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TrKr/Q(x) = TrKr/Q (x”) =P TrKr_l/Q(x”) ¢

La trace d’un entier de K, ne peut donc étre égale a 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu’il existe un entier 8 de K
tel que: Trg,o (0) = 1. '

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d’ordre p;t.

Soit K; le corps fixe de Gy x ... x G,y x {1} x G;yy X .. x G
est cyclique de degré pi sur Q et K = KK, ... K,

Soit 0; = Trg k. (0). 0; est un entier de K; tel que Trg, 0 (0;) = 1.
Si Q(n;) est le plus petit corps cyclotomique contenant K, alors n; est
sans facteur carré d’apres la démonstration précédente.

n est le PPCM des n;, donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c’est-a-dire divisant .
Si n est sans facteur carré, alors I'indice de ramification de p dans Q (n)
est p — 1 et I'indice de ramification de p dans K, divise p — 1, donc est
premier a p.

Réciproquement, si n posséde un facteur carré, alors n est de la forme
n = p°n’, avec p premier, ne divisant pas n’ et s = 2. Soit © 'application
de G (n) sur G (X/p) qui a tout automorphisme de Q (n) fait correspondre |

K.

m* l

n
sa restriction a K. Puisque K ¢ Q (—) , alors
P/

Kern = G("™/,) 2 T<n,%>.

n
Donc = (T <n, —>> a pour ordre p et il est inclus dans 7 (7 (n, n')) quiestle

b |
groupe d’inertie de p dans K. L’indice de ramification de p dans K est donc

multiple de p.

III.4. BASES D’ENTIERS DANS LES EXTENSIONS K,

ProrosiTioN [II.3.

Soit K. une extension cyclique de degré p" sur Q, Q (n,) le plus
petit corps cyclotomique contenant K.
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On suppose que u, = 2; c’est-a-dire que K, ne posséde pas de base
| d’entiers normale. ¢ désignant une racine primitive #;"¢ de 1, on
| pose 0; = > &P 7" pour tout i de [ ar.

se S,

Si p est impair ou si p = 2 et u, = 2, on pose:

i -I+1
9%—1 = 2: éspr
se S,
) } Sip = 2 etu, =3, on pose:
. I
ar—=i+2
g 0,1 = % Z g2
g i se Sy
w |
} | o est un générateur du groupe de Galois de K, sur Q.
i Alors:
B(91—17G:pl—1)u( Y B(Qiao-:q)(pl)))
I<i<r
est une base de I’anneau des entiers de K,.

. On montre tout d’abord que B (0,_4, o, p' 1) est une base de I'anneau
. des entiers de K;_ .
Dans le cas ou p est impair ou p = 2 et u, = 2, ona°u——r—l+2,

r—I+1 r—1+1

{v nr n
K, S ®Q <__> - ——"__est sans facteur carré, donc &7 o engendre
b p

pr—l+1
p" l+1)
1+1> 1K) 1 engendre donc une base normale des entiers
I'

- ) n
~ une base normale des entiers de Q(—r——>

de K,_,. 1l reste donc & montrer que cette quantité est égale & 6,_,. Pour

~ cela introduisons I’application n,_, de G (n,) dans G (~1—> qui a toute
1 p

- classe modulo #, fait correspondre la classe modulo ——
|

S, étant le groupe des K,-automorphismes de Q (n,), ©,_; (S,) sera le groupe

t% n, ) n,
des K,nQ (Tﬁ) -automorphismes de Q <—> :

r—I+1
p

| p
n
Comme K, & Q <ﬁ>, (condition I.2.A; u;, = 2) on a donc
p

h
K-y = K, mQ(W)

—— 77 qui la contient.
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nl‘
m,—4 (S,) est donc le groupe des K,_ -automorphismes de Q(TJH) ‘
P ,

On aura donc I’égalité:

r—1+1 ror—1l+1

Tr r ‘ P = o
Q(;r%:i)/Kl—-l(é ) sgnl_l (Sr)é

ID’autre part, on déduit des égalités:

