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On vérifie que — + ¢ et nd sont premiers entre eux, c’est-a-dire que les
v

dk
n——+c
v

¢ appartiennent a F.

LemME 1II1.3.

En effet si d est sans facteur carré, alors d’aprés le lemme II1.2, appliqué
an = 1, les conjugués de &, racine primitive d¢™e de 1, engendrent ’anneau
des entiers de Q (d). Comme ils sont en nombre égal a [2 (d): O], ils forment
donc une base de I'anneau des entiers de Q (d). Réciproquement soit p un
nombre premier et ¢ une racine primitive (p?)eme de 1. Comme @, (X)
= @, (X?), on a Try,2y,0 (§) = 0. D’autre part:

Tropee(€?) = pTropy () = —p

et la trace de toute racine (p?)¢™me de 1, non primitive, est multiple de p.
Ainsi la trace de tout entier de Q (p?) est multiple de p, donc ne peut étre
égale & 1. Q (p?) n’a pas de base d’entiers normale, non plus que tout sur-
corps de Q (p?). En particulier Q (d) n’a pas de base d’entiers normale si d
possede un facteur carré.

Q (d) posséde une base d’entiers normale si et seulement si d
est sans facteur carré.

ITI1.3. CONDITIONS POUR QU’UNE EXTENSION ABELIENNE DE Q
POSSEDE UNE BASE D’ENTIERS NORMALE

Notation : Si K est une extension cyclique sur Q, 0 un élément de K,
o un automorphisme de K, ¢ un entier positif, B (0, g, t) désignera
I’ensemble des ¢ premiers conjugués successifs de § par o, c’est-
a-dire:

B(0,0,t) = {d"(0),0 <k <t}

ProrosiTioN II1.1.

Soit K, une extension cyclique de degré p" sur Q (p premier).
Soit Q (n,) le plus petit corps cyclotomique contenant K,. On suppose
que u, est différent de 0, que £ est une racine primitive (n,)eme de
1 et B,_, est une base de I’anneau des entiers de K,_,. Soient 6
= > % et o un générateur de G (K,/Q).
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B,_; UB(0,0, ¢(p")) est une base de I'anneau des entiers de K.

Soit g un automorphisme de Q (n,) prolongeant o. Les classes de G (n,)
§ modulo S, sont g5, 0=k < p".
Introduisons les ensembles suivants:

F est ’ensemble des racines primitives n;"° de 1 c’est-a-dire:
F ={{aeGn,)},
={&ae U ¢*S,}

O0<k=<o(pr)

={&0<b<o(m) e pl|b}.

Puisque p"“ est le plus grand facteur carré divisant n,, le lemme 1II.2
permet d’affirmer que le module engendré sur Z par F u F” est 'anneau des
entiers de Q2 (n,). Montrons que F’' U F” est une base de cet anneau. Pour
cela 1l suffit de constater que:

— Card F" U F" = ¢ (n,).
— Tout élément de F — F’ appartient au module engendré par F’.

£,

i
1
:
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La premiére assertion résulte d’un dénombrement immédiat des élé-
 ments de F' U F". Pour démontrer la deuxiéme, on écrit tout d’abord que:
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‘(ép est une racine primitive peme de 1).
- Soit en multipliant cette égalité par £, on obtient:

f;jm Y& =0
} aeT(nr _g_)

] 14 b r A n
v Examinons comment sont répartis les éléments de T(n,, —5> dans les

i classes de G (n,) modulo S..
n

i . nr
Puisque K, ¢ Q (p_> onaQ(n) =K,.Q ( ) et puisque K,_; = Q (—5>
p p

:
:
;
L:

(condition I.2.A sur la suite (u;);_;_,), on a:

nr
Kr—l == KrﬂQ<—->.
p
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Les sous-groupes correspondants de G (n,) vont donc vérifier les égalités:

n, n,
T(n,, ——) .S, =S,_{ et T<n,, —~> NS, ={1},
| p p

qui montrent que S,_;, groupe des K,_, -automorphismes de Q (n,), est

n
produit direct de S, et de T (n,, —r>. Dans toute classe de S,_, modulo S,
p

0=

r’

. . rq1r nr -
il existe donc un seul élément de T<n,, —) . Ces classes sont g“?" 'S

. r— . o1y - n
k=p — 1. S1 sg? " est I'unique élément de g?’ 'S A T(n ,— |, alors
q r r p
. r—1 5 . ,er r—1
pour tout k entre Oet p — 1, s*g"” ~ est 'unique élément de g*?" ~ S, N

nr r{r nr r—
T(nr, ~> et les éléments de T(n,, —) sont done s*g"" ', 0 =k =p — 1.
p p

L’égalité (1) va donc s’écrire:
®) Yoot~ o,

s appartenant a S,.
Tout élément de F — F” peut s’écrire sous la forme:

rp—1 gt+(p—1)pr~—1 _
gssPm e (p=1op avec s'eS, et 0=t<ptl.

