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L'ŒUVRE MATHÉMATIQUE DE DELSARTE 1

par André Weil

Sufro de aquel amigo que muriô y
que era como yo buen carpintero.

(Pablo Neruda)

Comme il a été indiqué dans la notice biographique, ce n'est guère auprès

de leurs maîtres que Delsarte et ses camarades pouvaient trouver l'inspiration

pour leurs premiers travaux. Quant à se faire « donner un sujet », l'idée n'en

venait à personne, car la tradition française, saine à cet égard du moins,

voulait que le débutant se trouvât lui-même un problème à son goût, le rôle
des maîtres étant de donner des conseils parfois, mais surtout des encouragements.

Ce fut donc un très grand mérite de la part de Üelsarte, à. peine sorti
de l'Ecole Normale, d'avoir entrepris l'étude des groupes d'opérateurs
linéaires dans l'espace de Hilbert. Malheureusement la question n'était pas
mûre, et, pour l'aborder, Delsarte souffrait d'un lourd handicap. Il n'est

jamais facile pour un jeune mathématicien de se dégager de l'influence du
milieu où le hasard l'a placé; quand l'orientation qu'il y trouve n'est pas la

bonne, et que par surcroît il n'a pas su se familiariser de bonne heure avec
les langues étrangères, la difficulté devient à peu près insurmontable. En ce

qui concerne 1'« espace fonctionnel », la tradition où puisait Delsarte
accordait une importance excessive à l'équation de Fredholm. C'est donc
exclusivement aux sous-groupes du « groupe de Fredholm » que Delsarte

consacre ses premiers travaux ([1]-[14] et [22])2 ; il nomme ainsi, dans

l'espace de Hilbert (réel) des fonctions de carré sommable dans [0, 1], le

groupe des opérateurs /-> / + T/} où T est (comme on dirait aujourd'hui)
un opérateur « de Hilbert-Schmidt », c'est-à-dire de la forme

(T/)(x) j;
') Note de la Rédaction. — Cette analyse de l'œuvre mathématique de Delsarte

figure dans le tome I des Œuvres de Jean Delsarte, publiées par le Centre National de la
Recherche Scientifique, 15, quai Anatole-France, Paris 7e. Nous la reproduisons avec
l'aimable autorisation de l'auteur et du C.N.R.S. On trouvera, dans ce même volume, une
notice biographique sur Delsarte, due également à André Weil. Rappelons que Delsarte
est né le 19 octobre 1903 et décédé le 28 novembre 1968.

2) Les numéros renvoient à la liste chronologique des travaux de Delsarte (pp. 135-
140); il est renvoyé aux inédits (p. 139) par In. 1, In. 11.
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avec un noyau K de carré sommable dans [0, 1] x [0, 1]. En fait, Delsarte

suppose même que les intégrales J* K2dx, J* K2dy sont toutes deux

bornées dans [0, 1]; cette hypothèse est introduite, en partie en raison
d'une technique de l'intégration encore peu sûre, mais aussi pour garantir
l'invariance, par les opérateurs en question, de notions dues à Gâteaux

(suites « également » et « normalement » denses, « moyenne » d'une
fonctionnelle, etc.) auxquelles, en France du moins, on attachait alors quelque
importance. En premier lieu, Delsarte s'attaque aux opérateurs orthogonaux
appartenant à ce « groupe de Fredholm », et, pour en déterminer les valeurs

propres, introduit aussitôt la transformation de Cayley ([8], §2): idée

brillante dont v. Neumann, plus heureusement placé, devait bientôt,
indépendamment de Delsarte, tirer le parti que l'on sait. Dans le même ordre

d'idées, mais toujours dans le cadre trop étroit du « groupe de Fredholm »,

Delsarte en vient bientôt ([14]) à l'étude des sous-groupes de Fie de ce

groupe, et d'abord des groupes à un paramètre et de leurs transformations
infinitésimales; il étend à ceux-ci, sans trop de peine, les résultats
classiques, puis se pose à leur sujet des questions variées, qui témoignent
de l'ingéniosité de son esprit, mais dont il ne semble pas qu'il y ait grand-
chose à retenir, non plus que de ses observations sur les groupes à deux

paramètres; on notera seulement que c'était là une première tentative,
bien prématurée, pour aborder l'étude des représentations d'un groupe
résoluble dans l'espace de Hilbert.

Ces recherches prennent fin avec un fascicule du Mémorial ([22]),

d'esprit déjà nettement plus moderne, paru en 1932 mais certainement écrit
bien avant cette date ; on est surpris néanmoins que le nom de v. Neumann

ne figure pas dans sa bibliographie. Sans doute Delsarte prit-il connaissance

vers cette époque des travaux de celui-ci, du livre de Stone et surtout de

celui de Banach, et comprit-il que dans cette voie il était largement dépassé.

Aussi le voyons-nous se tourner aussitôt vers de tout autres problèmes.
Par tempérament, il s'était toujours intéressé aux questions de physique

mathématique; sans doute y avait-il en lui, si l'époque s'y fût mieux prêtée,
l'étoffe des grands physico-mathématiciens du siècle précédent, d'un
Fourier, d'un Poisson. En 1929 déjà il avait, sous l'influence de Villat,
traité un problème de théorie des tourbillons ([15]-[16]), et fait voir aussi

comment on peut aboutir à la théorie de Schrödinger, alors dans sa

nouveauté, à partir de considérations très classiques ([18], [In. 1]). Dans les

années qui suivent, il aborde, dans un esprit tout classique aussi, une

question posée par la relativité. Il part d'une observation très simple: tous
les ds2 explicitement connus, solutions des équations d'Einstein (avec ou
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sans matière) sont d'un type particulier qu'il qualifie de « binaire » (et

qu'on pourrait appeler « à variables partiellement séparées »):

ds2 cp(02 Z Qij 00 dxidxJ + f(x)2 Z V*P(Ç)d?dÇ>9
i, j <*, ß

où on a posé x (x1, xp), £ Çq). Cela posé, Delsarte n'hésite

pas à rechercher tous les ds2 de cette forme, solutions des équations

d'Einstein; il y parvient dans plusieurs cas importants ([24]-[29]), non
sans retrouver au passage la solution de Friedmann et Lemaître. « Le

problème se réduit », écrit-il à propos du cas le plus intéressant, « à

l'intégration du système formé par ces deux équations [de Monge-Ampère].
Il est remarquable qu'on puisse obtenir des formules d'intégration
complète avec des fonctions arbitraires. Les systèmes en question sont
évidemment assez compliqués, et il ne paraît pas aisé d'expliquer pourquoi
la méthode que nous allons indiquer réussit... ». Là, comme plus tard dans

le travail ([39]-[41]) sur la diffraction (qui, lui, aboutit à la solution d'équations

intégro-difïérentielles), on demeure stupéfait de sa virtuosité au travers
de calculs où l'on ne voit pas quelle intuition a pu le guider. La solution
est suivie ([28], Chap. III) de la discussion qualitative des résultats obtenus
dans le cas d'un ds2 «à évolution sphérique»; celle-ci fait apparaître des

singularités, cavitations, fonctions multiformes, assez surprenantes du point
de vue physique, mais dont le mathématicien ne saurait, sans sortir de son
rôle, prétendre tirer des conclusions.