1 n, n -
-0y )] - o)) -
4 p 14
et
|:Q (n,): Q(”;’zm):l =pte,
p
n,
| r

Les sous-groupes de G (n,) correspondants vont donc vérifier: ;

La restriction de n;,_; a S, est donc bijective. On en déduit:

Z éS/pr—H-l _ Z énl_l(s)pr—l+1

s’enl_l(Sr) seSr

que

Cette derniére quantité est égale a 0,_, puisque, par définition de m,_:

on a B n,
s =1 (9) l')r—_,ﬁ

d’ot sp = () p" T ()
Dans le cas o p = 2 et u, >3, on a alors: u, = r — [ + 3 et I'on §

2r—l+2

nr r . :
utilise alors I’application n;,_, de G (n,) sur G( ) La démonstration

est identique a la précédente, a ceci prés que:

|:Q n): K, . Q(-Z——nmﬂ iy
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| C’est-a-dire que T<nr, ) N S, posséde deux éléments. On aura cette

,
2r—l+2
- fois:

gs;zr—l+2 _ % Z 57.z:l___-2(s)2)‘—1""2

s'eny_5(Sy) seS,
On montre ensuite par récurrence sur ¢ que:

Bt = B (91—15 g, pl-‘l) K-)( v B(Qia g, (P(pl)))
<i<t

I<i

est une base de K,. Supposons donc que B,_, soit une base de I’anneau

r—t

p
n n

Comme K, < Q ( r;) etK,, & Q < r;) (proposition 1.2; condition 1.2.A ;

p

p
nr
K, = Q( H)alg
P

nr
des entiers de K,_ ;. Soit 7, ’application canonique de G (n,) sur G( )

i lli+1 = ui -+ 1), Oon a

n
et 7, (S,) est le groupe des K,-automorphismes de Q< ri t).
p
Si g, = Y &P la proposition IIL.1 et la remarque III.1, appliquées
s’et(Sy)

n, ,
a Q( >et K, permettent de conclure que: B,_; U B (0, o, ¢ (p")) est

r—t

p
- une base de 'anneau des entiers de K. Il reste alors & montrer que 0, = 0,.

| it 1

. Je . r _r r L r nr
. Ceci se déduit comme précédemment de 1’égalité T(n,, > ns,= 1,
| p

toujours vraie si [ =t =r.
On utilisera dans le paragraphe suivant les remarques:

Remarque 111.3.4

Pour tout i = [Trg, x,_, (0;) = 0.
En effet:

Trx;_(0) = TrQ(L,_)/Ki_l (gpr~z)
pr—t

= Tr!)(pr_fii‘.?f>/Ki_1 <Tr9<p:'_i>/9(prfri+1><él"'_")>
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Cette quantité est nulle car X? — 7"~ "+ est le polynome minimal de &7"~°
3 nr
sur i .

Remarque 111.3.B

TrKl_l/Q (0,1 = (- l)mrﬂ

n

Il suffit d’appliquer le lemme II1.1 & Q (%) ou Q <2r_—lr+2—> , suivant
p

les cas.

Remarque 111.3.C

Danslecasou p = 2 et u, = 3, on a:

2: ésZr_l+1

sesS;

0

I

En effet:
(fzr_Hl)

se S, or—Il+1

Z ésZ"—l+1 _ TrQ< ny >/Kz—

et d’autre part
n

Kl—l S Q(Z"__;‘Ts>

TI‘Q(#)/Q<2rjrl+3><£2r—l+1> — 0
n

car X2 — ¥ 7'*2 est le polynome minimal de ¥ ~'*! sur Q(ﬁ)

et

111.5. EXEMPLE

Soit B la base introduite a la proposition III.3. On se propose de chercher
les polynomes caractéristiques des ;. Pour cela, il faut pouvoir calculer les
coordonnées, par rapport & B, des produits mutuels d’¢léments de B.

Les 0, sont des périodes de Gauss ([7] chapitre 7). On pose pour tout

entier a: n (a) = ) &

se Sy
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