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L’EUVRE MATHEMATIQUE DE DELSARTE !

par André WEIL

Sufro de aquel amigo que murio y
que era como yo buen carpintero.
(Pablo NERUDA)

Comme il a été indiqué dans la notice biographique, ce n’est guére aupres
de leurs maitres que Delsarte et ses camarades pouvaient trouver I'inspiration
pour leurs premiers travaux. Quant a se faire « donner un sujet », 'idée n’en
venait A personne, car la tradition frangaise, saine & cet égard du moins,
youlait que le débutant se trouvat lui-méme un probléme a son goft, le role
des maitres étant de donner des conseils parfois, mais surtout des encourage-
ments. Ce fut donc un trés grand mérite de la part de Delsarte, & peine sorti
de I’Ecole Normale, d’avoir entrepris 1’étude des groupes d’opérateurs
linéaires dans ’espace de Hilbert. Malheureusement la question n’était pas
mire, et, pour 'aborder, Delsarte souffrait d’un lourd handicap. Il n’est
jamais facile pour un jeune mathématicien de se dégager de I'influence du
milieu ou le hasard I’a placé; quand I'orientation qu’il y trouve n’est pas la
bonne, et que par surcroit il n’a pas su se familiariser de bonne heure avec
les langues étrangéres, la difficulté devient a peu prés insurmontable. En ce
qui concerne '« espace fonctionnel », la tradition ou puisait Delsarte
accordait une importance excessive a 1’équation de Fredholm. C’est donc
exclusivement aux sous-groupes du « groupe de Fredholm » que Delsarte
consacre ses premiers travaux ([1]-[14] et [22]) %; i1l nomme ainsi, dans
'espace de Hilbert (réel) des fonctions de carré sommable dans [0, 1], le
groupe des opérateurs f— f + Tf, ou T est (comme on dirait aujourd’hui)
un opérateur « de Hilbert-Schmidt », c¢’est-a-dire de la forme

(T ) = f, K(x,»)f(v)dy

') Note de la Rédaction. — Cette analyse de 'ccuvre mathématique de Delsarte
figure dans le tome I des Euvres de Jean Delsarte, publiées par le Centre National de la
Recherche Scientifique, 15, quai Anatole-France, Paris 7¢. Nous la reproduisons avec
I"'aimable autorisation de I'auteur et du C.N.R.S. On trouvera, dans ce méme volume, une
notice biographique sur Delsarte, due également & André Weil. Rappelons que Delsarte
est né le 19 octobre 1903 et décédé le 28 novembre 1968.

?) Les numéros renvoient a la liste chronologique des travaux de Delsarte (pp. 135-
140); il est renvoyé aux inédits (p. 139) par In. 1, ..., In. 11.
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avec un noyau K de carré sommable dans [0, 1] x [0, 1]. En fait, Delsarte
suppose méme que les intégrales [ K?dx, [ KZ?dy sont toutes deux
bornées dans [0, 1]; cette hypothése est introduite, en partie en raison
d’une technique de I'intégration encore peu slire, mais aussi pour garantir
Iinvariance, par les opérateurs en question, de notions dues a Géteaux
(suites « également » et « normalement » denses, « moyenne » d’une fonc-
tionnelle, etc.) auxquelles, en France du moins, on attachait alors quelque
importance. En premier lieu, Delsarte s’attaque aux opérateurs orthogonaux
appartenant a ce « groupe de Fredholm », et, pour en déterminer les valeurs
propres, introduit aussitot la transformation de Cayley ([8], §2): idée
brillante dont v. Neumann, plus heurecusement placé, devait bientdt, indé-
pendamment de Delsarte, tirer le parti que ’on sait. Dans le méme ordre
d’idées, mais toujours dans le cadre trop étroit du « groupe de Fredholm »,
Delsarte en vient bientdt ([14]) & I'étude des sous-groupes de Lie de ce
groupe, et d’abord des groupes a un parametre et de leurs transformations
infinitésimales; il étend a ceux-ci, sans trop de peine, les résultats clas-
siques, puis se pose & leur sujet des questions variées, qui témoignent
de I'ingéniosité de son esprit, mais dont il ne semble pas qu’ily ait grand-
chose a retenir, non plus que de ses observations sur les groupes a deux
parameétres; on notera seulement que c’était la une premiére tentative,
bien prématurée, pour aborder I’étude des représentations d’un groupe
résoluble dans I’espace de Hilbert.

Ces recherches prennent fin avec un fascicule du Mémorial ([22]),
d’esprit déja nettement plus moderne, paru en 1932 mais certainement écrit
bien avant cette date; on est surpris néanmoins que le nom de v. Neumann
ne figure pas dans sa bibliographie. Sans doute Delsarte prit-il connaissance
vers cette époque des travaux de celui-ci, du livre de Stone et surtout de
celui de Banach, et comprit-il que dans cette voie il était largement dépassé.
Aussi le voyons-nous se tourner aussitdt vers de tout autres problémes. |

Par tempérament, il s’était toujours intéressé aux questions de physique
mathématique; sans doute y avait-il en lui, si 'époque s’y fiit mieux prétée,
I’étoffe des grands physico-mathématiciens du siecle précédent, d’un
Fourier, d’un Poisson. En 1929 déja il avait, sous I'influence de Villat,
traité un probléme de théorie des tourbillons ([15]-[16]), et fait voir aussi
comment on peut aboutir & la théorie de Schrodinger, alors dans sa nou-
veauté, a partir de considérations trés classiques ([18], [In. 1]). Dans les
années qui suivent, il aborde, dans un esprit tout classique aussi, une
question posée par la relativité. Il part d’'une observation trés simple: tous
les ds? explicitement connus, solutions des équations d’Einstein (avec ou
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sans matiére) sont d’un type particulier qu’il qualifie de « binaire » (et
qu’on pourrait appeler « & variables partiellement séparées »):

