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Cette quantité est nulle car X? — 7"~ "+ est le polynome minimal de &7"~°
3 nr
sur i .

Remarque 111.3.B

TrKl_l/Q (0,1 = (- l)mrﬂ

n

Il suffit d’appliquer le lemme II1.1 & Q (%) ou Q <2r_—lr+2—> , suivant
p

les cas.

Remarque 111.3.C

Danslecasou p = 2 et u, = 3, on a:

2: ésZr_l+1

sesS;

0

I

En effet:
(fzr_Hl)

se S, or—Il+1

Z ésZ"—l+1 _ TrQ< ny >/Kz—

et d’autre part
n

Kl—l S Q(Z"__;‘Ts>

TI‘Q(#)/Q<2rjrl+3><£2r—l+1> — 0
n

car X2 — ¥ 7'*2 est le polynome minimal de ¥ ~'*! sur Q(ﬁ)

et

111.5. EXEMPLE

Soit B la base introduite a la proposition III.3. On se propose de chercher
les polynomes caractéristiques des ;. Pour cela, il faut pouvoir calculer les
coordonnées, par rapport & B, des produits mutuels d’¢léments de B.

Les 0, sont des périodes de Gauss ([7] chapitre 7). On pose pour tout

entier a: n (a) = ) &

se Sy
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{ On a en particulier:

0, =n(p™" pour [Sisr

et suivant les cas:

0y = (@™ ou I(27T?).

* Pour tout b appartenant & G (n,), le transformé de # (a) par b est y (ab).

- En particulier les conjugués de 8;, pour / =i =r, seront:

a“(0) = n(g“p"™).

Le produit de deux périodes 7 (a) et 5 (a’) est donné par: # (a) n (a’)

= Y n (a+a's). Appliquant cette formule a deux éléments de B, on

se Sy

est alors ramené au probléme suivant: donner les coordonnées de n (a), a
entier quelconque, dans la base B.

c et ¢’ désignent dans ce qui suit, des nombres premiers avec p.

1. Dans le cas pimpairoup = 2etu, = 2,5 (p“c),avecu =r — [ + 2,
peut s’exprimer comme somme de périodes de la forme # (p"~'*1c). 1l
suffit d’écrire I’égalité:

multipliant alors cette égalité par £P“° on obtient:

1) n(ﬂkw%) = — n(p“c).

O<k<p p

o - ’
Les quantités —k + p“c sont de la forme p"~'*1¢.

Danslecasoup = 2etu, =3,y (2%), avecu =r — [ + 3, est 'opposé

~ d’une période 5 (2"~ 2¢").

2. n(p¥c), avec u=r —1[1+1 (ou u=r — [+ 2, suivant les cas)

peut s’exprimer comme somme de périodes de la forme # (p“c’), ¢’ appar-
- tenant & G (n,), en procédant de la méme fagon qu’au lemme II1.2. C’est-

- a~dire: si v désigne le PGCD de c et de n,, et m, le nombre de diviseurs pre-
- miers de v, on a:

Il

I

O<k<v
PGCD(k,v)=1
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d’ou:

(—D™nGp' = Y n(%mpuc)

O<k<v
PGCD(kyw)=1

Les quantités — k 4 p“c sont de la forme p“c’, avec ¢’ premier avec #,.
v

Cas particulier :

n, n,
Si K, n Q(—) cK.nQ <~—u> et u=r — [, alors n (p“c) = 0.
v P

n, n, n,
En effet on a: PGCD (7,——> = .

nr nr A r
Dou K, n Q2 (——) c Q <T> En employant la méme méthode que dans
v p*v

la démonstration de la proposition IIL.3, n (p¥c) est égal, a un coefficient |
pres, a:

T?‘Q(ir_)/Ker(n_vr)(fPuc)

puv

n n,
Comme K, N Q (—;) > K, nQ (—) et comme u =r — [, on aura donc:
p v

n, n,
K,mg( u+1>2 K,m9<—>.
p v

n _ n, n ,
Q( - ) sera donc compris entre K, N Q (~> et Q (Tr> et 'on a
| v p*“v

M) )

3. n(p¥), avec u=r — [+ 1 (ou u=r — [ 4+ 2 suivant le cas) et
¢ premier avec #,, est un conjugué de # (p*) = 0,_, (2 moins qu’il ne soit
nul; remarque II1.3.C).

S’il n’est pas dans B, alors ses conjugués sur K,_,_, seront dans B et il
suffit alors d’utiliser la remarque II1.3.A.
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Considérons par exemple, la suite de corps cyclotomiques vérifiant les
| conditions 1.2.A bis et 1.2.B bis: Q (17), Q (8.17), 2 (16.17).
30nadoncr= 3;1=2my =my, =my =1;p; =17

Il y a quatre extensions Kj, cycliques de degré 8 sur Q associées a cette suite
ﬁ (proposition 1.5 bis).

| Elles ont pour discriminant sur Q: 222 177 (proposition II.3).

" T(16.17, 17) a pour éléments 1, 35, 69, 103, 137, 171, 205, 239.

“a, = 239 et ’'on peut choisir comme générateur de 7'(16.17, 4.17):

a, = 69.