Ensuite s'ouvre pour Delsarte une période particulièrement active et
féconde. Parmi les méthodes générales de développements en série hérités
du xixe siècle, le premier quart du XXe avait surtout retenu les développements

en séries de fonctions orthogonales; c'était là l'aboutissement naturel
de l'œuvre de Lebesgue et de celle de Hilbert. Même les développements
en séries d'exponentielles qui apparaissent dans la théorie de Bohr pouvaient
être insérés dans le même cadre, comme H. Weyl le fit voir dans un travail
célèbre. Cependant, dès ses premières recherches sur l'espace de Hilbert,
Delsarte avait observé qu'on peut, dans cet espace même, utiliser des

« coordonnées obliques » qui mettent en évidence des phénomZies
nouveaux. Surtout, la pratique assidue de « Whittaker et Watson » J), ainsi
que du grand Traité de Watson sur les fonctions de Bessel, lui avait fait
connaître des développements de type tout différent, et lui avait fait voir

Ù II s'agit naturellement du classique ouvrage: E. T. Whittaker and G. N. Watson,
A Course of Modem Analysis, Cambridge 1927, volume qui, pendant une grande partie
de la vie de Delsarte, ne quitta pas sa table de travail.
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que, dans chaque cas, le formalisme préexiste à toute considération sur le

mode de convergence de la série à étudier et conditionne celui-ci. C'est
donc aux formalismes qui sont à la base de ces développements que Delsarte
accordera en premier lieu son attention. D'une manière générale, il s'intéresse

à tous les cas où on peut définir, dans un « espace fonctionnel » A,
une suite de fonctions (pt et de « fonctionnelles linéaires » Lt telles que toute
fonction / appartenant à A soit déterminée d'une manière unique par le

développement formel

/-SCO I
et que celui-ci converge vers/en un sens à préciser chaque fois. Evidemment

une condition nécessaire pour cela est que les cpt forment, en un sens

convenable, un « système complet » dans A et qu'on ait les relations de

« biorthogonalité » Lt (cpj) ôtj.
Un premier exemple important, découvert par Delsarte, est celui des

fonctions « moyenne-périodiques » qu'il introduit ([30]-[33]) à partir de

1934. La théorie des fonctions presque périodiques avait fait une profonde
impression lors de sa création par H. Bohr; elle reposait évidemment sur
la considération du groupe des translations de la droite (ou, ce qui revient
au même, de sa transformation infinitésimale, D — djdx)\ une tentative
de généralisation aux groupes de Lie non commutatifs n'avait rien donné
d'utile. Delsarte, sans quitter d'abord le groupe des translations de la droite,

propose une généralisation d'un type tout différent. Soit K une fonction
à support compact sur R; une fonction / sera dite moyenne-périodique (de

l'espèce définie par K) si l'on a, pour tout x:

(/* K) (x) J f(x-y=0;

naturellement, K, puis /, sont supposés tels que leur convolution /* K
ait un sens. On peut aussi, comme l'ont fait plus tard L. Schwartz, Kahane

et Delsarte lui-même, remplacer K par une mesure ou même une
distribution, mais toujours à support compact (cf. [63], qui contient une

bibliographie de la question jusqu'en 1960). Le cas particulier des fonctions

périodiques s'obtient, soit en prenant pour K la mesure égale à

— 1 en x 0 et à + 1 en x a, soit (comme le fait Delsarte) en prenant
K 1 dans [0, a] et K 0 en dehors de cet intervalle; avec ce dernier

choix, / * K 0 exprime que / est périodique de période a et de moyenne
nulle, d'où sans doute le nom adopté par Delsarte. D'ailleurs, dès qu'on
introduit quelques notions simples sur les espaces fonctionnels considérés
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comme espaces vectoriels topologiques (ce qu'il n'était guère possible de

faire en 1934), on observe aussitôt ce qui suit: /étant donnée, pour qu'il
existe (par exemple) une mesure {â à support compact, telle que / * fi 0,

il faut et il suffit que, dans l'espace Y des fonctions continues sur R avec

la topologie de la convergence uniforme sur tout compact, l'espace engendré

par / et ses translatées ait une adhérence Yf # V. On a donc affaire à un
problème typique d'« analyse » et « synthèse » spectrales : l'analyse consistera

ici à rechercher les sous-espaces de Yf de dimension finie, invariants par
translation; la synthèse consiste à écrire / comme combinaison linéaire
(en un sens à définir) de fonctions appartenant à ces sous-espaces. Or il
est clair que les fonctions dont les translatées engendrent un vectoriel de

dimension finie sont les «exponentielles-monômes» x11 é"x\ de plus, pour
que xn eax soit solution de / * fi 0, il faut et il suffit que a soit un zéro
d'ordre > n de la fonction entière

F (z) — J e~zx àfi (x),

« indicatrice » de la mesure \x. Heuristiquement, on cherchera donc à

associer à toute solution / de /* fi 0 une série

n(a)-l
(1) s (/)=£( S cai X; e")

a i= 0

où les a sont les zéros de F et les n (a) leurs multiplicités respectives ; ces

zéros, avec leurs multiplicités, forment le « spectre » de /,i.