45 = (9 3 gy (0 dxdx’ + 10 T ey (e e

ol on a posé x = (x?, ..., xP), & = (&', ..., &9). Cela posé, Delsarte n’hésite
pas a rechercher fous les ds® de cette forme, solutions des équations
d’Einstein; il y parvient dans plusieurs cas importants ([24]-[29]), non
sans retrouver au passage la solution de Friedmann et Lemaitre. « Le
probléme se réduit », écrit-il & propos du cas le plus intéressant, « & I'inté-
gration du systéme formé par ces deux équations [de Monge-Ampére}.
Il est remarquable qu'on puisse obtenir des formules d’intégration
- compléte avec des fonctions arbitraires. Les systémes en question sont
évidemment assez compliqués, et il ne parait pas aisé d’expliquer pourquoi
la méthode que nous allons indiquer réussit... ». La, comme plus tard dans
le travail ([39]-[41]) sur la diffraction (qui, lui, aboutit & la solution d’équa-
tions intégro-différentielles), on demeure stupéfait de sa virtuosité au travers
de calculs ou I'on ne voit pas quelle intuition a pu le guider. La solution
est suivie ([28], Chap. III) de la discussion qualitative des résultats obtenus
dans le cas d’un ds? « a évolution sphérique »; celle-ci fait apparaitre des
singularités, cavitations, fonctions multiformes, assez surprenantes du point
de vue physique, mais dont le mathématicien ne saurait, sans sortir de son
role, prétendre tirer des conclusions.

| Ensuite s’ouvre pour Delsarte une période particulicrement active et
féconde. Parmi les méthodes générales de développements en série hérités
du xi1x® siecle, le premier quart du xx® avait surtout retenu les développe-
ments en séries de fonctions orthogonales; c’était 1a I’aboutissement naturel
de I'ceuvre de Lebesgue et de celle de Hilbert. Méme les développements
en séries d’exponentielles qui apparaissent dans la théorie de Bohr pouvaient
étre insérés dans le méme cadre, comme H. Weyl le fit voir dans un travail
célebre. Cependant, dés ses premiéres recherches sur ’espace de Hilbert,
Delsarte avait observé qu’on peut, dans cet espace méme, ﬁ\jtih'ser des
« coordonnées obliques » qui mettent en évidence des phénoméhgs nou-
veaux. Surtout, la pratique assidue de « Whittaker et Watson » '), ainsi
que du grand Traité de Watson sur les fonctions de Bessel, lui avait fait
connaitre des développements de type tout différent, et lui avait fait voir

1) 1l s’agit naturellement du classique ouvrage: E. T. WHITTAKER and G. N. WATSON,
A Course of Modern Analysis, Cambridge 1927, volume qui, pendant une grande partie
de la vie de Delsarte, ne quitta pas sa table de travail.
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que, dans chaque cas, le formalisme préexiste & toute considération sur le
mode de convergence de la série a étudier et conditionne celui-ci. C’est
donc aux formalismes qui sont a la base de ces développements que Delsarte
accordera en premier lieu son attention. D’une maniére générale, il s’inté-
resse a tous les cas oll on peut définir, dans un « espace fonctionnel » A,
une suite de fonctions ¢; et de « fonctionnelles linéaires » L; telles que toute
fonction f appartenant a A soit déterminée d’une maniére unique par le
développement formel

f~S() = 2L e

et que celui-ci converge vers f en un sens a préciser chaque fois. Evidemment
une condition nécessaire pour cela est que les ¢; forment, en un sens
convenable, un « systeme complet » dans A et qu’on ait les relations de
« biorthogonalité¢ » L; (¢;) = d;;.

Un premier exemple important, découvert par Delsarte, est celui des
fonctions « moyenne-périodiques » qu’il introduit ([30]-[33]) a partir de
1934. La théorie des fonctions presque périodiques avait fait une profonde
impression lors de sa création par H. Bohr; elle reposait évidemment sur
la considération du groupe des translations de la droite (ou, ce qui revient
au méme, de sa transformation infinitésimale, D = d/dx); une tentative
de généralisation aux groupes de Lie non commutatifs n’avait rien donné
d’utile. Delsarte, sans quitter d’abord le groupe des translations de la droite,
propose une généralisation d’un type tout différent. Soit K une fonction
a support compact sur R; une fonction f sera dite moyenne-périodigue (de
I’espéce définie par K) si 'on a, pour tout x:

(f«=K)(x) = [ fx=p»)K)dy = 0;

naturellement, K, puis f, sont supposés tels que leur convolution f* K
ait un sens. On peut aussi, comme 1’ont fait plus tard L. Schwartz, Kahane
et Delsarte lui-méme, remplacer K par une mesure ou méme une distri-
bution, mais toujours a support compact (cf. [63], qui contient une
bibliographie de la question jusqu’en 1960). Le cas particulier des fonc-
tions périodiques s’obtient, soit en prenant pour K la mesure égale a
—lenx=0eta + 1 en x = a, soit (comme le fait Delsarte) en prenant
K =1 dans [0, a] et K = 0 en dehors de cet intervalle; avec ce dernier
choix, f+* K = 0 exprime que f est périodique de période a et de moyenne
nulle, d’ou sans doute le nom adopté par Delsarte. D’ailleurs, dés qu’on
introduit quelques notions simples sur les espaces fonctionnels considérés
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comme espaces vectoriels topologiques (ce qu’il n’était guére possible de
" faire en 1934), on observe aussitot ce qui suit: f étant donnée, pour qu’il
- existe (par exemple) une mesure u A support compact, telle que f# u = 0,
il faut et il suffit que, dans P’espace V des fonctions continues sur R avec
~ la topologie de la convergence uniforme sur tout compact, I’espace engendré
- par f et ses translatées ait une adhérence V, % V. On a donc affaire 2 un
- probléme typique d’« analyse » et « synthése » spectrales: ’analyse consistera
“ici a rechercher les sous-espaces de V, de dimension finie, invariants par

translation; la synthése consiste a écrire f comme combinaison linéaire
(en un sens a définir) de fonctions appartenant a ces sous-espaces. Or il

“est clair que les fonctions dont les translatées engendrent un vectoriel de

dimension finie sont les « exponentielles-mondmes» x" ¢**; de plus, pour
que x" e”* soit solution de f* pu = 0, 1l faut et il suffit que « soit un zéro
d’ordre > n de la fonction entiére

F(z) = [ e ™ du(x),

«1indicatrice » de la mesure u. Heuristiquement, on, cherchera donc a

associer a toute solution fde f* u = 0 une série
n(a)—1

(1) S(f) = Z( Z Cat X' €

ou les a sont les zéros de F et les n («) leurs multiplicités respectives; ces
z€éros, avec leurs multiplicités, forment le « spectre » de pu.