- On cherche de méme les éléments de 7T (16.17, 16) et un générateur c,
- de ce sous-groupe. On peut prendre par exemple ¢, = 65. Les puissances
“ successives de ¢, sont données par le tableau suivant:

1 2 3 41 5] 6 7 8 9 10 | 11 12 | 13 14 15

65| 145 | 177 | 81 | 97 | 49 | 193 | 33 | 241 | 161 | 129 | 225 | 209 | 257 | 113

S est engendré par { c1, c{0ay, cfoay }, oo et oy vérifiant les conditions
g = 0(4); ao=0(2) et ag =0 (4) (proposition 1.4 bis). Les éléments de S,
sont de la forme:
861 +aofo +aoBo Bo Po

§ = Cq do Qo
avec fo = Ooul; Bo=0,1,20u3; B, =0oul.
Prenons par exemple: o, = 4 et oy = 2.

. Le tableau suivant donne les valeurs de s, en fonction de B,, Bo, f1. On
trouve donc a la derniére ligne les éléments de S;:

BolO|lOjoO]O][O|Oo|Oo|oO0| 1|1 ]|1]1]1]|1]1]1

gel ol 123012301213 ]0]1]|2]3

B.1 00| 0} 0|1 1 1 17010001 1 1] 1

s 1 |213 217|253 | 33 {229 89 | 189 | 47 |219|135(195|191 | 155|103 {179

;. On remarque que 3* = 81 n’appartient pas & S;, cest-a-dire que la
G (16.17)

*“flclasse de 3 modulo S5 est un générateur de S
3
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On prendra donc g = 3. Les classes de G (16.17) mod. S; sont données
dans le tableau suivant:

S 11213]217|253| 331229 89|189| 47|219|135|195[191 | 155|103 |179

383 | 3| 95(/107(215| 99|143|267| 23|141|113]133| 41| 29|193] 37|265

33Ssl 27| 39|147| 31| 75|199|227|207|181|201|109| 97261 |105| 61209

34S,| 81|117[169| 931225 53(137| 77|271| 59| 55| 19]239| 43|183]| 83

358,243 | 791235 7[131(159 139231269 |177|165| 57|173|129| 5249

368, 185|237 161 | 21 |121|205|145|149|263|259|223 /171|247 |115| 15]203

37Sg 111167211 63| 91| 71|163|175|245{233|125(241|197| 73| 45 65

B={n(),n(3),n3%n03%n2),n23),3n7@®),4n(83)} est une

3285 9| 13| 49|101| 25[157|257| 69|151| 67|127|123| 87| 35|111|251|

|

base de I’anneau des entiers de K5. On cherche le polynome minimal de
1 (1) sur K,. Le conjugué de # (1) sur K, est 1 (3*) et d’aprés la remarque

L3.A, 7 (1) + 7 (3% = 0.
D’autre part:  (1)®> = ) n (1+y9).

se Sy
Il reste a exprimer chacun des 7 (1+5) en fonction de: 7 (2), 7 (2.3), 1 (8),
et  (8.3).
Par exemple: pour s = 213: 5 (1+213) = (2.107) = 5 (2.3) car
107 €3 S;.
Pour s = 33: n(1+33) =9 (217) =0 car Q(6)nK; = Q = K,
= Q (8.17) n K;.

Pour s = 47, on écrit %7 = — 1 d’ou E817%48 = _ £48 Pest-a-dire:
n(14+47) = —n(8.23) = — n(8.3). |

Pour s = 195: n (14+195) = n (4.49) = 0 compte tenu de la remarque
IM1.3.C.

Finalement on obtient: # (1)> = — 16 — n(2) — 27 (8.3) + # (8). Le

polynome minimal de # (1) sur K, est donc:

X2+ 16 +1(2) + 27 (3.8) — 4 (8)
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; On calcule de la méme fagon le polynome minimal de 5 (2) sur K :
X% — 5 (8) — 16 et celui de 7 (8) sur Q: X* — 2X — 16.

Les 8 nombres:

1+2¢17,1_2ﬁ,\/17+\/ﬁ,\/17~\/ﬁ,

/

V1743 /T 11+ /17, V) 173 /11— 17— J17
\/—17+3\/ﬁ+\/17+\ﬂ7 et \/—17—3¢ﬁ+¢17—‘\/ﬁ

‘forment une base de ’anneau des entiers de K.

Pour les autres valeurs de o, et «, le résultat est le suivant: les polynomes
minimaux de 7 (8) et 5 (2) restent les mémes que précédemment. Pour
obtenir une base des entiers des autres extensions K; admettant la méme

~ suite de corps cyclotomiques associée: Q (17), Q (8.17), Q (16.17), il suffit
d’ajouter aux quatre nombres:

1+/17 1-J/17
2

’ 2

. —— S
: y/17+‘¢17 , V17— /17,
les quatre autres quantités:

Pour le corps K5 correspondant @ «, = 4 et ay = 6:
V = 1743174317+ ST -4/ 17— /17,
V = 17-3/17 43y 17— J11+4y/ 17+ 17,
V 1743113y 174 17 +4y 17— J17,
V o173/ -3y/ 11— 11— 4/ 17+ J17,

Pour le corps K5 correspondant a oq = 8 et oy = 2:
V17317 +y/ 17— J17, V1731V 17+ /17
V174317 -\/17- 17, \/17—-3¢’T7“+\/17+\/T7
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Pour le corps K5 correspondant a o, = 8 et 0y = 6:
\/i7—3\/1—7+3\/m—4wi7——_ﬁ,
V174317 +3)/17— J17+4y/17+ /17,
V17317 -3/ 17+ J17+4y/ 17— 17,
V174317 -3/ 17— J17—4y/17+ J17.
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