Soit I le plus petit intervalle fermé contenant le support de ji (dans la
généralisation à R", on prendrait pour I l'enveloppe fermée convexe de
ce support). Choisissons a e R arbitrairement; pour/solution de/* fi 0,
convenons de noter/' la fonction définie par/* (x) /(x) pour x a et

/• (x) 0 pour x < a, puis jif la mesure f' * ti. Alors fif a son support
contenu dans / + a; on notera Ff son indicatrice. Soit encore g une
solution de g * ß 0; on définira de même g\ ng9Fg. Delsarte introduit
la fonctionnelle bilinéaire

K(/,0) Ilüf x)9 (x ~~y) àx dji (y)

où D est le domaine défini par x ^ A, y — x ^ B, y g /, avec A + B
suffisamment grand; les hypothèses faites sur / et g entraînent en effet
qu'alors K (/, g) est indépendant de A et B. Remplaçant x par y - x,
on voit que K (/, g) est symétrique. Prenant B - a, puis échangeant

/ et g, on obtient

K (f,g) jf (~x) d/ig (x) - J g (-x)dnf(x) ;
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on voit de même, plus généralement, que /* pg g * pf. En particulier,
pour f — xl eax, g xJ eßx (où par suite a, ß appartiennent au spectre,
et i < n (a), j < n (ß)), on trouve facilement que K (/, g) 0 lorsque
a Si on suppose le spectre formé de points simples, on voit donc

que les exponentielles eax forment un système orthogonal par rapport
à la forme quadratique K (/,/); dans ce cas, d'ailleurs, on a

K (eax, eax) F'(a),

d'où, formellement, la valeur des coefficients de (1):

ca0 F '(a)"1 K (/,<**)

si l'on admet provisoirement que les eax forment un système complet
dans l'ensemble des solutions de f * ß 0.

Revenons au cas général, et prenons de nouveau f(x) xl eax, avec

i < n (a); pour ce choix de /, écrivons pai9 Fai au lieu de pf9 Ff. On a:

Fai(z) i (z1 F (z).

Soit ensuite f donnée par une somme finie de la forme (1), c'est-à-dire

une telle somme où les cai non nuls sont en nombre fini. Il est clair alors

que la somme Sa (/) des termes relatifs à cc, dans S (/), n'est autre que
le résidu en z a de la fonction méromorphe F(z)-1 exz Ff(z). Cela peut
encore s'écrire comme suit:

s Af)Res==i, [F (z)~l J ez(x'y) dnf(y)\ ga*

où l'on a posé

g^x) Resz=a [F (z)-1

Il est clair que ga est combinaison linéaire des xl eax pour i < n (a), donc
solution de ga * p 0. Finalement x), on a

S.(/) •
va

On en déduit aussitôt, pour chaque cab une expression

cai K(/.P1((x)0,
où Pai est un polynome de degré < n (a) -- i.

b La formule donnée par Delsarte ([33], formule (1) p. 444) est entachée d'une
erreur qui provient d'une faute de calcul banale dans l'évaluation du résidu. Après correction,

elle devient identique, en substance, à celle que nous donnons ci-dessus, et qui,
sous cette forme, est due à L. Schwartz.
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Pour toute solution f de /* /i 0, on conviendra alors de définir les

cai par ces mêmes formules, et on notera S (/) la série (1) formée avec

ces coefficients. Il est à remarquer (et Delsarte ne manque pas d'insister

sur ce point) que les cai ne dépendent que des valeurs de /(x) pour
a — x e /, donc (puisque a est arbitraire) dans un intervalle quelconque
de longueur 1(1) égale à celle de /.

Avec ces résultats, on est à pied d'œuvre; il s'agit de savoir si, sous

des conditions convenables et en un sens convenable, S (/) converge vers /;
s'il en est ainsi, on en conclura que S (/) détermine/d'une manière unique,
de sorte que / est bien déterminée par ses valeurs dans un intervalle de

longueur 1(1), comme c'est le cas pour les fonctions périodiques.
L'expression de S (/) par une somme de résidus a été suggérée à Delsarte

par une démonstration de Cauchy, exposée par E. Picard dans son Traité
d'Analyse (tome II, Chap. VI, § II); s'inspirant de celle-ci, Delsarte fait
la sommation de S (f) par le « calcul des résidus », c'est-à-dire au moyen
du théorème de Cauchy. Une analyse, d'ailleurs délicate (et qui, sur quelques
points, demanderait sans doute à être revue) l'amène->à conclure qu'il y
a convergence, uniforme dans tout intervalle de continuité de /, sous les

conditions suivantes: a) fi est définie par une densité K, c'est-à-dire qu'on
a, dans I, djÂ (x) K (x) dx; b) K est absolument continue dans /, et

^ 0 aux extrémités de /; c) / est à variation bornée dans tout intervalle
borné.

Dans le même travail ([33], Chap. I), Delsarte s'occupe aussi de résoudre

l'équation avec second membre /* fi cp, où ju est comme plus haut et
cp est donnée. Ici, c'est sur la théorie des équations aux différences finies
qu'il prend modèle. Il est amené ainsi, entre autre, à une généralisation
étendue de la formule classique d'Euler-Maclaurin, reposant sur
l'introduction de « polynômes bernouilliens » (à une ou plusieurs variables) ;

pour le cas d'une variable, par exemple, ce sont les polynômes B„ (x)
définis par la formule

oo

F (z)"V* X Bn(x)z",
71=0

où F est comme ci-dessus, et où on a supposé F (0) ^ 0.

Dès lors, Delsarte envisageait l'extension à plusieurs variables de la
théorie ci-dessus, qui offre des difficultés incomparablement plus grandes.
En effet, si fi est une distribution et par exemple une mesure à support
compact dans R", son indicatrice F sera donnée, pour z (z1? z„),
par la formule

L'Enseignement malhém,. t. XVIU, fasc. 2. 9
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F (z) J exp - X zvxv) du (x).
V

Les zéros de F forment un ensemble analytique de codimension 1 dans

Cn; pour avoir un « spectre » discret, il faut se donner n mesures jliv telles

que l'ensemble des zéros communs à leurs indicatrices Fv (le « spectre »)

soit discret; pour simplifier, on admettra en premier lieu que ces zéros

sont simples, c'est-à-dire qu'en chacun d'eux le jacobien des Fv est ^ 0.