Soit I le plus petit intervalle fermé contenant le support de u (dans la
généralisation & R", on prendrait pour I I’enveloppe fermée convexe de

ce support). Choisissons a € R arbitrairement; pour f solution de f# u = 0,

convenons de noter /- la fonction définie par f* (x) = f(x) pour x = a et

J(x) = 0 pour x < a, puis pu, la mesure /"« u. Alors H; @ son support

contenu dans / + a; on notera F, son indicatrice. Soit encore g une
solution de g # u = 0; on définira de méme g-, u g F 4. Delsarte introduit

la fonctionnelle bilinéaire

K(f.9) = [Jof(=x)g (x—y)dxdu(y)
ol D est le domaine défini par x < A, y — x < B, yel, avec A + B

suffisamment grand; les hypothéses faites sur f et g entrainent en effet
‘quialors K (f; g) est indépendant de A et B. Remplagant x par y — x,

~on voit que K (f, g) est symétrique. Prenant B = — a, puis échangeant

sy

fet g, on obtient

K(f,9) = [f (=0 dp,(x) = [ g(=x)du,(x);




- erreur qui provient d’une faute de calcul banale dans I’évaluation du résidu. Aprés correc-
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on voit de méme, plus généralement, que f'= p, = g= pu,. En particulier,
pour /= x'e™, g = x/ ef* (ol par suite «, f appartiennent au spectre,
et i <n(x), j<n(P)), on trouve facilement que K (f, g) = 0 lorsque
o # 3. S1 on suppose le spectre formé de points simples, on voit donc
que les exponentielles ¢** forment un systéme orthogonal par rapport
a la forme quadratique K (f, f); dans ce cas, d’ailleurs, on a

|

K(eax’ eax) — F/ (a) , ‘

d’ou, formellement, la valeur des coefficients de (1): |
Coo = F' ()7 K (f, )

si 'on admet provisoirement que les ¢** forment un systéme complet
dans I’ensemble des solutions de f+ u = 0.

Revenons au cas général, et prenons de nouveau f(x) = x' ¢, avec
i < n(x); pour ce choix de f, écrivons p,;, F,; au lieu de p,, F,. On a:

F,(z) =il(z—a)"""1F(2).

Soit ensuite f donnée par une somme finie de la forme (1), c’est-a-dire
une telle somme ou les ¢,; non nuls sont en nombre fini. 1l est clair alors
que la somme S, ( f) des termes relatifs & «, dans S (f), n’est autre que
le résidu en z = o de la fonction méromorphe F (z) ' ¢** F, (z). Cela peut
encore s’écrire comme suit:

S.(f) = Res, . [F(2)™" [ e dp, (0)] = 9o 1y
ou ’on a posé |
g, (x) = Res,_, [F(2)7"e™].

Il est clair que g, est combinaison linéaire des x‘ ™ pour i < n (), donc
solution de g, * ;t = 0. Finalement 1), on a g

S.(f) = 1=y .

On en déduit aussitdt, pour chaque c,;, une expression

Coi = K (f’ Pai (X) eocx) ’

ou P,; est un polynome de degré < n () -- i.

O T emm—
S0 eI R o) kot i 5

1y La formule donnée par Delsarte ([33], formule (1) p. 444) est entachée d’une

tion. elle devient identique, en substance, & celle que nous donnons ci-dessus, et qui,
sous cette forme, est due a L. Schwartz.
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Pour toute solution f de f= u = 0, on conviendra alors de définir les
c,; par ces mémes formules, et on notera S (f) la série (1) formée avec
ces coefficients. Il est & remarquer (et Delsarte ne manque pas d’insister
sur ce point) que les ¢,; ne dépendent que des valeurs de f(x) pour
a — x e/, donc (puisque a est arbitraire) dans un intervalle quelconque
de longueur /() égale a celle de I.

Avec ces résultats, on est a pied d’ceuvre; il s’agit de savoir si, sous
des conditions convenables et en un sens convenable, S (/) converge vers f;
s’il en est ainsi, on en conclura que S (/) détermine f d’une maniére unique,
de sorte que f est bien déterminée par ses valeurs dans un intervalle de
longueur /(I), comme c’est le cas pour les fonctions périodiques.

L’expression de S ( f) par une somme de résidus a été suggérée a Delsarte
par une démonstration de Cauchy, exposée par E. Picard dans son Traité
d’Analyse (tome II, Chap. VI, § II); s’inspirant de celle-ci, Delsarte fait
la sommation de S (f) par le « calcul des résidus », c’est-a-dire au moyen
“du théoréme de Cauchy. Une analyse, d’ailleurs délicate (et qui, sur quelques

[pomts demanderait sans doute a étre revue) ’améne-.a conclure qu’il y
~a convergence, uniforme dans tout intervalle de continuité de f, sous les
conditions suivantes: a) u est définie par une densité K, c’est-a-dire qu’on

| a, dans I, du(x) = K (x)dx; b) K est absolument continue dans 7, et
£ 0 aux extrémités de I; c) f est & variation bornée dans tout intervalle
borné.

Dans le méme travail ([33], Chap. I), Delsarte s’occupe aussi de résoudre
Péquation avec second membre f« = ¢, ol u est comme plus haut et
@ est donnée. Ici, c’est sur la théorie des équations aux différences finies
qu’il prend modéle. Il est amené ainsi, entre autre, & une généralisation
etendue de la formule classique d’Euler-Maclaurin, reposant sur l’intro-
duction de « polynomes bernouilliens » (a une ou plusieurs variables);
pour le cas d’une variable, par exemple, ce sont les polynomes B, (x)
définis par la formule

F(z)™'e™™ = i B, (x) z",

ou F est comme ci-dessus, et ol on a supposé F (0) # 0.

Dés lors, Delsarte envisageait I’extension a plusieurs variables de la
théorie ci-dessus, qui offre des difficultés incomparablement plus grandes.
En effet, si p est une distribution et par exemple une mesure a support
compact dans R”, son indicatrice F sera donnée, pour z = (z, ..., z,),
par la formule

L’Enseignement mathém,. t. XVIII, fasc. 2. 9
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F(z) = [exp (=) zx,)du(x).

