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On vérifie que h c et nd sont premiers entre eux, c'est-à-dire que les
v

ndk
+ c

V

Ç appartiennent à F.

Lemme III.3.

Q (d) possède une base d'entiers normale si et seulement si d
est sans facteur carré.

En effet si d est sans facteur carré, alors d'après le lemme III.2, appliqué
à n 1, les conjugués de £, racine primitive deme de 1, engendrent l'anneau
des entiers de Q (d). Comme ils sont en nombre égal à [ß (d): Q], ils forment
donc une base de l'anneau des entiers de Q (d). Réciproquement soit p un
nombre premier et £ une racine primitive (p2)eme de 1. Comme $p2 (X)

<Pp(Xp), on a Trmp2)jQ(0 0. D'autre part:

TrQ(P2)/Q (^P) ~ P n^rQ(p)IQ (^P) ~ ~P
et la trace de toute racine (/>2)eme de 1, non primitive, est multiple de p.
Ainsi la trace de tout entier de Q (p2) est multiple de p, donc ne peut être

égale à 1. Q (p2) n'a pas de base d'entiers normale, non plus que tout
surcorps de Q (p2). En particulier Q (d) n'a pas de base d'entiers normale si d
possède un facteur carré.

III.3. Conditions pour qu'une extension abélienne de Q
POSSÈDE UNE BASE D'ENTIERS NORMALE

Notation : Si K est une extension cyclique sur g, 9 un élément de K,
a un automorphisme de K, t un entier positif, B (9, er, t) désignera
l'ensemble des t premiers conjugués successifs de 9 par a, c'est-
à-dire :

5(0,(7,0 { 0^(0), 0 ^ k < t}

Proposition III. 1.

Soit Kr une extension cyclique de degré pr sur Q (p premier).
Soit Q (nr) le plus petit corps cyclotomique contenant Kr. On suppose

que ur est différent de 0, que £ est une racine primitive (wr)eme de
1 et Br_x est une base de l'anneau des entiers de Kr_x. Soient 9

Yj et g un générateur de G (KrjQ).
se Sr
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Alors:

Br_l u B(9, g, (p(pr)) est une base de l'anneau des entiers de Kr.

Soit g un automorphisme de Q (nr) prolongeant g. Les classes de G (nr)

modulo Sr sont gk Sr, 0 ^ k < pr.

Introduisons les ensembles suivants:

F est l'ensemble des racines primitives nerme de 1 c'est-à-dire:

F {Ça;ae G (nr) }

F'{ <T; a6u gk }

y Puisque pUr est le plus grand facteur carré divisant nr, le lemme III.2

| permet d'affirmer que le module engendré sur Z par F u F" est l'anneau des

|! entiers de Q (nr). Montrons que F' u F" est une base de cet anneau. Pour

— Card F' u F" <p (nr).

— Tout élément de F — F' appartient au module engendré par F'.
La première assertion résulte d'un dénombrement immédiat des élé-

jj ments de F' u F". Pour démontrer la deuxième, on écrit tout d'abord que:

0 <k<(p(pr^
l et

F" { 0 ^ b < cp (nr) et p | b }

1 cela il suffit de constater que :

-rk
Z r 0

| (Çp est une racine primitive peme de 1).

Soit en multipliant cette égalité par on obtient:

Z ^ o

Examinons comment sont répartis les éléments de T dans les

|] classes de G (nr) modulo Sr.
h

•I
Puisque Kr $ Q ^ on a Q (nr) Kr. Q

(condition 1.2.A sur la suite oron a:

et puisque Kr_x ç Q
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Les sous-groupes correspondants de G vont donc vérifier les égalités :

r(n„^.Sr Sr_t et r|«f(^nsr {l},
qui montrent que Sr_l9 groupe des Kr_ i-automorphismes de Q(nr), est

produit direct de Sr et de T^nn — Dans toute classe de Sr-X modulo Sr

il existe donc un seul élément de T\ nr9 — ]. Ces classes sont gkpr l
Sn 0 ^

V P

k — 1. Si sgpr
1

est l'unique élément de gpV
1

Sr n T\nr, — alors
V P/

pour tout k entre 0 et p — 1, sk gkpr est l'unique élément de gkpV
1

Sr n
/ nA

T\ nr, — et les éléments de j
V p/

L'égalité (1) va donc s'écrire:

Tyir, —j et les éléments de Tynr, — ] sont donc skgkpf \ 0 ^ k ^p — 1.