Heuristiquement, on cherchera alors à associer, à toute solution commune
des équations /* juv 0 une série

s (/) X Ca exp (y av xv),
a v

où les a (al5 ccn) sont les points du spectre. Dans son cours de

Bombay de 1959 ([65]) et dans son mémoire de 1960 ([63]), Delsarte
donne la solution formelle de ce problème au moyen des « déterminants
de Jacobi »; comme pour n — 1, les termes Sa (/) de la série S (/) peuvent
s'écrire comme les résidus aux points z a d'une fonction méromorphe
attachée à /. Ensuite il s'attache principalement au cas où n 2 et où

jxu ja2 sont sommes de mesures définies par des densités continues et

suffisamment differentiates dans le carré 0 ^ xl5 x2 1 et de masses

ponctuelles placées aux sommets du carré. Dans ces conditions, il montre
entre autres que, si / est continue, et cp indéfiniment differentiate à

support compact, la série

S (f* (p)S (f)* (p(«) C« eXP 0*1*1 + a2*2)

(où $ est l'indicatrice de (p) converge vers f* cp, uniformément sur tout
compact. On reconnaît là une idée introduite par L. Schwartz dans le

cas n 1, et qui elle-même est apparentée à l'idée fondamentale de

Riemann dans sa théorie des séries trigonométriques. Dans le cas traité

par Delsarte, la démonstration repose sur d'assez laborieux passages à la

limite à partir de mesures sommes finies de masses ponctuelles. On en

conclut que / est déterminée par S (/) d'une manière unique, et on peut
en tirer aussi un procédé de « sommation » de la série formelle S (/).

Mais c'est vers une autre généralisation,, de portée encore plus vaste,

que Delsarte se tourne en 1935; il semble y être parvenu comme suit.

Dans R", pour n > 1, reprenons le problème des fonctions moyenne-
périodiques, mais en y ajoutant une condition de symétrie sphérique;
autrement dit, on s'assujettit à ne considérer que des fonctions, mesures

et distributions invariantes par le groupe des rotations autour de 0. De
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telles mesures (ou distributions), supposées toujours à support compact,
forment évidemment une algèbre commutative pour la convolution; celle-ci,

en un sens évident, peut être considérée comme engendrée, soit par les

« mesures élémentaires » pr formées, pour tout r ^ 0, par la masse totale 1

uniformément répartie sur la sphère de rayon r et de centre 0, soit par
l'opérateur infinitésimal A — 1 d2/dx^. Appliquons donc les opérateurs

/ -» /* pn f -+ Af à une fonction / à symétrie sphérique; si on écrit celle-ci

f(p) avec p (Ex2)112, on obtient les opérateurs Tr, D donnés par

Leurs fonctions propres peuvent s'obtenir à partir des exponentielles
exp (£avxv) en prenant la moyenne sphérique de celles-ci autour de 0

et écrivant les fonctions obtenues sous la forme j (p). On trouve ainsi
les fonctions

(2) (TV) (P)

Hf((p2 — 2rp cos ç + r2)1/2) (sin cp)n
2 d(p

(3) (D/) (p) «
d2f n — 1 df
dp2 p dp

où l'on a posé

A =(-X«v2)1/2, p=^-U
et où J

p
est la fonction de Bessel d'ordre p; et l'on a

(Trjk)(p) =jx(r)jx(p), Djx « -X2]x.
On tire de là le développement formel

O0

T' X ?.(r)D

où les <p„sontles coefficients du développement

Jx E <P„ - À2)",

ou, plus explicitement:
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r(p +
<Pn 0)=

n T (n +p + 1) \2

On est ainsi naturellement conduit à étudier, de ce point de vue nouveau,
les fonctions moyenne-périodiques, les fonctions presque périodiques, etc.

Cependant Delsarte ne s'y arrête pas, car il s'aperçoit aussitôt que les

opérateurs Tr et D définis par (2) et (3) conservent leurs propriétés essentielles

même quand n n'est pas supposé entier; cette observation fondamentale
forme le point de départ d'une série de très importants travaux ([34]-[38],
[42]-[52]). Il commence par axiomatiser entièrement les propriétés en

question (dans [34], [36], [38], [47]) et part de là pour en élucider tout
le mécanisme formel. C'est ensuite seulement qu'il revient aux opérateurs
Tr, D donnés par (2) et (3), mais avec la seule restriction Re (p) > — 1/2

le plus souvent, ou éventuellement — 1/2 < Re {p) < 1/2, pour en faire
le banc d'essai de sa méthode et en faire l'étude détaillée; comme l'a
observé Lions plus tard, certains résultats s'étendent même à Re (p) ^ — 1/2

par prolongement analytique. Dans ce cadre, il traite entre autres la théorie
des fonctions presque périodiques, pour lesquelles les fonctions jÀ, avec
X réel, jouent le même rôle que les exponentielles elXx dans la théorie de

Bohr. Combinant ces idées avec celles qu'il avait introduites à propos
des fonctions moyenne-périodiques, il retrouve la plupart des développements

classiques en fonctions de Bessel (séries « de Fourier-Bessel », « de

Bessel-Dini », « de Schlômilch »), ainsi que les développements, limités ou

non, qui généralisent la formule de Taylor (avec ou sans reste) et la formule
d'Euler-Maclaurin.

C'est encore au cours des mêmes recherches que Delsarte fait la découverte

des « opérateurs de transmutation » auxquels son nom reste attaché.

Dans la théorie formelle des opérateurs Tx, D (où D, comme il a été indiqué,
joue le rôle d'une transformation infinitésimale, et les Tx celui de

translations généralisées), il était apparu qu'on pouvait définir les Tx en résolvant
des problèmes aux limites relatifs à l'équation

DxF(x,y) D,, F ;

ce mode de définition des Tx met en évidence qu'ils commutent avec D.
La même idée, appliquée à deux opérateurs D, D' distincts, et à l'équation

DXF (x,y) D;F (x,y)

conduit alors à des opérateurs, dits « de transmutation », qui transforment
D en D'. C'est ce qui apparaît d'abord dans [51] pour l'opérateur D
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défini par (3), avec n 2p + 2, — 1/2 < Re (p) < 1/2, et D' d2!dt2\

grâce à la « transmutation » de D en D', on peut, formellement du moins

(quitte à justifier en détail les conclusions qu'on en tire) appliquer à D,

par simple transport de structure, tout ce qu'on sait de D'. La même

idée est énoncée dans [50] pour des opérateurs différentiels très généraux
du second ordre à une variable; elle est plus amplement exposée, à la

suite d'un travail de Lions, dans le cours de Delsarte à Bombay en 1959

([67]). Elle a été étendue au domaine complexe (et alors pour les opérateurs
d'ordre quelconque) par Delsarte lui-même, en collaboration avec Lions

([58]-[59]); elle joue un rôle important dans les travaux de Lions, de

B. M. Levitan et d'autres auteurs, en particulier sur le problème de Sturm-
Liouville. Sur ces questions, on consultera aussi le bel article de Levitan
dont la traduction est reproduite plus loin (tome II).