Les zéros de F forment un ensemble analytique de codimension 1 dans
C"; pour avoir un « spectre » discret, il faut se donner n mesures pu, telles
que l’ensemble des zéros communs a leurs indicatrices F, (le « spectre »)
soit discret; pour simplifier, on admettra en premier lieu que ces zéros
sont simples, c’est-a-dire qu’en chacun d’eux le jacobien des F, est # 0.
Heuristiquement, on cherchera alors & associer, a toute solution commune
des équations f« u, = 0 une série

S(f) = L eexp(Layx,),

ou les o = (ay, ..., ,) sont les points du spectre. Dans son cours de
Bombay de 1959 ([65]) et dans son mémoire de 1960 ([63]), Delsarte
donne la solution formelle de ce probléme au moyen des « déterminants
de Jacobi »; comme pour n = 1, les termes S, ( /) de la série S (f) peuvent
s’écrire comme les résidus aux points z = « d’une fonction méromorphe
attachée a f. Ensuite il s’attache principalement au cas ou n = 2 et ou
Uy, U, sont sommes de mesures définies par des densités continues et
suffisamment différentiables dans le carré 0 < x;, x, = 1 et de masses
ponctuelles placées aux sommets du carré. Dans ces conditions, il montre
entre autres que, si f est continue, et ¢ indéfiniment différentiable a
support compact, la série

S(f# @) =S(fN)x @ = P(x)c, exp (a3 Xy +05%)

(ou @ est l'indicatrice de @) converge vers f+ ¢, uniformément sur tout
compact. On reconnait 12 une idée introduite par L. Schwartz dans le
cas n =1, et qui elle-méme est apparentée a 1'idée fondamentale de
Riemann dans sa théorie des séries trigonométriques. Dans le cas traité
par Delsarte, la démonstration repose sur d’assez laborieux passages a la
limite a partir de mesures sommes finies de masses ponctuelles. On en
conclut que f est déterminée par S (f) d’une mani¢re unique, et on peut
en tirer aussi un procédé de « sommation » de la série formelle S (f).
Mais c’est vers une autre généralisation, de portée encore plus vaste,
que Delsarte se tourne en 1935; il semble y €tre parvenu comme suit.
Dans R”, pour n > 1, reprenons le probléme des fonctions moyenne-
périodiques, mais en y ajoutant une condition de symétrie sphérique;
autrement dit, on s’assujettit a ne considérer que des fonctions, mesures
et distributions invariantes par le groupe des rotations autour de 0. De

R W o
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telles mesures (ou distributions), supposées toujours a support compact,
forment évidemment une algébre commutative pour la convolution; celle-ci,
en un sens évident, peut étre considérée comme engendrée, soit par les
« mesures élémentaires » p, formées, pour tout r = 0, par la masse totale 1
uniformément répartie sur la sphére de rayon r et de centre 0, soit par
I'opérateur infinitésimal A = ¥ 02/0x2. Appliquons donc les opérateurs
f—= f=u, f— Af a une fonction f a symétrie sphérique; si on écrit celle-ci
f(p) avec p = (Zx?)'/2, on obtient les opérateurs T", D donnés par

2 (T"fH(p) =

1 n—1
r{=)r(i==
5)r(s)

d>f n—1df

3) (D = — —
O ®Ne) =55+

> f((p® — 2rpcos @ +r*)?) (sin@)""? do,

Leurs fonctions propres peuvent s’obtenir a partir des exponentielles
exp (2a,x,) en prenant la moyenne sphérique de celles-ci autour de 0O
et écrivant les fonctions obtenues sous la forme j(p). On trouve ainsi
les fonctions

Ap\ P
Jalp) = F(p+1)(—2—> J, (4p),

ol 'on a posé

b= (=X, p =2 -1,
et ou J, est la fonction de Bessel d’ordre p; et 'on a
(Tj) ) =ji(Mj.(p), Dj, = — A%,

On tire de la le développement formel

T = ) ¢,(nD",
n=0

ou les ¢, sont les coefficients du développement

j/l(r) = Zqon(r)(__/’{Z)n,

ou, plus explicitement:
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1—- 1 2n
o () = (p+1) <p> .

n!I'h+p+1) 2

On est ainsi naturellement conduit & étudier, de ce point de vue nouveau,
les fonctions moyenne-périodiques, les fonctions presque périodiques, etc.
Cependant Delsarte ne s’y arréte pas, car il s’apergoit aussitot que les opé-
rateurs T" et D définis par (2) et (3) conservent leurs propriétés essentielles
méme quand 7z n’est pas supposé entier; cette observation fondamentale
forme le point de départ d’'une série de trés importants travaux ([34]-[38],
[42]-[52]). Il commence par axiomatiser entiérement les propriétés en
question (dans [34], [36], [38], [47]) et part de la pour en élucider tout
le mécanisme formel. C’est ensuite seulement qu’il revient aux opérateurs
T", D donnés par (2) et (3), mais avec la seule restriction Re (p) > — 1/2
le plus souvent, ou éventuellement — 1/2 < Re(p) < 1/2, pour en faire
le banc d’essai de sa méthode et en faire I’étude détaillée; comme I’a
observé Lions plus tard, certains résultats s’étendent méme a Re (p) < — 1/2
par prolongement analytique. Dans ce cadre, il traite entre autres la théorie
des fonctions presque périodiques, pour lesquelles les fonctions j,, avec
J. réel, jouent le méme roéle que les exponentielles e™** dans la théorie de
Bohr. Combinant ces idées avec celles qu’il avait introduites a propos
des fonctions moyenne-périodiques, il retrouve la plupart des développe-
ments classiques en fonctions de Bessel (séries « de Fourier-Bessel », « de
Bessel-Dini », « de Schlomilch »), ainsi que les développements, limités ou
non, qui généralisent la formule de Taylor (avec ou sans reste) et la formule
d’Euler-Maclaurin.

C’est encore au cours des mémes recherches que Delsarte fait la décou-
verte des « opérateurs de transmutation » auxquels son nom reste attaché.
Dans la théorie formelle des opérateurs T, D (ou D, comme il a été indiqué,
joue le role d’une transformation infinitésimale, et les T* celui de trans-
lations généralisées), ii était apparu qu’on pouvait définir les T* en résolvant
des problémes aux limites relatifs & I’équation

D,F(x,y) = D,F(x,y);

ce mode de définition des T* met en évidence qu’ils commutent avec D.
La méme idée, appliquée a deux opérateurs D, D’ distincts, et & I’équation

D,F(x,y) = D,F(x,))

conduit alors a des opérateurs, dits « de transmutation », qui transforment
D en D’. Clest ce qui apparait d’abord dans [51] pour l'opérateur D
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défini par (3), avec n = 2p + 2, — 1/2 < Re(p) < 1/2, et D' = d?/dt?;
grace a la « transmutation » de D en D’, on peut, formellement du moins
(quitte & justifier en détail les conclusions qu’on en tire) appliquer a D,
par simple transport de structure, tout ce qu’on sait de D’. La méme
idée est énoncée dans [50] pour des opérateurs différentiels trés généraux
du second ordre & une variable; elle est plus amplement exposée, a la
suite d’un travail de Lions, dans le cours de Delsarte a Bombay en 1959
([67]). Elle a été étendue au domaine complexe (et alors pour les opérateurs
d’ordre quelconque) par Delsarte lui-méme, en collaboration avec Lions
([58]-[59]); elle joue un rdle important dans les travaux de Lions, de
B. M. Levitan et d’autres auteurs, en particulier sur le probleme de Sturm-
Liouville. Sur ces questions, on consultera aussi le bel article de Levitan
dont la traduction est reproduite plus loin (tome II).