(2) X 1= °>
0 <k<p — 1

5* appartenant à Sr.

Tout élément de F — F" peut s'écrire sous la forme:

Çs'sP 1gt+(p avec s'eSr et 0 < pr 1

Transformant alors l'égalité (2) par l'automorphisme s'g\ on obtiendra:

Çs'sP"
^ gt+(P~ ^

^s'sk gt~^~kpr ^

0<k<p-2

Les racines primitives de 1, intervenant sous le signe £ sont dans F'. F' U F"
est donc une base des entiers de Q (nr).

Soit x un entier de Kr. On a x x' + x" avec x' (respectivement x")
appartenant au module engendré zur Z, par F' (respectivement F"). Soit
£ un F-rautomorphisme. Comme F" est une base de l'anneau des entiers de

Q — s (x") appartient encore à Q — donc au module engendré par F".
\Pj \PJ

De même s (x') appartient encore au module engendré par F', car s permute
entre eux les éléments de F'. Comme enfin s (x) x, on aura donc s (x')
— x' et s (x") — x".
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x" étant invariant par tout i^-automorphisme, appartient à Q D Kr

c'est-à-dire à Ä"r_ t.
Quant à x', il s'écrit:

X AflÉ8,AfleZ
ae u gkSr

0 <k<(p(pr)

De x' s (x') on déduit que Xa Xa. si a et a' sont congrus modulo Sr
Posant alors ßk Xgk,on obtient:

*'= X ft(X^")= X ^(0)
0<k<(p(pr) aeSr 0 <k<(p(pr)

Remarque IIIA.

On n'utilise pas complètement le fait que Q (jnr) est le plus petit corps
cyclotomique contenant Kr, mais seulement que nr est de la forme pUrn\

avec n premier avec p, sans facteur carré, Kr c Q (/?,.) et Kr $ Q

Proposition III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont

équivalentes :

III.2.A: K possède une base d'entiers normale.

III.2.B: Il existe un entier 9 de K tel que TrK/Q (0) 1.

III.2.C: Le plus petit corps cyclotomique contenant K possède

une base d'entiers normale.

| III.2.D : K est modérément ramifiée.

C => A et A => B résultent des rappels effectués au paragraphe III. 1.

B => C résulte pour les extensions cycliques de degré pr sur Q de la
proposition III. 1. Reprenant les mêmes notations, si Q (nr) ne possède pas de
base d'entiers normale, alors, d'après le lemme III.3, nr possède un facteur
carré, donc ur 2.

' Comme $nr (X) A>„r (X^-1), la trace de £ sur Q est nulle, donc celle
Uf 1

fi p

jde 0 également. Si x est un entier de Kr, x se décompose comme
précédemment en x x' + x" et l'on a;
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TrKflQ(x) TrKrlQ(x")

La trace d'un entier de Kr ne peut donc être égale à 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu'il existe un entier 9 de K
tel que: TrK/Q (9) 1.

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d'ordre p\l.
Soit K{ le corps fixe de Gx x x Gi_1 x { 1 } x Gi+1 x x Gm. Kt
est cyclique de degré sur Q et K KXK2 Km.

Soit 9i TrKfKi (9). 0t est un entier de Kt tel que TrK./Q (0f) 1.

Si Q (nt) est le plus petit corps cyclotomique contenant Kt alors nt est

sans facteur carré d'après la démonstration précédente.

n est le PPCM des nh donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c'est-à-dire divisant n.

Si n est sans facteur carré, alors l'indice de ramification de p dans Q (n)
est p — 1 et l'indice de ramification de p dans K, divise p — 1, donc est

premier à p.
Réciproquement, si n possède un facteur carré, alors n est de la forme

n psn\ avec p premier, ne divisant pas n' et s 2. Soit n l'application
de G (n) sur G (k/q) qui à tout automorphisme de Q {n) fait correspondre

Donc 7i a pour ordre p et il est inclus dans n (T (n, n)} qui est le

groupe d'inertie de p dans K. L'indice de ramification de p dans K est donc

multiple de p.

sa restriction à K. Puisque K $ Q alors

III.4. Bases d'entiers dans les extensions Kr

Proposition III.3.

Soit Kr une extension cyclique de degré pr sur Q, Q (nr) le plus
petit corps cyclotomique contenant Kr.
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