Les mêmes idées sont à la base du « théorème des deux rayons » et

de ses généralisations ([60]-[61] et [65]). Soit de nouveau \ir la masse

totale 1 uniformément répartie sur la sphère de centre 0 et de rayon r
dans R". Le théorème en question dit que, si une fonction / indéfiniment
différentiable dans Rn satisfait à

f - f * HaHb

avec a > b > 0, elle est harmonique (sauf tout au plus pour certaines
valeurs exceptionnelles de ajb, en nombre fini quand n est donné). Si on
pose u (x, p) (/* pp) (x) pour x e R", p ^ 0, alors u est solution d'un
problème de Cauchy hyperbolique Axu Du, où A x est le laplacien dans
R" et D est défini par (3) ; les données aux limites sont u (x, 0) /(x),
(cu/ôg) (x, 0) 0. On peut alors remplacer Ax par n'importe quel
opérateur elliptique dans R", et D par un opérateur du second ordre, à une
variable, qui se laisse transformer en d2/dt2 par une transmutation. C'est
même dans un cadre encore plus général que se placent Delsarte et Lions
dans [61]; le point essentiel consiste à ramener l'hypothèse initiale à

une hypothèse de moyenne-périodicité (à une variable, mais à inconnue
vectorielle), après quoi la démonstration s'achève sans difficulté.

Une autre possibilité de généralisation des formules (2) et (3) apparaît
lorsqu'à R" et au groupe des rotations on substitue un autre groupe de
Lie G et un groupe compact A d'automorphismes de G. C'est là le point
de vue qu'adopte Delsarte dans ses communications aux colloques de
Louvain en 1953 ([56]) et de Nancy en 1956 ([57]); dans la première, il
prend G C"; dans l'autre, G n'est plus supposé commutatif. U obtient
ainsi d'importantes généralisations des fonctions de Bessel, des équations
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différentielles auxquelles elles satisfont, et de leurs théorèmes d'addition
intégraux. Il est à noter aussi que [56] pose d'intéressantes questions relatives

aux invariants des groupes linéaires (sur l'une de ces questions, Delsarte
devait revenir brièvement dans la note [66]) (cf. [In. 10]). On y trouve
également un critère (nouveau, semble-t-il, malgré sa simplicité) pour qu'un
système d'équations linéaires aux dérivées partielles, en une fonction
inconnue de n variables xu xn9 n'admette qu'un nombre fini de solutions
linéairement indépendantes: il suffit pour cela que, pour tout /, l'idéal
différentiel engendré par les premiers membres contienne un opérateur
différentiel où ne figure aucun des d/dxj pour j # i. Il est vrai que ce critère
ne semble pas d'application aisée, même dans le problème en vue duquel
Delsarte l'introduit; de plus, il n'implique aucun procédé de calcul effectif

pour la dimension de l'espace des solutions; ce calcul pose un problème
algébrique dont on s'étonne qu'il n'ait pas encore attiré l'attention. D'autre
part, dans [57], Delsarte pose, et résout en partie, le problème de l'engen-
drement du quotient G/A (ou, comme dit Delsarte, de 1'« hypergroupe »

qu'il définit) par ses « transformations infinitésimales », donc par des

opérateurs différentiels; déjà dans le cas où A est le groupe des rotations
dans G Rn, on a vu plus haut que la « transformation infinitésimale »

D est du second ordre. Il s'agit donc de généraliser à G/A les théorèmes

fondamentaux de la théorie de Lie; c'est sur le «premier théorème» que
Delsarte concentre son attention (cf. déjà [52]). Comme dans le cas de la
transmutation des opérateurs à une variable, on aboutit à des équations
aux dérivées partielles à variables séparées; A étant supposé compact, on

peut les résoudre par des intégrales prises sur A. D'ailleurs le même
formalisme subsiste quand A n'est pas compact, et Delsarte indique plusieurs
exemples remarquables où le problème peut être traité complètement. Dans
le premier de ces exemples, G est GL (2, C) et A est le groupe des auto-
morphismes intérieurs de G; l'algèbre d'opérateurs, ou, pour parler comme
Delsarte, 1'« hypergroupe » correspondant est celui qui est engendré par le

centre de l'algèbre enveloppante de l'algèbre de Lie, opérant sur les fonctions

sur G invariantes par A. Delsarte touchait donc ici à un point crucial de la
théorie des représentations de degré infini des groupes de Lie, à savoir,
les relations entre le centre de l'algèbre enveloppante et les opérateurs
définis par l'intégration sur les classes d'éléments conjugués dans G; ce

point n'a commencé à être mis en évidence qu'assez récemment, et il y
aurait lieu d'examiner si les idées de Delsarte ne sont pas de nature à jeter
un jour nouveau sur une théorie qui, malgré de brillants succès, n'a sûrement

pas encore pris figure définitive. Sur le problème général de l'engendrement



— 127 —

d'un « hypergroupe » par ses opérateurs infinitésimaux, on consultera aussi

l'article déjà cité de B. M. Levitan, qui à la suite de [57], a pu obtenir, dans

ce cadre, les analogues des trois théorèmes de Lie. Ici comme ailleurs,

Delsarte s'est contenté de faire œuvre de pionnier loin des sentiers battus,

laissant à d'autres le soin d'une exploration plus approfondie.
C'est à l'ensemble des recherches ci-dessus qu'il faut rattacher enfin un

travail inédit ([In. 8]) sur les problèmes spectraux, qui montre à quel point
Delsarte est resté préoccupé toute sa vie par l'aspect formel ou algébrique
des développements en série. Dans une première partie (« Note A »),

il reprend le problème des fonctions moyenne-périodiques sur R, mais en

substituant à djdx un opérateur différentiel linéaire quelconque D, d'ordre

777, puis en se donnant m distributions jiu jim à support compact;
le spectre est ici l'ensemble des a e C pour lesquels les équations

(/) 0, \xm (/) 0, D/ af ont une solution fa ^ 0; c'est encore

l'ensemble des zéros d'une fonction entière A (z). Supposant pour simplifier

que A est à zéros simples, et supposant qu'une fonction g admet un développement

formel S (g) Icafa, Delsarte obtient des formules explicites pour
les termes ga cafa de S (g), formules qui sont donc valables tout au

moins chaque fois que les ca non nuls sont en nombre fini. Tout comme
dans le cas des fonctions moyenne-périodiques, ces termes se présentent

comme les résidus d'une fonction méromorphe en z, A (z)~1 B (z, x). Dans

une deuxième partie (« Note B »), Delsarte combine ces idées avec celles

de sa conférence de Louvain ([56]) pour donner une solution partielle du

problème analogue dans le cas de n variables.