Les mémes idées sont a la base du « théoréme des deux rayons » et
de ses généralisations ([60]-[61] et [65]). Soit de nouveau u, la masse
totale 1 uniformément répartie sur la sphere de centre 0 et de rayon r
dans R". Le théoréme en question dit que, si une fonction f indéfiniment
différentiable dans R" satisfait a

f=f%,ua=f%ub

avec a > b > 0, elle est harmonique (sauf tout au plus pour certaines
valeurs exceptionnelles de a/b, en nombre fini quand » est donné). Si on
pose u (x, p) = (f*u,) (x) pour xeR", p =0, alors u est solution d’un
probléme de Cauchy hyperbolique 4.4 = Du, ou A4, est le laplacien dans
R" et D est défini par (3); les données aux limites sont u (x, 0) = f(x),
(Cu/dg) (x,0) = 0. On peut alors remplacer 4, par n’importe quel opé-
rateur elliptique dans R”, et D par un opérateur du second ordre, & une
variable, qui se laisse transformer en d?/dt* par une transmutation. C’est
méme dans un cadre encore plus général que se placent Delsarte et Lions
dans [61]; le point essentiel consiste & ramener I’hypothése initiale &
une hypothése de moyenne-périodicité (a une variable, mais & inconnue
vectorielle), aprés quoi la démonstration s’achéve sans difficulté.

Une autre possibilité de généralisation des formules (2) et (3) apparait
lorsqu’a R” et au groupe des rotations on substitue un autre groupe de
Lie G et un groupe compact A d’automorphismes de G. C’est 14 le point
de vue qu’adopte Delsarte dans ses communications aux colloques de
Louvain en 1953 ([56]) et de Nancy en 1956 ([57]); dans la premicre, il
prend G = C"; dans l'autre, G n’est plus supposé commutatif. Il obtient
ainsi d’importantes généralisations des fonctions de Bessel, des €quations
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différentielles auxquelles elles satisfont, et de leurs théorémes d’addition
intégraux. Il est & noter aussi que [56] pose d’intéressantes questions relatives
aux invariants des groupes linéaires (sur I’'une de ces questions, Delsarte
devait revenir briévement dans la note [66]) (cf. [In. 10]). On y trouve
également un critére (nouveau, semble-t-il, malgré sa simplicité) pour qu'un
systtme d’équations linéaires aux dérivées partielles, en une fonction
inconnue de n variables x, ..., x,, n’admette qu’un nombre fini de solutions
linéairement indépendantes: il suffit pour cela que, pour tout 7, I'idéal
différentiel engendré par les premiers membres contienne un opérateur
différentiel ou ne figure aucun des 0/0x; pour j # i. Il est vrai que ce critére
ne semble pas d’application aisée, méme dans le probléme en vue duquel
Delsarte 'introduit; de pius, il n’implique aucun procédé de calcul effectif
pour la dimension de ’espace des solutions; ce calcul pose un probléme
algébrique dont on s’étonne qu’il n’ait pas encore attiré ’attention. D’autre
part, dans [57], Delsarte pose, et résout en partie, le probléme de ’engen-
drement du quotient G/A (ou, comme dit Delsarte, de 1’« hypergroupe »
qu’il définit) par ses « transformations infinitésimales », donc par des opé-
rateurs différentiels; déja dans le cas ou A est le groupe des rotations
dans G = R", on a vu plus haut que la « transformation infinitésimale »
D est du second ordre. Il s’agit donc de généraliser a G/A les théorémes
fondamentaux de la théorie de Lie; c’est sur le « premier théoréme » que
Delsarte concentre son attention (cf. déja [52]). Comme dans le cas de la
transmutation des opérateurs a une variable, on aboutit & des équations
aux dérivées partielles a variables séparées; A étant supposé compact, on
peut les résoudre par des intégrales prises sur A. D’ailleurs le méme for-
malisme subsiste quand A n’est pas compact, et Delsarte indique plusieurs
exemples remarquables ou le probléme peut étre traité complétement. Dans
le premier de ces exemples, G est GL (2, C) et A est le groupe des auto-
morphismes intérieurs de G; I’algebre d’opérateurs, ou, pour parler comme
Delsarte, I’« hypergroupe » correspondant est celui qui est engendré par le
centre de ’algebre enveloppante de I’algébre de Lie, opérant sur les fonctions
sur G invariantes par A. Delsarte touchait donc ici a un point crucial de la
théorie des représentations de degré infini des groupes de Lie, a savoir,
les relations entre le centre de I’algébre enveloppante et les opérateurs
définis par I'intégration sur les classes d’éléments conjugués dans G; ce
point n’a commencé a €tre mis en évidence qu’assez récemment, et il y
aurait lieu d’examiner si les idées de Delsarte ne sont pas de nature a jeter
un jour nouveau sur une théorie qui, malgré de brillants succés, n’a slirement
pas encore pris figure définitive. Sur le probléme général de I’engendrement
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d’un « hypergroupe » par ses opérateurs infinitésimaux, on consultera aussi
I’article déja cité de B. M. Levitan, qui 2 la suite de [57], a pu obtenir, dans
ce cadre, les analogues des trois théorémes de Lie. Ici comme ailleurs,
Delsarte s’est contenté de faire ceuvre de pionnier loin des sentiers battus,
laissant & d’autres le soin d’une exploration plus approfondie.

C’est 4 I’ensemble des recherches ci-dessus qu’il faut rattacher enfin un
travail inédit ([In. 8]) sur les problémes spectraux, qui montre a quel point
Delsarte est resté préoccupé toute sa vie par ’aspect formel ou algebrique
des développements en série. Dans une premiére partie (« Note A »),
il reprend le probléme des fonctions moyenne-périodiques sur R, mais en
substituant & d/dx un opérateur différentiel linéaire quelconque D, d’ordre
m, puis en se donnant m distributions uq, ..., 4,, & support compact;
le spectre est ici I’ensemble des ae C pour lesquels les équations
w, (f)=0,.. u,(f) =0, Df = of ont une solution f, # 0; c’est encore
’ensemble des zéros d’une fonction entiére A (z). Supposant pour simplifier
que A est & zéros simples, et supposant qu’une fonction g admet un dévelop-
pement formel S (g) = Xc¢, f,, Delsarte obtient des fotrmules explicites pour
les termes g, = ¢, f, de S(g), formules qui sont donc valables tout au
moins chaque fois que les ¢, non nuls sont en nombre fini. Tout comme
dans le cas des fonctions moyenne-périodiques, ces termes se présentent
comme les résidus d’une fonction méromorphe en z, A (z)”* B (z, x). Dans
une deuxiéme partie (« Note B »), Delsarte combine ces idées avec celles
de sa conférence de Louvain ([56]) pour donner une solution partielle du
probléme analogue dans le cas de n variables.

