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ANNEAUX DE FATOU

par Jean-Luc CHABERT

1. HISTORIQUE

Fatou [6] a donné une propriété de 'anneau Z des entiers rationnels,
résultat repris par Polya [9] et connu sous le nom de:

1.1 LeMME DE FATOU. Soient P (X) et Q (X) des polynémes a coefficients
entiers rationnels tels que P et Q soient étrangers entre eux, que Q soit
primitif et que Q (0) soit non nul. Si les coefficients a, du développement

[e¢]

en série a ’origine de la fraction P(X)/Q (X) = ). a,X" sont des entiers,

n=0
alors Q (o) = 1.
Mais cette propriété de Z est encore vraie pour d’autres anneaux. Ainsi
Pisot [8] I’a démontrée pour les anneaux d’entiers d’un corps de nombres:

1.2. PROPOSITION. Soit a, le terme général d’une suite d’entiers d’un
corps de nombres K. Supposons qu’il existe entre les éléments a, une relation
de récurrence d’ordre s:

(121) an+s + qlan+s—1 + ...+ QSan = 0

et qu’il n’en existe aucune d’ordre s — 1. Alors q4, q5, ..., g, Sont des entiers
de K.

C’est bien une généralisation du lemme de Fatou, car:
2

1.3. Etant donné un corps K, pour que la séric Xa,X” ou les a, sont
des éléments de K représente une fraction rationnelle P (X)/Q (X) de K(X)
il faut et il suffit que, pour n assez grand, les éléments a, vérifient une rela-
tion de récurrence de la forme (1.2.1) ([2], Algebre, 1V, § 5, exercice 3).
Lorsque ceci est réalisé et que 'ordre s de la relation est le plus petit
possible, il existe une représentation de la fraction rationnelle correspon-
dante avec des polyndmes P (X) et Q (X) de K[X] étrangers entre eux et

OX)=14+qg, X+ ... + g, X°.

St de plus le degré de P est strictement inférieur a celui de Q, alors la
récurrence (1.2.1) commence a n = o.
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1.4. Pour tout anneau intégre A de corps des fractions K, la propriété
(1) ci-dessous implique la propriété (ii):

(1) Pour tout couple de polyndmes P (X) et O (X) de K[X] tels que
P et QO soient étrangers entre eux, que deg (P) < deg (Q) et que Q (o) = 1,
st les coefficients du développement en série a ’origine de P (X)/Q (X) sont
dans A, alors les coefficients de Q (X) sont eux aussi dans A.

(i) Pour tout couple de polyndmes P (X) et QO (X) de 4 [X] tels que
P et Q soient étrangers entre eux, que Q soit primitif et que Q (o) soit
non nul, si les coefficients du développement en série a I’origine de
P(X)/Q (X) sont dans A, alors Q (o) est inversible dans A.

Notons en outre que Dress [5] a étendu a son tour la propriété (i) en
question aux anneaux factoriels.

Ce qui précede conduit a donner les définitions suivantes:

1.5. Etant donné un corps K, une fraction rationnelle P(X)/Q(X) a
coeflicients dans K est dite normalisée si (1) P et Q sont étrangers entre eux

(i) deg (P) < deg(Q) (i) O (o) = 1.

1.6. DEFINITION (Benzaghou [1]). Un anneau intégre A de corps des
fractions K est dit de Fatou lorsque les propriétés équivalentes suivantes sont
verifiées :

(i) Pout toute fraction rationnelle normalisée P (X)/Q (X) de K(X)
si les coefficients de son développement en série a 'origine sont dans A,
alors les coefficients de Q (X) sont eux aussi dans 4.

(i1) Si une suite (a,),.n 4 éléments de 4 vérifie une relation de récurrence
du type (1.2.1), ol les coeflicients g, appartiennent a K et ou I'ordre s de la
récurrence est le plus petit possible, alors les g, sont eux-mémes dans A.

2. SITUATION RECENTE

2.1. Un anneau intégre qui est intersection d’anneaux de valuation de
hauteur 1 est un anneau de Fatou [1].

Cette assertion donne en particulier tous les cas d’anneaux de Fatou
envisagés au paragraphe 1.

2.2. Un anneau de Fatou est complétement intégralement clos [1].
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