C'est avant tout par son œuvre d'analyste, telle que nous avons tenté

(bien sommairement et incomplètement) de la décrire ci-dessus, que Delsarte

s'imposera à l'historien des mathématiques de notre époque. Mais il s'est

aussi, pendant de longues années, vivement intéressé à la théorie des

nombres, et y a apporté en tout cas des aperçus et des points de vue
originaux; sa note de 1942 ([53]) fait la transition d'un domaine à l'autre. Il avait
dû être frappé par la structure formelle de la célèbre formule de Hardy *)

exprimant le nombre de points de Z2 dans le cercle x2 + y2 < r2 au

moyen de fonctions de Bessel ; l'apparition de celles-ci ne pouvait manquer
de lui rappeler ses propres recherches sur les fonctions moyenne-périodiques
à symétrie sphérique. Dans la note [53], il s'agit d'étendre la formule de

Hardy à un groupe fuchsien g opérant dans le demi-plan de Poincaré,
pour obtenir le nombre des transformés par g d'un point donné, contenus

]) Sur cette formule (dite aussi « de Hardy-Landau ») et son histoire, cf. par exemple
G. H. Hardy, Collected Papers, vol. II, p. 330,
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dans un cercle (non-euclidien) donné. D'une manière un peu plus générale,
dans un manuscrit inédit ([In. 4]) dont on trouvera la partie essentielle

au Tome II, Delsarte considère un groupe proprement discontinu g, opérant
sur une surface I à courbure constante k — ± 1 /a2 qui est, soit le plan
si k 0 (donc si a oo), soit la sphère si k > 0, soit le demi-plan de

Poincaré si k < 0; il est supposé implicitement que T/g est compact.
Soient À et M deux points de T ; il s'agit d'étudier le nombre Ct (x, A, M)
d'éléments s de g tels que sA soit dans le cercle (non-euclidien) de centre M
et d'aire (non-euclidienne) nx. Soit A l'opérateur de Beltrami sur S; comme
il est bien connu, on peut choisir sur T/g un système orthonormal complet
formé de fonctions propres de A, ou, ce qui revient au même, de fonctions

propres (pn de A sur I, invariantes par g; soient Xn les valeurs propres
correspondantes; on peut prendre X0 0, q>0 u_1/2, où a est l'aire
de 1/g. Dans ces conditions, Delsarte se propose de calculer le développement

de et (x, A, M), considéré comme fonction de M invariante par g,

suivant le système (cpn); une analyse fort ingénieuse lui permet, formellement

tout au moins, d'obtenir ce développement sous la forme

TLX 00

(4) et (x, A, M) — + y
G n — \

où les coefficients cn (x) sont donnés par des fonctions hypergéométriques
si k ^ 0, et à la limite, si k 0, par des fonctions de Bessel, conformément

à la formule de Hardy-Landau. Par exemple, pour k — l/a2, on a:

C„WF (oc„, ßn;2 ; -x/4 a2),

où an, ßn sont les racines de X2 — X — Xna2 0. Il ne semble pas que
Delsarte ait poussé plus loin dans cette voie, qui semblait pourtant pleine
de promesses. Quelques calculs qui suivent son manuscrit (et qu'on n'a

pas cru devoir reproduire dans cette édition) indiquent seulement qu'il
s'était du moins assuré de la convergence absolue de la série qui forme le

seconde membre de la formule (4).

Ensuite nous le voyons chercher un point de jonction entre l'arithmétique
et les fonctions presque périodiques, et se demander dans quels cas une
fonction arithmétique /(n) peut être presque périodique, au sens de Bohr

ou en un sens plus général. Si elle l'est, cela veut dire qu'elle admet,
formellement du moins, un développement en série suivant les exponentielles

Xr(n) e2nirn, où reQ/Z, c'est-à-dire suivant les caractères de Z. Si on

écrit / ~ Zarxr, la théorie de Bohr suggère de prendre pour ar la valeur

moyenne
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1 N

M If IJ lim - £ f (n) fr («),
N-> + oo iV n=l

à supposer qu'elle existe. Essayant d'abord d'appliquer cette idée aux

fonctions arithmétiques élémentaires classiques, Delsarte constate que, pour
celles-ci, ar dépend seulement de l'ordre du caractère Xn c'est-à-dire de q

si l'on écrit r mjq avec (m, q) — 1. On posera donc

cq(n) £ Xm/q(n)£
m m

où la sommation s'étend à un système complet de restes m premiers à

q modulo et on écrira aq au lieu de an pour r mjq comme plus
haut. Groupant ensemble, dans la série formelle pour /, les termes relatifs

aux caractères de même ordre, on obtient une série formelle Zaqcq {n).

C'est ainsi que, dans son mémoire de 1945 ([54]), Delsarte commence par
retrouver *) des résultats classiques de Ramanujan, pour les étendre ensuite

dans diverses directions, et en particulier aux corps de nombres algébriques.
En ce qui concerne ceux-ci, on peut, en langage moderne, présenter les

choses comme suit. Soit /(q) une fonction d'un idéal entier q ^ (0) du

corps k\ soient les complétions p-adiques de /c; soit r^ l'anneau des

entiers de ksoit a (<ap) un élément de Q Tir^ (un «idèle entier fini»)
tel que, pour tout p, Vp (<ap) soit égal à l'exposant de p dans q; chaque fois

qu'il en est ainsi, soit f(a)=f (q). Dans ces conditions, il s'agit de savoir
si / (a) peut être prolongée d'une manière naturelle (en particulier par
continuité, ce qui correspond au cas des fonctions presque périodiques au
sens de Bohr) à une fonction F sur le groupe additif de Q ; lorsqu'il en est

ainsi, on peut lui faire correspondre la série de Fourier Iaxx de F sur £2,

les x étant les caractères de Q. D'ailleurs Q est limite projective des anneaux
r/a, où r est l'anneau des entiers de k et où a décrit l'ensemble des idéaux