C’est avant tout par son ceuvre d’analyste, telle que nous avons tenté
(bien sommairement et incomplétement) de la décrire ci-dessus, que Delsarte
s'imposera a I’historien des mathématiques de notre époque. Mais il s’est
aussi, pendant de longues années, vivement intéress¢ a la théorie des
nombres, et y a apporté en tout cas des apergus et des points de vue origi-
naux; sa note de 1942 ([53]) fait la transition d’'un domaine a I’autre. Il avait
dd étre frappé par la structure formelle de la célébre formule de Hardy )
exprimant le nombre de points de Z?* dans le cercle x> + y? < r? au
moyen de fonctions de Bessel; 'apparition de celles-ci ne pouvait manquer
de lui rappeler ses propres recherches sur les fonctions moyenne-périodiques
a symétrie sphérique. Dans la note [53], il s’agit d’étendre la formule de
Hardy & un groupe fuchsien g opérant dans le demi-plan de Poincaré,
pour obtenir le nombre des transformés par g d’un point donné, contenus

') Sur cette formule (dite aussi « de Hardy-Landau ») et son histoire, cf. par exemple
G. H. HarDY, Collected Papers, vol. 11, p. 330,
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dans un cercle (non-euclidien) donné. D’une maniére un peu plus générale,
dans un manuscrit inédit ([In. 4]) dont on trouvera la partie essentielle
au Tome 11, Delsarte considére un groupe proprement discontinu g, opérant
sur une surface Y a courbure constante x = + 1/a* qui est, soit le plan
si Kk = 0 (donc si a = o), soit la sphére si k¥ > 0, soit le demi-plan de
Poincaré si k < 0; il est supposé implicitement que X/g est compact.
Soient A et M deux points de X'; il s’agit d’étudier le nombre & (x, A, M)
d’éléments s de g tels que sA soit dans le cercle (non-euclidien) de centre M
et d’aire (non-euclidienne) nx. Soit A4 'opérateur de Beltrami sur 2; comme
il est bien connu, on peut choisir sur X/g un systéme orthonormal complet
formé de fonctions propres de 4, ou, ce qui revient au méme, de fonctions
propres ¢, de A sur X, invariantes par g; soient 4, les valeurs propres
correspondantes; on peut prendre A, = 0, ¢, = ¢~ /2, ou ¢ est laire
de 2/g. Dans ces conditions, Delsarte se propose de calculer le dévelop-
pement de & (x, A, M), considéré comme fonction de M invariante par g,
suivant le systéme (¢,); une analyse fort ingénieuse lui permet, formelle-
ment tout au moins, d’obtenir ce développement sous la forme

X

4) AL M) = T 4 Y 600, (A) 9, (M),

ou les coefficients ¢, (x) sont donnés par des fonctions hypergéométriques
si k # 0, et & la limite, si k = 0, par des fonctions de Bessel, conformé-
ment & la formule de Hardy-Landau. Par exemple, pour k = — 1/a®, on a:

ol «,, B, sont les racines de X* — X — 4,a* = 0. Il ne semble pas que
Delsarte ait poussé plus loin dans cette voie, qui semblait pourtant pleine
de promesses. Quelques calculs qui suivent son manuscrit (et qu’on n’a
pas cru devoir reproduire dans cette édition) indiquent seulement qu’il
s’était du moins assuré de la convergence absolue de la série qui forme le
seconde membre de la formule (4).

Ensuite nous le voyons chercher un point de jonction entre I’arithmétique
et les fonctions presque périodiques, et se demander dans quels cas une
fonction arithmétique f'(n) peut étre presque périodique, au sens de Bohr
ou en un sens plus général. Si elle I’est, cela veut dire qu’elle admet, for-
mellement du moins, un développement en série suivant les exponentielles
x, (n) = e*™™ ou reQ/Z, cest-a-dire suivant les caractéres de Z. Si on
écrit f ~ Xa,y,, la théorie de Bohr suggére de prendre pour a, la valeur
moyenne
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N
M7 = lim o Y f 7,

No+ow N n=1
4 supposer qu’elle existe. Essayant d’abord d’appliquer cette idée aux
fonctions arithmétiques élémentaires classiques, Delsarte constate que, pour
celles-ci, a, dépend seulement de Pordre du caractére y,, c’est-a-dire de ¢
si ’on écrit r = m/q avec (m, g) = 1. On posera donc

Cq(_n) — Z Xm/q(n) — Z eZnimn/q,
m m

ol la sommation s’étend a un systéme complet de restes m premiers a
g modulo ¢; et on écrira a, au lieu de a,, pour r = m/q comme plus
haut. Groupant ensemble, dans la série formelle pour f, les termes relatifs
aux caractéres de méme ordre, on obtient une série formelle Xa,., (n).
C’est ainsi que, dans son mémoire de 1945 ([54]), Delsarte commence par
retrouver ') des résultats classiques de Ramanujan, pour les étendre ensuite
dans diverses directions, et en particulier aux corps de nombres algébriques.
En ce qui concerne ceux-ci, on peut, en langage mc;derne, présenter les
choses comme suit. Soit f(q) une fonction d’un idéal entier q # (0) du
corps k; soient kp les complétions p-adiques de k; soit n I’anneau des

entiers de kp; soit a = (ap) un élément de Q = Hrp (un «idéle entier fini»)

tel que, pour tout p, Y (ap) soit égal a I’exposant de p dans q; chaque fois
qu’il en est ainsi, soit f(a) = f(q). Dans ces conditions, il s’agit de savoir
si f(a) peut €tre prolongée d’une manic¢re naturelle (en particulier par
continuité, ce qui correspond au cas des fouctions presque périodiques au
sens de Bohr) a une fonction F sur le groupe additif de Q; lorsqu’il en est
ainsi, on peut lui faire correspondre la série de Fourier Za,y de F sur Q,
les x étant les caracteres de Q. D’ailleurs Q est limite projective des anneaux
r/a, ou t est 'anneau des entiers de k et ou a décrit 'ensemble des idéaux
# (0) de 1. Les y s’identifient donc aux caractéres de ceux-ci. De plus, pour
a donné€, tous les caractéres « primitifs » de r/a (c’est-a-dire ceux qui ne
peuvent €tre définis modulo un diviseur strict de a) se déduisent les uns
des autres par les automorphismes & —» A¢ du groupe additif r/a, quand
on prend pour A les éléments inversibles de I’anneau r/a; on en conclut