Transformant alors I’égalité (2) par I'automorphisme s'g’, on obtiendra:

és'sp—l gt+(p_ 1)Pr‘1 - Z éslsk gt+kpr—1

O0<k<p-2

Les racines primitives de 1, intervenant sous le signe ) sontdans F'. F' U F”
est donc une base des entiers de Q2 (n,).

Soit x un entier de K,. On a x = x" + x” avec x’ (respectivement x”)
appartenant au module engendré zur Z, par F’ (respectivement F”). Soit
s un K-,automorphisme. Comme F” est une base de I’anneau des entiers de

n, r ”
Q (&> . 8 (x") appartient encore a Q (—) , donc au module engendré par F”.
p :

p
De méme s (x') appartient encore au module engendré par F’, car s permute

entre eux les éléments de F'. Comme enfin s (x) = x, on aura donc s (x')
= x"ets(x") = x".
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. . b nr
x" étant invariant par tout K,-automorphisme, appartient a <;) n k.

' ¢’est-a-dire a K, _ ;.
{ Quant a x’, il s’écrit:

Y 2,64 A, €Z
ae V) gks,
0<k<e(pr)

De x' = s(x) on déduit que A, = A, si a et a’ sont congrus modulo S,.
‘Posant alors p, = A, on obtient:

x' = Z ,“k( Z fagk) = Z ()

0<k<o(pr) aec S, O<k<o(pr)

Remarque I11.1.

On n’utilise pas complétement le fait que @ (n,) est le plus petit corps
cyclotomique contenant Kr, mais seulement que #n, est de la forme pin,

r : , n,
avec n’ premier avec p, sans facteur carré, K, < Q (n,) et K, £ Q (—— :
p

ProrosiTIiON III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont
équivalentes:

| II1.2.A: K possede une base d’entiers normale.
III.2.B: 11 existe un entier 6 de K tel que Trg,y (0) = 1.

II1.2.C: Le plus petit corps cyclotomique contenant K posséde
une base d’entiers normale.

II1.2.D: K est modérément ramifiée.

C = A et A = B résultent des rappels effectués au paragraphe III.1.
- B = C résulte pour les extensions cycliques de degré p" sur Q de la pro-
posmon ITI.1. Reprenant les mémes notations, si 2 (n,) ne posséde pas de
‘base d’entiers normale, alors, d’aprés le lemme 1II.3, n, posséde un facteur
carré, donc u, = 2.

’ Comme @, (X) =&, (X?*"), la trace de & sur Q est nulle, donc celle

ur—1
p

; de 0 €galement. Si x est un entier de K,, x se décompose comme précé-
‘demment en x = x" 4+ x" et 'on a:
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TrKr/Q(x) = TrKr/Q (x”) =P TrKr_l/Q(x”) ¢

La trace d’un entier de K, ne peut donc étre égale a 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu’il existe un entier 8 de K
tel que: Trg,o (0) = 1. '

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d’ordre p;t.

Soit K; le corps fixe de Gy x ... x G,y x {1} x G;yy X .. x G
est cyclique de degré pi sur Q et K = KK, ... K,

Soit 0; = Trg k. (0). 0; est un entier de K; tel que Trg, 0 (0;) = 1.
Si Q(n;) est le plus petit corps cyclotomique contenant K, alors n; est
sans facteur carré d’apres la démonstration précédente.

n est le PPCM des n;, donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c’est-a-dire divisant .
Si n est sans facteur carré, alors I'indice de ramification de p dans Q (n)
est p — 1 et I'indice de ramification de p dans K, divise p — 1, donc est
premier a p.

Réciproquement, si n posséde un facteur carré, alors n est de la forme
n = p°n’, avec p premier, ne divisant pas n’ et s = 2. Soit © 'application
de G (n) sur G (X/p) qui a tout automorphisme de Q (n) fait correspondre |

K.

m* l

n
sa restriction a K. Puisque K ¢ Q (—) , alors
P/

Kern = G("™/,) 2 T<n,%>.

n
Donc = (T <n, —>> a pour ordre p et il est inclus dans 7 (7 (n, n')) quiestle

b |
groupe d’inertie de p dans K. L’indice de ramification de p dans K est donc

multiple de p.

III.4. BASES D’ENTIERS DANS LES EXTENSIONS K,

ProrosiTioN [II.3.

Soit K. une extension cyclique de degré p" sur Q, Q (n,) le plus
petit corps cyclotomique contenant K.




	III.3. Conditions pour qu'une extension abélienne de Q POSSÈDE UNE BASE D'ENTIERS NORMALE