/ (0) de r. Les x s'identifient donc aux caractères de ceux-ci. De plus, pour
a donné, tous les caractères « primitifs » de r/a (c'est-à-dire ceux qui ne

peuvent être définis modulo un diviseur strict de a) se déduisent les uns
des autres par les automorphismes £ ^ du groupe additif r/a, quand
on prend pour X les éléments inversibles de l'anneau r/a; on en conclut

9 C'est seulement à Princeton en 1947, semble-t-il, que Delsarte prit connaissance
des travaux de Ramanujan (S. Ramanujan, Collected Papers, Cambridge 1927; voir en
particulier n° XXI, p. 179) et du livre de Hardy (G. H. Hardy, Ramanujan, Cambridge
1940; voir en particulier Chap. IX, pp. 137-141). Dans [54], le nom de Ramanujan n'est
pas cité, et Delsarte note O {q | /p, et baptise « indicateur d'ordre n », la somme de Ramanujan

cq (n).
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qu'ils ont même coefficient dans Iaxy- Cela conduit à regrouper dans cette
série les termes correspondants et à l'écrire sous la forme

I a (a) c (a; q),

où la «somme de Ramanujan » c(a; q) est la somme des y (a) étendue

aux y primitifs modulo a.

Par la suite, Delsarte n'a plus publié sur la théorie des nombres qu'un
seul travail assez court ([55]); là il s'agit d'étendre aux groupes abéliens
finis la formule classique de Möbius. On considère donc des fonctions
G / (G) définies sur l'ensemble des groupes abéliens finis, telles que

/(G) /(G') chaque fois que G, G' sont isomorphes; on se propose de

définir une telle fonction ji ayant la propriété suivante: pour tout couple
de telles fonctions /, F, les relations

F (G) If(G'), /(G) IF (G') ji (G/G'),

où les sommes sont étendues à tous les sous-groupes G' de G, sont équivalentes.

Delsarte démontre l'existence et l'unicité de ji (qui bien entendu,

pour les groupes cycliques, n'est autre que la fonction de Möbius classique)
et l'applique à divers problèmes énumératifs.

Par la suite, comme le montrent ses notes inédites (voir en particulier
[In. 6]), Delsarte s'est plus spécialement intéressé à la théories des « séries

singulières » de Hardy et Littlewood. Ces derniers attachaient à toute
fonction arithmétique f(ri) la « série génératrice » <P (z) Zf (;n) z11; puis,

supposant le rayon de convergence égal à 1, ils déterminaient le comportement

de $ aux points z e2nl\ avec reQ/Z, c'est-à-dire aux racines de

l'unité. Supposons qu'en chacun de ces points $ (z) ait pour partie principale
une fraction rationnelle cpr (z) ayant ce point pour seul pôle ; on peut alors

espérer représenter approximativement <P (z) par la série lepr (z). Comme

Hardy et Littlewood l'avaient observé, un cas particulièrement important
est celui où $ (.e2nix) est une forme modulaire dans le demi-plan Im (t) > 0;
il en est ainsi par exemple lorsque f (ri) est le nombre des représentations
de n par une forme quadratique positive; I(pr(e2nix) est alors la série

d'Eisenstein de même degré, dont $ (e2nir) ne diffère que par une « forme

parabolique », ce qui explique en ce cas le succès de la méthode et en précise
la portée; il n'est pas besoin de dire qu'on ne connaît encore aucune raison
du même genre pour son succès dans le problème de Waring. Delsarte,
lui, préfère adopter le point de vue de la théorie des fonctions presque
périodiques. Considérons par exemple le nombre de représentations de

l'entier n > 0 par une forme F de degré kks variables, à coefficients entiers,
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c'est-à-dire le nombre de solutions dans Zs de l'équation F (x) n. Ce

nombre n'étant pas fini en général, il convient d'adjoindre à cette équation
des inégalités (homogènes) convenables, ou, ce qui revient au même,

d'astreindre x à se trouver dans un cône donné F de sommet 0; on

supposera que l'ensemble

Y {x er | 0 ^ F (x) ^ 1 }

est borné ; soit Q son volume. On désignera par R (n) le nombre de solutions
de F (x) n dans Zs n F. Soit encore E (N) l'ensemble

E (N) { x e Zs n F | 0 < F (x) ^ N}
Le nombre de points de E (N), qui n'est autre que R (1) + + R (N),
est évidemment ~ Q Ns//c pour N -» + oo ; on peut donc dire que 1'« ordre

de grandeur moyen» de R (N) est Na avec a 1. Cela conduit à
k

poser r (n) n~a R (n).
Delsarte observe alors que non seulement r (n) mais encore r (/?) x ('0

a une valeur moyenne sur l'ensemble des entiers n > 0, quel que soit
le caractère x de Z; si ^ est cette valeur moyenne, on pourra donc
formellement associer à r (n) la série Iaxx(ii). Soit en effet q l'ordre
de y, de sorte qu'on aura / (n) p", p étant une racine primitive g-ième
de 1. On aura

N"1 Y, r(n)xO) N-1 Y F Ora X [F (x)]
n 1 *eE(N)

Pour a e Zs, soit E (N, a) l'ensemble des x e E (N) tels que x a (mod. q) ;

le second membre s'écrit aussi

N"' E l[F(«)] E F(*r%
« x e E(N, a)

où la première somme est étendue à un système complet de restes modulo
q dans Zs. Mais on a, pour N -> + oo :

I F(x)-" ~ Nq~°JvF(y)~*dy
*eE(N,fl) k

c est dans 1 application de ce principe, qui remonte à Gauss, que consiste
]e point essentiel de ce que Delsarte nomme la «méthode voîumétrique »;
pour a > 0, il a besoin d une justification, d'ailleurs facile. Les valeurs
moyennes ax sont donc bien définies et données par
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s
ay - Qq s SY

x k
H x

où Sz est la « somme de Gauss »

Ex [F (a)]-
a

Les Sx sont liés d'une manière évidente aux nombres de solutions des

congruences F (x) n (mod. q).

On est ainsi conduit à écrire symboliquement

r(n) ~ j QYdq~sSxx(«).

où la série est la « série singulière » ; elle ne dépend pas du cône F, qui
n'intervient que par le coefficient Q.