) C’est seulement a Princeton en 1947, semble-t-il, que Delsarte prit connaissance
des travaux de Ramanujan (S. RAMANUIAN, Collected Papers, Cambridge 1927; voir en
particulier n® XXI, p. 179) et du livre de Hardy (G. H. HARDY, Ramanujan, Cambridge
1940; voir en particulier Chap. IX, pp. 137-141). Dans [54], le nom de Ramanujan n’est

pas cite, et Delsarte note @ (¢ | n), et baptise « indicateur d’ordre », la somme de Rama-
nujan ¢, (n).
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qu’ils ont méme coefficient dans Xa,y. Cela conduit a regrouper dans cette
série les termes correspondants et a 1’écrire sous la forme

Za(a)c(a;q),

ol la « somme de Ramanujan» ¢ (a; q) est la somme des y (a) étendue
aux y primitifs modulo a.

Par la suite, Delsarte n’a plus publié sur la théorie des nombres qu’un
seul travail assez court ([55]); 1a il s’agit d’étendre aux groupes abéliens
finis la formule classique de Mobius. On considére donc des fonctions
G — f(G) définies sur I'’ensemble des groupes abéliens finis, telles que
f(G) = f(G’) chaque fois que G, G’ sont isomorphes; on se propose de
définir une telle fonction p ayant la propriété suivante: pour tout couple
de telles fonctions f, F, les relations

F(G) = 2f(G), f(G) =2ZF(G)u(G/G),

ou les sommes sont étendues a tous les sous-groupes G’ de G, sont équiva-
lentes. Delsarte démontre ’existence et 1'unicité de u (qui bien entendu,
pour les groupes cycliques, n’est autre que la fonction de M&bius classique)
et 'applique & divers problémes énumératifs.

Par la suite, comme le montrent ses notes inédites (voir en particulier
[In. 6]), Delsarte s’est plus spécialement intéressé a la théories des « séries
singuliéres » de Hardy et Littlewood. Ces derniers attachaient a toute
fonction arithmétique f(n) la « série génératrice » @ (z) = X f(n) z"; puis,
supposant le rayon de convergence égal a 1, ils déterminaient le comporte-
ment de @ aux points z = e*™", avec r e Q/Z, c’est-a-dire aux racines de
I'unité. Supposons qu’en chacun de ces points @ (z) ait pour partie principale
une fraction rationnelle ¢, (z) ayant ce point pour seul pole; on peut alors
espérer représenter approximativement @ (z) par la série X, (z). Comme
Hardy et Littlewood I’avaient observé, un cas particuliérement important
est celui ol @ (e?™%) est une forme modulaire dans le demi-plan Im (1) > 0;
il en est ainsi par exemple lorsque f (n) est le nombre des représentations
de n par une forme quadratique positive; Z¢, (e*™") est alors la série
d’Eisenstein de méme degré, dont @ (e*""") ne différe que par une « forme
parabolique », ce qui explique en ce cas le succes de la méthode et en précise
la portée; il n’est pas besoin de dire qu’on ne connait encore aucune raison
du méme genre pour son succes dans le probléme de Waring. Delsarte,
lui, préfére adopter le point de vue de la théorie des fonctions presque
périodiques. Considérons par exemple le nombre de représentations de
Pentier n > 0 par une forme F de degré k a s variables, a coefficients entiers,
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c’est-a-dire le nombre de solutions dans Z° de I’équation F (x) = n. Ce
nombre n’étant pas fini en général, il convient d’adjoindre a cette équation
des inégalités (homogénes) convenables, ou, ce qui revient au méme,
d’astreindre x a se trouver dans un cdne donné I' de sommet O; on
supposera que I’ensemble

V={xel' 0<F(x)=1}

est borné; soit Q son volume. On désignera par R (n) le nombre de solutions
de F (x) = ndans Z° n I'. Soit encore E (N) I’ensemble

E(N) = {xeZ°nT|0<F(x) £N}.

Le nombre de points de E (N), qui n’est autre que R (1) + ... + R(N),
est évidemment ~ Q N** pour N —» + co; on peut donc dire que '« ordre

S :
de grandeur moyen » de R (N) est N* avec o = r T 1. Cela conduit a

poser r(n) = n"* R (n).

Delsarte observe alors que non seulement r (1) mais encore r (1) y (1)
a une valeur moyenne sur I’ensemble des entiers n > 0, quel que soit
le caractére y de Z; si a, est cette valeur moyenne, on pourra donc
formellement associer & r(n) la série Za, 7(n). Soit en effet ¢ 'ordre
de y, de sorte qu'on aura y (n) = p", p étant une racine primitive g-iéme
de 1. On aura

N
NP Y r()y(m) = N1 Y F(x)“y[F (x)].
n=1 xeE(N)
Pour a € 77, soit E (N, a) 'ensemble des x € E (N) tels que x = a (mod. ¢);
le second membre s’écrit aussi

NN x[F@] Y F®x™*,
P xeE(N, a)
ou la premiére somme est étendue & un systéme complet de restes modulo
q dans Z°. Mais on a, pour N = + oo

>, F)™~Ng~* [, F(y)™*dy = Ng™ - Q;
xeE(N, a) k
c’est dans I'application de ce principe, qui remonte Gauss, que consiste
le point essentiel de ce que Delsarte nomme la « méthode volumétrique »;
pour o > 0, il a besoin d’une justification, d’ailleurs facile. Les valeurs
moyennes a, sont donc bien définies et données par




— 132 —

s
a, =—-Qq°8S

X x>

-

ou S, est la « somme de Gauss »
S, =), X[F(a)] )

Les S, sont liés d’une maniére évidente aux nombres de solutions des
congruences F (x) = n (mod. g).
On est ainsi conduit a écrire symboliquement

S g _
l‘(n)NI—QZC] SxX(n)o
< X

ou la série est la « série singuliére »; elle ne dépend pas du cone I', qui
n’intervient que par le coefficient Q.

