit possible, alors les q_k sont eux-mêmes dans A.

2. SITUATION RÉCENTE

2.1. Un anneau intègre qui est intersection d'anneaux de valuation de hauteur 1 est un anneau de Fatou [1].

Cette assertion donne en particulier tous les cas d'anneaux de Fatou envisagés au paragraphe 1.

2.2. Un anneau de Fatou est complètement intégralement clos [1].