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TrKflQ(x) TrKrlQ(x")

La trace d'un entier de Kr ne peut donc être égale à 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu'il existe un entier 9 de K
tel que: TrK/Q (9) 1.

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d'ordre p\l.
Soit K{ le corps fixe de Gx x x Gi_1 x { 1 } x Gi+1 x x Gm. Kt
est cyclique de degré sur Q et K KXK2 Km.

Soit 9i TrKfKi (9). 0t est un entier de Kt tel que TrK./Q (0f) 1.

Si Q (nt) est le plus petit corps cyclotomique contenant Kt alors nt est

sans facteur carré d'après la démonstration précédente.

n est le PPCM des nh donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c'est-à-dire divisant n.

Si n est sans facteur carré, alors l'indice de ramification de p dans Q (n)
est p — 1 et l'indice de ramification de p dans K, divise p — 1, donc est

premier à p.
Réciproquement, si n possède un facteur carré, alors n est de la forme

n psn\ avec p premier, ne divisant pas n' et s 2. Soit n l'application
de G (n) sur G (k/q) qui à tout automorphisme de Q {n) fait correspondre

Donc 7i a pour ordre p et il est inclus dans n (T (n, n)} qui est le

groupe d'inertie de p dans K. L'indice de ramification de p dans K est donc

multiple de p.

sa restriction à K. Puisque K $ Q alors

III.4. Bases d'entiers dans les extensions Kr

Proposition III.3.

Soit Kr une extension cyclique de degré pr sur Q, Q (nr) le plus
petit corps cyclotomique contenant Kr.
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On suppose que ur^2; c'est-à-dire que Kr ne possède pas de base

d'entiers normale. £ désignant une racine primitive n^me de 1, on

pose 6i Yj £,spr~l pour tout i de / à r.
se S r

Si p est impair ou si p 2 et ur — 2, on pose:

0,-i s K"i+1
se Sr

Si p 2 et ur ^ 3, on pose:

0,-i i s ^r"+2
se Sr

g est un générateur du groupe de Galois de Kr sur Q.

Alors :

B(6l.uc7,pl~1)(j(u
l<i<r

est une base de l'anneau des entiers de Kr.

On montre tout d'abord que B (6t^x, g, pl~x) est une base de l'anneau
des entiers de t.

Dans le cas où p est impair ou p 2 et ur 2, on a: ur r — l + 2,

ç Q ' r^i+1 est sans facteur carré, donc ïf 1+1
engendre

une base normale des entiers de Q

r — l + l
f~l+1

/ r-/+1\
nÇ }

V - / engendre donc une base normale des entiers

de Ki-i. Il reste donc à montrer que cette quantité est égale à 6t_ 1. Pour

cela introduisons l'application 7zl_1 de G (nr) dans G ^ r_[+1^ qui à toute

nr
classe modulo nr fait correspondre la classe modulo r_l+1 qui la contient.

Sr étant le groupe des Ä^-automorphismes de Q (,nr), nl_1 (Sr) sera le groupe

des Kr n Q ^ -automorphismes de Q ^ r_[+i^ •

Comme Kt $ £2^ r_[+1^9 (condition 1.2.A; u{ 2) on a donc

Kt-iKrnQ(-^
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7ij_x (Sr) est donc le groupe des 1-automorphismes de Qy r_z+1

On aura donc l'égalité:

Tr

D'autre part, on déduit des égalités:

(É' z
s'eît/-i (Sr)

£S'pr-'+1

X,. ß : Q Kr:KrnQ\ r_(+1

et

fiW:filpHïï] />r-l+l

que

ß («,)

Les sous-groupes de Cr (/tr) correspondants vont donc vérifier:

ny
T n

'»pr-l+l nS= 1

La restriction de 71^ à est donc bijective. On en déduit:

z {
s,eitl_1(Sr)

s,pr l + l _ ^ ^7t/_1(s)pr Z+1z r
s ç Sf

Cette dernière quantité est égale à 6l^1 puisque, par définition de 7rx :

on a
s S

d'où spr~t+1 Jt,_1(s)p,-'+1(«r)

jOör/i.s' le cas où p — 2 et ur^ 3, on a alors: wr r — / + 3 et l'on

utilise alors l'application 7iz_2 de C(//r)sur G (^r_rl+^j. La démonstration

est identique à la précédente, à ceci près que:

n
Q(nr):Kr.Ql—^ 2
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c'est-à-dire que T^nr, 2^1+ 2^ n Sr possède deux éléments. On aura cette

fois:

^ 2r~l + 2
_ x. £ ^/-2(s)2r_/ + 2

s'e 7t^ _2(Sr) seSr

On montre ensuite par récurrence sur t que:

B, B(ei_1,a,pl~1)u(u (p1)))
l<i<t

est une base de Supposons donc que soit une base de l'anneau

nr \des entiers deAT,«. Soit nt l'application canonique de G (nr) sur G ——-
\P J

Comme Kt ç Q\ —r— et Kt+1 $ Qt —— (proposition 1.2; condition 1.2.A;
\PrJ \P J

ui+1 ut + 1), on a

Kt fl|^)nKr
/ nr

et 7it (Sr) est le groupe des ^-automorphismes de Q —-
\p

Si 6t Yj^s'pr~\la proposition III. 1 et la remarque III. 1, appliquées
s'®ïzt(Sr)

à £2 ^"7=7^ et Kt permettent de conclure que: Bt^1 u B (0't, a, cp (pr)) est

une base de l'anneau des entiers de Kt. II reste alors à montrer que 0t 9r

Ceci se déduit comme précédemment de l'égalité T^nr, fl Sr= 1,

toujours vraie si / ^ t r.
On utilisera dans le paragraphe suivant les remarques:

Remarque 111.3.A

Pour tout i l TrKi/K._i (0f) 0.

En effet:

- Trn(YriyKi-i ^"r '1

(Ar)—(rr»(^)'»(7^Un)

Tr "t — ix

Tr
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Cette quantité est nulle car Xp — £pT 1+1 est le polynome minimal de £pT

Remarque 1II.3.B

(-1y-+1

Il suffit d'appliquer le lemme III. 1 à Q ^ r_Zi^ ou Q (^r_[+ suivant

les cas.

Remarque 1II.3.C

Dans le cas où p 2 et ur 3, on a :

Z e2r~'+1 0
se Sr

En effet:

s ^~'+1 Tv-^wse Sr \2r~l + 1 / /_1

et d'autre part

car X2 — £2r_i+2 est le polynome minimal de £2r-i + 1
sur Q f r^r+3"'] •

III. 5. Exemple

Soit B la base introduite à la proposition III.3. On se propose de chercher
les polynômes caractéristiques des 6t Pour cela, il faut pouvoir calculer les

coordonnées, par rapport à B, des produits mutuels d'éléments de B.

Les 6t sont des périodes de Gauss ([7] chapitre 7). On pose pour tout
entier a: q (a) Z "•

s e Sj-
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