Si y, ¥ sont les caractéres d’ordres premiers entre eux, il est immédiat
que S, = S Sy. La série singuliére peut donc (formellement encore)
s’écrire comme produit infini IIT, (n), étendu aux nombres premiers p,
des séries partielles

T,(m) =) q *S, % (n)

ol cette fois la sommation est étendue aux seuls caractéres y dont 'ordre ¢
est une puissance de p. Si ’on identifie ceux-ci aux caractéres de 'anneau Z,
des entiers p-adiques, on peut encore écrire T, (n) sous la forme

T,(n) = | x[F(x) —n]dx,

ou la somme est étendue aux caractéres de Z,, et ou l'intégrale est prise
sur (Z,)°.

Pour aller plus loin, supposons avec Delsarte que I’hypersurface
F (x) = 0, dans ’espace projectif P¥~!, soit sans point singulier. Alors,
pour tout x # 0, il y a i tel que 0F/dx; # 0; par suite, pour presque tout p,
il en est de méme aprés réduction modulo p. Pour un tel p, soit y d’ordre
g =p' avec t > 1; pour a = 0 (mod. p), la somme Xy [F (a’) ], étendue
aux @’ = a (mod. p'~1), est 0. Donc S, n’est autre alors que p*“~ 1) si
k>=t=2,etp* S, avec ¥ (n) = x(p*n) si t > k. On tire de 13, par
récurrence

g °S, =p*" si o mk+2=t<(m+1)k,

q °S, = psmtOS si t=mk+1 et o) = yx(p™n).
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En particulier, les S, sont complétement déterminés par ceux pour lesquels
~ y est d’ordre p, ou, ce qui revient au méme, par les nombres de solutions
. des congruences F (x) = n (mod. p). Il s’ensuit aussi que T, (n) est absolu-
' ment convergente pour § > k.
Bien entendu, Delsarte n’ignorait pas que, dans 1’évaluation de r (n)
et de R (n), la construction de la série singuliére n’est qu’un premier pas,
* et non le plus délicat. Tl s’agit ensuite de savoir dans quelle mesure on peut
* conclure du comportement de cette série  celui de r (n). Hardy et Littlewood
- avaient introduit pour cela leur célébre méthode des arcs « majeurs » et
« mineurs ». D’aprés quelques notes fragmentaires, Delsarte aurait cherché
une solution du méme probléme dans 1’é¢tude des séries de Dirichlet
; IR (n) p"n~° et de leur comportement en o = s/k, mais, semble-t-il, sans
aboutir a rien de satisfaisant.
La question du nombre de solutions de F (x) = n (mod. p) s’étend

. tout naturellement aux corps finis. Les méthodes classiques, basées sur

’emploi des caractéres et des sommes de Gauss, permettent de traiter
le cas de I'équation Xx] = a qui apparait dans le ‘probléme de Waring,

S
ni_

et plus généralement de toute équation « diagonale » Y axi’ = a. Pour

i=1

s =2, Hasse et Davenport, des 1935, avaient tiré de la, au moyen de
~leur théoréme sur les sommes de Gauss, la détermination compléte de
- la fonction z€ta de la courbe ainsi définie; comme I'observa Weil en 1949,
 ces résultats s’étendent sans difficulté a s > 2. Delsarte, qui reprit la
~question dans un exposé du séminaire Bourbaki ([In. 7]), fit voir de plus
 qu’on peut traiter de méme toute équation de la forme ) a;M; (x) = q,

l

ol les M; (x) = [] (x,)"/ sont des monomes indépendants (autrement dit,

J
tels qu’on ne puisse avoir identiquement IT M, (x)™ = 1 que si les entiers

~a1; sont tous nuls).

f La derniére publication de Delsarte ([67]) parait lui avoir été inspirée
~par un travail de Kahane et Mandelbrojt. Comme il est bien connu, 1’équa-
- :ion fonctionnelle de { (s) résulte de celle de la fonction théta, conséquence
lle-méme de la formule de Poisson; celle-ci peut s’interpréter en disant
» “que la distribution sur R, formée de masses 1 placées aux points de Z, est
sa propre transformée de Fourier. D’aprés les auteurs cités, ce résultat
admet une sorte de réciproque; plus généralement, chaque fois qu’on a
4~ une equation fonctionnelle de type convenable entre deux séries de Dirichlet,
on peut en conclure que deux distributions, sommes de masses ponctuclles
“ﬁ sur R, sont transformées de Fourier I'une de l'autre. Delsarte fait voir
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qu’on peut tirer des conséquences analogues de I’6quation fonctionnelle
de ' (5)/ (s). Notons p = 1/2 + it les zéros imaginaires de (; si I’on
admet ’hypothése de Riemann, les 7 sont réels, et les résultats de Delsarte
peuvent s’interpréter comme suit: la distribution sur R, somme de masses 1
aux points 7, a pour transformée de Fourier la somme de masses ponctuelles
placées aux points log (p") et d’une distribution élémentaire, explicitement
connue. Entre autres applications, Delsarte tire de sa formule le prolonge-
ment analytique de la fonction X7~ ° comme fonction méromorphe dans
tout le plan.

Dans la présente notice, nous avons essayé en quelque mesure de
tenir compte des manuscrits inédits de Delsarte, dont un petit nombre
seulement ont pu €tre retenus pour la publication. Mais, comme ses amiis
le savaient bien, son esprit abondait en idées originales qu’il n’a pas eu
le temps ou surtout qu’il n’a pas eu 'occasion de développer et de faire
aboutir. Nous nous contenterons d’en mentionner une seule. Il a toujours
¢té vivement frappé du fait que les constantes de structure d’une algébre
de Lie de dimension donnée n forment les pcints d’un ensemble algébrique
défini dans ’espace de dimension #> par des équations & coefficients entiers.
Il pensait que I’é¢tude de cet ensemble, du point de vue de la géométrie
algébrique, méritait d’étre entreprise. Sur cet ensemble, le groupe linéaire
GL (n) opére d’une maniere évidente; les points, lorsqu’il en existe, qui
correspondent & des algébres semi-simples jouent sans doute un rdle pri-
vilégié. Visiblement cette idée est apparentée a la notion de « schéma en
groupes », qui a fait I'objet de travaux récents. Elle n’est pas sans rapport
non plus, sans doute, avec les réflexions de Delsarte, dans ses derniéres
années, sur la classification de Mendéléief, qu’il avait cherché a inter-
préter, semble-t-il, au moyen de structures d’algebres semi-simples; parmi
ses papiers se sont retrouvées sur ce sujet des ébauches dont on trouvera des
extraits au Tome II de la présente édition. Les travaux réunis dans celle-ci
suffiront amplement, en tout cas, & confirmer le renom de Delsarte comme
un des meilleurs analystes et 'un des esprits les plus originaux parmi
les mathématiciens de notre temps.
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