Si x, sont les caractères d'ordres premiers entre eux, il est immédiat

que SxV SXST. La série singulière peut donc (formellement encore)
s'écrire comme produit infini IlTp(n), étendu aux nombres premiers p,
des séries partielles

Tp(») E <rss;(X(«)

où cette fois la sommation est étendue aux seuls caractères x dont l'ordre q
est une puissance de p. Si l'on identifie ceux-ci aux caractères de l'anneau Zp
des entiers j?-adiques, on peut encore écrire Tp (ri) sous la forme

Tp (") E J X [F (x) - ri] dx,
X

où la somme est étendue aux caractères de Zp, et où l'intégrale est prise

sur (Zp)°.
Pour aller plus loin, supposons avec Delsarte que l'hypersurface

F (x) 0, dans l'espace projectif P5-1, soit sans point singulier. Alors,

pour tout x # 0, il y a / tel que ôF/dxi A 0; par suite, pour presque tout p,
il en est de même après réduction modulo p. Pour un tel /?, soit x d'ordre

q p* avec t > 1 ; pour a ^ 0 (mod. p), la somme Ex [F ia') L étendue

aux a' a (mod. pt~1), est 0. Donc n'est autre alors que ps^~^ si

k ^ t ^ 2, et avec F (/?) x(pkn) S1 t > k. On tire de là, par
récurrence

q
s

Sx p s(m+1) si mk + 2 rg t ^ (/n + 1) k

q~s Sx p~s(m+1) SCÙ si t mk + 1 et co (tî) ^ (pmkn)
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En particulier, les Sx sont complètement déterminés par ceux pour lesquels

X est d'ordre p, ou, ce qui revient au même, par les nombres de solutions

des congruences F (x) n (mod. p). Il s'ensuit aussi que Tp (n) est absolument

convergente pour s > k.

Bien entendu, Delsarte n'ignorait pas que, dans l'évaluation de r (n)

et de R («), la construction de la série singulière n'est qu'un premier pas,

et non le plus délicat. Il s'agit ensuite de savoir dans quelle mesure on peut
conclure du comportement de cette série à celui de r (n). Hardy et Littlewood
avaient introduit pour cela leur célèbre méthode des arcs « majeurs » et

« mineurs ». D'après quelques notes fragmentaires, Delsarte aurait cherché

une solution du même problème dans l'étude des séries de Dirichlet
IR (/?) pnn~a et de leur comportement en o — s/k, mais, semble-t-il, sans

aboutir à rien de satisfaisant.

La question du nombre de solutions de F (x) n (mod. p) s'étend

tout naturellement aux corps finis. Les méthodes classiques, basées sur

l'emploi des caractères et des sommes de Gauss, permettent de traiter
le cas de l'équation Ix] — a qui apparaît dans le 'problème de Waring,

s

et plus généralement de toute équation « diagonale » £ apc-* a. Pour
i 1

v 2, Hasse et Davenport, dès 1935, avaient tiré de là, au moyen de

leur théorème sur les sommes de Gauss, la détermination complète de

la fonction zêta de la courbe ainsi définie; comme l'observa Weil en 1949,

:es résultats s'étendent sans difficulté à s > 2. Delsarte, qui reprit la
question dans un exposé du séminaire Bourbaki ([In. 7]), fit voir de plus
qu'on peut traiter de même toute équation de la forme a-^At (x) a,

i
où les Mf (x) (.Xj)nii sont des monomes indépendants (autrement dit,

j
tels qu'on ne puisse avoir identiquement II Mf (x)mi 1 que si les entiers
7/,- sont tous nuls).

La dernière publication de Delsarte ([67]) paraît lui avoir été inspirée
par un travail de Kahane et Mandelbrojt. Comme il est bien connu, l'équa-
don fonctionnelle de (s) résulte de celle de la fonction thêta, conséquence
elle-même de la formule de Poisson; celle-ci peut s'interpréter en disant
que la distribution sur R, formée de masses 1 placées aux points de Z, est
sa propre transformée de Fourier. D'après les auteurs cités, ce résultat
admet une sorte de réciproque; plus généralement, chaque fois qu'on a
une équation fonctionnelle de type convenable entre deux séries de Dirichlet,

'

on peut en conclure que deux distributions, sommes de masses ponctuelles
sur R, sont transformées de Fourier l'une de l'autre. Delsarte fait voir
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qu'on peut tirer des conséquences analogues de l'équation fonctionnelle
de Ç'(s)/Ç(s). Notons p 1/2 + h les zéros imaginaires de £; si l'on
admet l'hypothèse de Riemann, les t sont réels, et les résultats de Delsarte

peuvent s'interpréter comme suit: la distribution sur R, somme de masses 1

aux points t, a pour transformée de Fourier la somme de masses ponctuelles
placées aux points log (pn) et d'une distribution élémentaire, explicitement
connue. Entre autres applications, Delsarte tire de sa formule le prolongement

analytique de la fonction Zt~s comme fonction méromorphe dans

tout le plan.
Dans la présente notice, nous avons essayé en quelque mesure de

tenir compte des manuscrits inédits de Delsarte, dont un petit nombre
seulement ont pu être retenus pour la publication. Mais, comme ses amis

le savaient bien, son esprit abondait en idées originales qu'il n'a pas eu
le temps ou surtout qu'il n'a pas eu l'occasion de développer et de faire
aboutir. Nous nous contenterons d'en mentionner une seule. Il a toujours
été vivement frappé du fait que les constantes de structure d'une algèbre
de Lie de dimension donnée n forment les points d'un ensemble algébrique
défini dans l'espace de dimension n3 par des équations à coefficients entiers.

Il pensait que l'étude de cet ensemble, du point de vue de la géométrie
algébrique, méritait d'être entreprise. Sur cet ensemble, le groupe linéaire
GL (n) opère d'une manière évidente; les points, lorsqu'il en existe, qui
correspondent à des algèbres semi-simples jouent sans doute un rôle
privilégié. Visiblement cette idée est apparentée à la notion de « schéma en

groupes », qui a fait l'objet de travaux récents. Elle n'est pas sans rapport
non plus, sans doute, avec les réflexions de Delsarte, dans ses dernières

années, sur la classification de Mendéléief, qu'il avait cherché à

interpréter, semble-t-il, au moyen de structures d'algèbres semi-simples; parmi
ses papiers se sont retrouvées sur ce sujet des ébauches dont on trouvera des

extraits au Tome II de la présente édition. Les travaux réunis dans celle-ci

suffiront amplement, en tout cas, à confirmer le renom de Delsarte comme
l'un des meilleurs analystes et l'un des esprits les plus originaux parmi
les mathématiciens de notre temps.
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